
CPGE PSI 2025-2026 L y c é e J e a n P e r r i n E. SAUDRAIS

Phénomènes de transport IV— Fluides en écoulement
 Description d’un fluide

 Le modèle du fluide

Un fluide est un milieu matériel continu dont les déformations peuvent prendre des valeurs aussi grandes que
l’on veut : il peut se mettre sous une forme quelconque lorsqu’il est soumis à un système de forces, ces forces
pouvant être aussi faibles que l’on veut, à condition qu’on les fasse agir pendant un temps assez long.
On distingue trois échelles de longueur dans la description d’un fluide :

— L’échelle microscopique définie au niveau moléculaire ; c’est le libre parcours moyen ℓ caractérisant le mou-
vement des molécules du fluide ; typiquement ℓ≈ 100 nm pour un gaz, ℓ≈ 10−10 m pour un liquide.

— L’échelle macroscopique L, caractéristique de l’écoulement (largeur d’un canal, diamètre d’un tuyau, taille
d’un obstacle).

— L’échelle mésoscopique a, intermédiaire entre les deux échelles précédentes : ℓ¿ a ¿ L . Un volume de
fluide de dimension mésoscopique a3 est suffisamment petit à l’échelle macroscopique pour être considéré
comme ponctuel, et suffisamment grand à l’échelle microscopique pour contenir un grand nombre de mo-
lécules.

L’échelle mésoscopique permet de définir des grandeurs locales, définies statistiquement sur le grand nombre
de molécules du volume a3 situé au point considéré.

 La particule de fluide

Une particule de fluide un système fermé, de volume mésoscopique dτ= a3. Elle permet de définir statis-
tiquement des grandeurs locales intensives (température, pression, masse volumique, vitesse).

ä Le modèle de particule de fluide n’est pas toujours utilisable : il faut que ℓ¿ L. Dans le cas d’un gaz à très
basse pression, ou d’un système d’échelle L très petite, on peut avoir ℓ≈ L, ce qui rend impossible la descrip-
tion à l’échelle mésoscopique.

ä L’échelle mésoscopique permet de décrire le fluide comme un milieu continu.

ä Par définition, la masse d’une particule de fluide est constante (c’est un système fermé).

 Description eulérienne d’un fluide

On décrit un fluide en mouvement à l’aide de champs, définis en tout point M à chaque instant, qui caractérisent
les propriétés de la particule de fluide qui passe en M à l’instant t .

Le champ eulérien des vitesses #»v (M , t ) représente la vitesse de la particule de fluide qui passe en M à
l’instant t .

ä À un instant t ′ > t , #»v (M , t ′) représente la vitesse d’une autre particule de fluide; celle qui était en M à l’instant
t est, à l’instant t ′, en un autre point du fait de l’écoulement du fluide.

Les lignes de courant sont les lignes de champ du champ des vitesses : en chaque point M d’une ligne de
courant, #»v (M , t ) est tangent à la ligne de courant.

ä L’ensemble des positions successives de la particule de fluide étudiée définit sa trajectoire. Les lignes de cou-
rants ne s’identifient a priori pas aux trajectoires.

Les tubes de courant sont les tubes de champ du champ des vitesses : c’est l’ensemble des lignes de courant
s’appuyant sur un contour.

ä Les parois d’un tuyau délimitent un tube de courant.

Les autres champs eulériens usuels décrivant un fluide en mouvement sont :

— le champ de pression P (M , t ) ;

— le champ de masse volumique µ(M , t ).
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 Dérivée particulaire du champ des vitesses

L’accélération d’une particule de fluide est donnée par la dérivée particulaire du champ des vitesses

#»a = D #»v

Dt
= ∂#»v

∂t
+

(
#»v · #      »

grad
)

#»v

Le terme
∂#»v

∂t
est l’accélération locale ; le terme

(
#»v · #      »

grad
)

#»v est l’accélération convective.

Accélération locale
∂#»v

∂t
, rend compte des variations au cours du temps en un point fixe.

Accélération convective
(

#»v · #      »

grad
)

#»v , rend compte du déplacement de la particule de fluide vers une zone où la

vitesse est différente.

ä L’accélération locale est nulle dans le cas d’un écoulement stationnaire.

ä Le terme
(

#»v · #      »

grad
)

est un opérateur, dont l’expression en coordonnées cartésiennes est

(
#»v · #      »

grad
)
= vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

Cet opérateur peut s’appliquer à un champ scalaire ou à un champ vectoriel.

 Masse volumique

En notant δm la masse de la particule de fluide de volume dτM située en M à l’instant t , on définit le champ de

masse volumique : µ(M , t ) = δm

dτM
. La masse volumique s’exprime en kg ·m−3.

ä On définit ainsi un champ scalaire.

ä Retenir les ordres de grandeurs : µeau = 103 kg ·m−3, µair ≈ 1 kg ·m−3.

 Débits et lois de conservation

 Débit massique, vecteur densité de courant de masse

Le débit massique Dm(t ) à travers une surface orientée Σ est la masse de fluide qui traverse cette section
par unité de temps.

ä Le débit massique s’exprime en kg · s−1.

ä Dm est une grandeur scalaire algébrique dont le signe dépend du sens d’orientation de Σ.

ä La masse de fluide qui traverse Σ pendant dt est δm = Dm(t )dt .

Le débit massique à travers une surface orientée Σ est donné par le flux du vecteur densité de courant de
masse #»ȷm à travers cette surface :

Dm(t ) =
Ï

M∈Σ
#»ȷm(M , t ) ·d

#»
SM avec #»ȷm(M , t ) =µ(M , t ) #»v (M , t ) .

ä #»ȷm est un champ vectoriel dont l’intensité s’exprime en kg ·m−2 · s−1.
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 Conservation de la masse

Dans le cas d’un écoulement unidimensionnel en géométrie cartésienne décrit par les champs #»v = v(x, t ) #»e x

et µ(x, t ), la conservation de la masse s’écrit

∂µ(x, t )

∂t
+ ∂

[
µ(x, t )v(x, t )

]
∂x

= 0.

 Généralisation en géométrie quelconque

En géométrie quelconque, l’équation locale de conservation de la masse s’écrit

∂µ

∂t
+div

(
µ#»v

)= 0

ä On peut écrire
∂µ

∂t
+ #»v · #      »

gradµ+µdiv #»v = 0, soit
Dµ

Dt
+µdiv #»v = 0.

 Écoulement stationnaire

Un écoulement est dit stationnaire si ses champs eulériens sont indépendants du temps :

∂#»v

∂t
= #»

0 ;
∂µ

∂t
= 0 ;

∂P

∂t
= 0.

ä Le caractère stationnaire d’un écoulement dépend du référentiel d’étude.

ä Les trajectoires des particules de fluides s’identifient aux lignes de courant quand l’écoulement est station-
naire.

En régime stationnaire, le débit de masse a même valeur à travers toute section d’un tube de courant.

 Écoulement incompressible et homogène

Un écoulement incompressible et homogène est caractérisé par un champ de masse volumique constant
et uniforme :

µ(M , t ) =µ0 .

ä Le volume d’une particule de fluide reste alors constant au cours de son déplacement dans l’écoulement.

ä Un fluide incompressible (liquide) subit un écoulement incompressible et homogène.

ä L’écoulement d’un gaz est considéré comme incompressible si la vitesse caractéristique de l’écoulement est
faible devant la vitesse du son dans le gaz.

Un écoulement incompressible est caractérisé par

div #»v = 0.

 Débit volumique

Le débit volumique Dv(t ) à travers une surface orientée Σ est le volume de fluide qui traverse cette section
par unité de temps.

ä Le débit volumique s’exprime en m3 · s−1.

ä Dv est une grandeur scalaire algébrique dont le signe dépend du sens d’orientation de Σ.

ä La volume de fluide qui traverse Σ pendant dt est δV = Dv(t )dt .
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Le débit volumique à travers une surface orientée Σ est donné par le flux du champ des vitesses à travers
cette surface :

Dv(t ) =
Ï

M∈Σ
#»v (M , t ) ·d

#»
SM .

 Cas d’un écoulement incompressible est homogène

Dans le cas d’un écoulement incompressible est homogène, le débit volumique a même valeur à travers
toute section d’un tube de courant.

ä Quand les lignes de courant se resserrent, l’intensité du champ des vitesses augmente.

ä Le champ des vitesses est alors à flux conservatif, soit div #»v (M) = 0 .

 Actions sur un fluide

 Actions à distance : forces volumiques

Un champ de force volumique
#»

f v(M , t ) permet d’exprimer la force subie par une particule de fluide de volume
dτM située en M :

d
#»
F = #»

f v(M , t )dτM .

Les actions à distance peuvent être décrites par un champ de force volumique. On notant µ la masse volumique
du fluide et ρ sa densité volumique de charge électrique :

nature de la force force volumique

gravitation
#»

f v =µ
#»

G

pesanteur
#»

f v =µ#»g

force de Lorentz
#»

f v = ρ
(

#»
E + #»v ∧ #»

B
)

 Actions de contact : forces surfaciques

d
#»
F

d
#»
F n

d
#»
F t

d
#»
SMM

V

Σ
Au sein d’un fluide, on considère un volume V délimité par une surface Σ. Soit M un
point de la surface Σ ; on note d

#»
SM le vecteur surface élémentaire en M , normal à Σ et

dirigé vers l’extérieur.
La force exercée par le fluide extérieure sur l’élément de surface dS du fluide intérieur
à V peut se décomposer en une composante normale et une composante tangentielle
à la surface :

d
#»
F = d

#»
F n +d

#»
F t

 Force de pression

La composante normale de la force de contact exercée par un fluide définit la pression P (M , t ) selon

d
#»
F n =−P (M , t )d

#»
SM .

ä d
#»
F n est appelée la force de pression.

ä La pression s’exprime en pascal (Pa). On a P (M , t ) > 0.

 Équivalent volumique des forces de pression

La résultante des actions de contact qui s’exercent sur les faces d’une particule de fluide de volume dτ peut
s’écrire d

#»
F = #»

f v dτ, où
#»

f v est l’équivalent volumique des forces de contact.
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L’équivalent volumique des forces de pression est

#»

f p =−#      »

gradP .

ä La pression peut donc s’interpréter comme l’énergie potentielle volumique dont dérivent les forces de pres-
sion.

On retiendra un résultat utile :

La résultante
#»
F p des forces de pression s’exerçant sur une surface fermée est nulle lorsque le champ de

pression est uniforme : si P (M , t ) = P0, on a
#»
F p = #»

0 .

ä C’est le cas pour une surface fermée placée dans l’air où la pression est considérée comme uniforme. Ce
résultat ne s’applique pas aux liquides.

 Éléments de statique des fluides

 Loi de la statique des fluides

La loi fondamentale de la statique des fluides traduit l’équilibre d’un fluide dans le champ de pesanteur :

#      »

gradP =µ#»g .

ä En choisissant un axe Oz ascendant, l’équation de la statique des fluides dans le champ de pesanteur s’écrit

dP

dz
=−µg .

ä La résultante des actions de pression sur un corps immergé de volume V est la poussée d’Archimède
#»
ΠA :

elle est opposée au poids du fluide de remplacement.

 Fluide incompressible dans le champ de pesanteur

Dans le cas d’un liquide de masse volumique µ0 constante et uniforme, la pression varie selon

P (z) = P (z0)+µ0g (z0 − z)

où Oz est la verticale ascendante.

ä Dans le cas d’un récipient ouvert sur l’atmosphère à la pression P0 contenant une hauteur H de liquide, la
pression dans le liquide est donnée par P (z) = P0 +µ0g (H − z).

ä Dans tout le fluide, on a P (z)+µ0g z = cte , ce qui traduit la conservation de l’énergie mécanique volumique

dans tout le fluide. Les isobares sont les surfaces z = cte.

 Atmosphère isotherme dans la modèle du gaz parfait

On modélise l’atmosphère par un gaz parfait de masse molaire M et de température T0 uniforme. Avec l’équation

d’état P (z) = µ(z)RT0

M
, on en déduit

P (z) = P0 expe−z/H avec H = RT0

M g
.

ä Pour T0 = 300 K, on a H ≈ 9 km.

ä Le terme exp

(
−M g z

RT0

)
= exp

(
−mg z

kBT

)
= exp

(
− ep

kBT

)
est le facteur de Boltzmann, qui fait apparaître le rap-

port de l’énergie potentielle de pesanteur ep d’une molécule sur son énergie cinétique d’agitation thermique.
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 Viscosité dynamique d’un fluide newtonien

On considère un fluide en écoulement laminaire incompressible #»v = v(y, t ) #»e x .

O

yM

y

M

x

(1)

(2) d
#»
S

La composante tangentielle de la force exercée par le fluide de la couche (2) — au-dessus de M — sur le
fluide de la couche (1) — en dessous de M — est appelée force de viscosité.
Pour un fluide newtonien, la force s’exerçant sur une surface dS s’écrit

d
#»
F t,2→1 = η

∂v

∂y
dS #»e x ,

où η> 0 est la viscosité dynamique du fluide, qui s’exprimer en poiseuille (Pl).

ä Le fluide (1) exerce sur le fluide (2) la force de viscosité opposée d
#»
F t,1→2 =−d

#»
F t,2→1.

ä Ordre de grandeurs : ηair ≈ 10−5 Pl ; ηeau ≈ 10−3 Pl ; ηglycérine ≈ 1 Pl.

ä Cette expressions de d
#»
F t,2→1 traduit aussi la force exercée par le fluide sur la surface d

#»
S d’une paroi (située

en dessous de M).

ä Le fluide visqueux newtonien est un modèle, qui permet de décrire de façon satisfaisante de nombreux
fluides réels. D’autres fluides n’obéissent pas à ce modèle : on parle de fluides non newtoniens (le miel, la
purée, les solutions de maïzena, la mayonnaise, etc.).

On définit le coefficient de viscosité cinématique du fluide :

ν= η

µ

ä La viscosité cinématique prend en compte la viscosité mais aussi l’inertie du fluide; c’est elle qui décrit l’effet
des forces visqueuses sur l’écoulement.

ä En ordre de grandeur νair ≈ 15νeau.

La viscosité est associée à un transfert diffusif de quantité de mouvement.

ä Les couches de fluide rapides accélèrent les couches de fluide lentes, sans transfert macroscopique de fluide
entre les couches (le débit volumique à travers la surface dS est nul sur l’exemple donné).

L’effet de la viscosité est donc de rendre le champ des vitesses uniforme.

ä Si le champ des vitesses est uniforme, les forces de viscosité sont nulles au sein du fluide.

 Conditions aux frontières

 Sur un obstacle

Dans un fluide réel, le champ des vitesses est nul en tout point de contact avec un obstacle au repos.

ä Dans le cas d’un obstacle en mouvement, on se place dans le référentiel lié à l’obstacle.

ä L’interface entre deux liquides non miscibles est traité comme une paroi : il y a continuité du champ des
vitesses à l’interface de deux liquides non miscibles.

 À une surface libre

La surface libre d’un liquide est l’interface au contact avec l’atmosphère.
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À la surface libre d’un liquide :

— il y a continuité de la pression;

— on néglige la force visqueuse exercée par l’air sur le fluide.

 Écoulement interne incompressible et homogène dans une conduite cylindrique

 Écoulements laminaire, turbulent

On considère l’écoulement d’un fluide remplissant entièrement une conduite cylindrique; le fluide ne possède
pas de surface libre en contact avec l’atmosphère : on parle d’écoulement interne.
Selon les conditions expérimentales, l’écoulement peut être laminaire (les lignes de courants sont régulières)
ou turbulent.

La nature laminaire ou turbulente du régime d’écoulement d’un fluide de masse volumique µ, de viscosité
η, en écoulement à la vitesse débitante U dans une conduite cylindrique de diamètre d ne dépend que du
nombre de Reynolds

Re = µUd

η
.

Re < 2000 : écoulement laminaire

Re > 4000 : écoulement turbulent

ä Pour 2000 <Re < 4000, on observe un régime de transition, où l’écoulement fluctue entre le régime laminaire
et le régime turbulent.

ä Dans des conditions expérimentales particulières, on peut observer une transition laminaire-turbulent pour
un nombre de Reynolds bien supérieur à 2000 ; les valeurs données ici ne sont que des ordres de grandeur.

ä La vitesse débitante U est la vitesse uniforme donnant le même débit volumique : Dv =U S.

 Nombre de Reynolds

On considère un écoulement caractérisé par une unique échelle spatiale L : diamètre d’une conduite, diamètre
d’un corps sphérique immergé. On note U la vitesse caractéristique de l’écoulement, µ la masse volumique du
fluide et η sa viscosité.

Le nombre de Reynolds caractérisant cet écoulement est la grandeur sans dimension

Re = µU L

η
= U L

ν

où ν= η/µ est la viscosité cinématique du fluide.

Le nombre de Reynolds peut s’interpréter comme deux modes de transfert de quantité de mouvement :

Re ≈ inertie

viscosité
≈ transfert convectif

transfert diffusif

ä Le transfert convectif est dû au déplacement macroscopique de fluide au cours de l’écoulement; avec une
vitesse débitante, il s’effectue sur une distance L pendant la durée τconv ≈ L/U .
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ä Le transfert diffusif est dû au transfert de quantité de mouvement entre les couches de fluides voisines par
viscosité. La viscosité cinématique ν jouant le rôle de coefficient de diffusion, le temps caractéristique de
diffusion sur une longueur L est τdiff ≈ L2/ν.

Le nombre de Reynolds s’interprète comme le rapport du temps caractéristique de diffusion de quantité de
mouvement sur le temps caractéristique de convection :

Re ≈ τdiff

τconv
.

Re ¿ 1 : l’écoulement est gouverné par la viscosité ; il est dit rampant.

Re À 1 : l’écoulement est gouverné par l’inertie.

ä La plupart des écoulements de la vie quotidienne sont caractérisés par Re À 1.

ä Les écoulements à faible nombre de Reynolds correspondent aux vitesses très faibles, aux dimensions très
petites, ou aux fluides très visqueux.

 Similarité

Deux écoulements sont similaires s’ils ont la même géométrie et le même nombre de Reynolds.

ä Diminuer seulement la dimension d pour étudier une maquette réduite ne convient pas : il faut modifier U
ou ν de façon à garder la même valeur de Re.

 Chute de pression dans une conduite horizontale

On considère l’écoulement laminaire stationnaire d’un fluide incompressible et homogène dans une conduite
horizontale cylindrique de rayon a, de longueur L et d’axe Ox : le champ des vitesses est de la forme #»v = v(r ) #»e x .
L’écoulement est entretenu par une surpression ∆P = P (0)−P (L) > 0.

ä Le champ des vitesses présente un profil parabolique : #»v = ∆P

4ηL
(a2 − r 2) #»e x .

ä Le débit volumique est donné par la loi de Hagen-Poiseuille : Dv = πa4

8ηL
∆P .

ä La vitesse débitante est donnée par U = a2

8ηL
∆P .

 Résistance hydraulique

On peut faire une analogie entre l’électrocinétique et l’écoulement laminaire dans une conduite :

Électrocinétique Écoulement
intensité I débit volumique Dv

différence de potentiel ∆V différence de pression ∆P

résistance électrique R = ∆V

I
Résistance hydraulique Rh = ∆P

Dv
.

Résistance hydraulique pour l’écoulement d’un fluide visqueux dans une conduite cylindrique : Rh = 8ηL

πa4 .

ä La résistance électrique d’un cylindre est R = L

γπa2 ∝ 1

a2 : la dépendance en a est différente pour la résis-

tance hydraulique car la vitesse n’est pas uniforme sur une section droite de la conduite.
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 Perte de charge régulière

Étant donné un fluide de masse volumique µ, de viscosité η, s’écoulant avec une vitesse débitante U dans une
conduite de diamètre d et de longueur L, on définit le coefficient de friction f , sans dimension, par

∆P = f
µU 2

2

L

d

où ∆P = P (0)−P (L) est la chute de pression sur la longueur L de la conduite.

ä Dans le cas général, il dépend du nombre de Reynolds Re et de la rugosité relative ε/d de la conduite, où ε

est la rugosité de la paroi de la conduite (hauteur moyenne des aspérités).

Le coefficient de friction se détermine à l’aide du diagramme de Moody, représentant log f en fonction de logRe
pour diverses valeurs de ε/d .

Pour Re < 2000, le régime est laminaire, et

f = 64

Re
.

On a une droite de pente −1 dans le dia-
gramme.
Pour Re > 3000, le régime est turbulent, et f
dépend de Re et ε/d .
Dans la zone de turbulence complète, f ne dé-
pend plus de Re : il ne dépend que de la rugo-
sité relative ε/d .

 Écoulement externe incompressible et homogène autour d’un obstacle

 Force de traînée, coefficient de traînée
#»
U

#»
F x

#»
F z

#»
F

#»e x

#»e z

Soit un solide immergé dans un fluide, dont l’écoulement loin du solide
est caractérisé par un champ des vitesses uniforme

#»
U =U #»e x .

La force exercée par le fluide sur le solide peut s’écrire comme la somme
de deux composantes :

#»
F = #»

F x + #»
F z ,

où
#»
F x est tangente à l’écoulement et

#»
F z est normale à l’écoulement.

On appelle traînée la composante
#»
F x = Fx

#»e x , dans la direction de l’écoulement, de la résultante des actions
du fluide sur le solide immergé.

ä Dans le cas où l’objet est en mouvement dans le fluide, la traînée, opposée à sa vitesse, correspond à la « force
de frottement » due au fluide.

On appelle portance la composante
#»
F z = Fx

#»e z , normale à la direction de l’écoulement, de la résultante des
actions du fluide sur le solide immergé.

Le coefficient de traînée est le nombre sans dimension Cx défini par

Fx = 1

2
CxµSU 2 ,

où est la section maximale de la sphère perpendiculairement à l’écoulement (appelée maître-couple).

ä Dans le cas d’une sphère de rayon R, le maître-couple est donné par S =πR2.

Le coefficient de traînée dépend du nombre de Reynolds, de la texture de l’objet et de la forme de l’objet.
Le coefficient de traînée caractérise « l’aérodynamisme » de l’objet : pour un fluide, une vitesse et un maître
couple donnés, l’objet est d’autant plus aérodynamique (faible traînée) que f est petit.
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 Évolution du coefficient de traînée d’une sphère avec le nombre de Reynolds

On considère une sphère lisse de rayon R placée dans un écoulement uniforme
#»
U =U #»e x .

Cx

Re

À

Á

Â

Ã

Zone ÀRe < 1 : la traînée est donnée par la loi de Stokes
#»
F x = 6πηR

#»
U . On a Cx = 24

Re
.

Zone Â 103 <Re < 105 : le coefficient de traînée Cx est constant. On a Fx ≈ R2µU 2.

Zone ÃRe ≈ 2×105 : on observe une diminution brutale du coefficient de traînée. C’est la crise de traînée.

À Á Â Ã

Couche limite collée à la
sphère (loi de Stokes).

La couche limite se dé-
colle de plus en plus
tôt ; des tourbillons ap-
paraissent dans le sillage.

La couche limite se décolle ; le
sillage turbulent occupe tout
l’espace en aval (traînée en U 2)

Le décollement de la couche
limite est retardé; le sillage
turbulent est moins important
(chute de la traînée).

ä Dans le cas Re < 1, la traînée ne dépend pas de µ, mais dépend de η : l’écoulement est gouverné par la
viscosité. La traînée est due aux forces visqueuses sur la sphère : on parle de traînée de frottement.

ä Dans le cas 103 < Re < 105, la traînée ne dépend pas de η, mais dépend de µ : l’écoulement est gouverné
par l’inertie. La traînée est due au sillage turbulent qui influe sur la résultante des forces de pression sur la
sphère : on parle de traînée de forme.

 Écoulement parfait, couche limite

Un écoulement est dit parfait si tous les phénomènes diffusifs, en particulier la viscosité, sont négligeables.

ä La limite de la viscosité nulle η→ 0 revient à considérer Re →∞.

Si Re À 1, l’écoulement autour d’un obstacle est caractérisé par une couche limite d’épaisseur δ autour de
l’obstacle, zone dans laquelle les effets de la viscosité sont prépondérants.
En dehors de la couche limite, l’écoulement est considéré comme parfait.

ä L’épaisseur de la couche limite est donnée par δ≈ Lp
Re

.

ä Dans le cas où Re ≈ 1, l’effet de la viscosité se ressent dans tout le domaine de l’écoulement; on ne peut plus
parler de couche limite.
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ä À l’intérieur de la couche limite, l’écoulement peut être laminaire (couche limite laminaire) ou turbulent
(couche limite turbulente).

ä Dans certaines situations, on peut observer un décollement de la couche limite, donnant naissance à un
sillage : l’effet de la viscosité ne reste plus confiné au voisinage de l’obstacle, et la zone où l’écoulement ne
peut être considéré comme parfait devient importante. C’est le cas après un angle saillant, ou sur l’extrados
d’un aile d’avion au-delà d’une certaine inclinaison (phénomène de décrochage aérodynamique).

Explication des régimes d’écoulement observés autour de la sphère :

ä Une couche limite turbulente résiste mieux au décollement qu’une couche limite laminaire.

ä La crise de la traînée correspond à la transition « couche limite laminaire » → « couche limite turbulente ». Le
sillage turbulent est alors plus petit, ce qui diminue la traînée.

ä Les alvéoles à la surface d’une balle de golf favorisent l’apparition d’une couche limite turbulente, afin de
diminuer la traînée.

 Forces de traînée et de portance d’une aile d’avion à haut Reynolds
#»
F p

#»
F t

#»
V r

Une aile d’avion est un obstacle profilé pour le-
quel on cherche une portance

#»
F p élevée et une

faible traînée
#»
F t.

La géométrie de l’aile est caractérisée par :

— sa corde ℓ ;

— son envergure L ;

— sa surface alaire S = L×ℓ.

L’angle d’incidence est l’angle formé par la corde avec la direction du vent relatif
#»
V r. Le nombre de Reynolds

caractérisant l’écoulement autour de l’aile est défini par Re = µVrℓ

η
.

ä On a Re À 1 pour un avion.

On définit les coefficients de portance Cz et de traînée Cx par ‖#»
F p‖ = 1

2
µV 2

r Cz S et ‖#»
F t‖ = 1

2
µV 2

r Cx S .

Cz

Cx

Les coefficients de traînée et de portance varient fortement en fonction
de l’angle d’incidence :

— Le coefficient de portance augmente avec l’angle i , jusqu’à une inci-
dence limite au-delà de laquelle il chute brutalement : c’est le phé-
nomène de décrochage.

— Le coefficient de traînée augmente avec l’angle i .

Le phénomène de décrochage est dû au décollement de la couche limite
de l’extrados.

On définit la finesse : f = Cz

Cx
.
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P1

P2

P3

P4 La polaire d’Eiffel représente Cz en fonction de Cx en faisant varier l’angle d’incidence i .
P1 : point de portance nulle (correspond à i < 0)
P2 : point de traînée minimum (correspond à i ≈ 3°)
P3 : point de finesse maximale
P4 : point de portance maximale (correspond à i ≈ 15°)
Au-delà du point P4, on observe le phénomène de décrochage :
la portance diminue fortement. Cela est dû au décollement de

la couche limite au niveau de l’extrados, avec formation d’un
sillage turbulent.

 Mais qui étaient-ils?

Jean-Louis-Marie Poiseuille (1797-1869).
Physicien et médecin français, diplômé de l’École polytechnique. Il étudie le cir-
culation du sang dans les vaisseaux, et publie la loi qui porte son nom en 1846,
déterminant le profil de la vitesse dans l’écoulement. Ses travaux ont porté sur la
mesure de la pression sanguine, grâce à l’utilisation d’un manomètre à mercure
(le pression artérielle est d’ailleurs toujours donnée en dixièmes de millimètre de
mercure), et son évolution lors de la respiration. Il est élu à l’Académie de méde-
cine en 1842.

Osborne Reynolds (1842-1912).
Physicien britannique, auteur de travaux fondamentaux en dynamique des
fluides.
Son approche est celle d’un ingénieur (avant ses études, il fut apprenti chez un
constructeur de navires). Ses travaux les plus connus portent sur l’étude de la
transition entre le régime laminaire et le régime turbulent d’un fluide en écou-
lement dans un tuyau (1883). Il introduit le nombre de Reynolds à partir de ses
expériences. Ses résultats sont à la base de la similitude, qui permet d’étudier des
modèles réduits de maquettes.
Il étudie aussi le transfert thermique entre les solides et les fluides, la théorie ci-
nétique des gaz, la lubrification, les freins hydrauliques. . .
Reynolds a visualisé la transition entre l’écoulement laminaire et l’écoulement
turbulent à l’aide de son expérience de 1883.

Une plate-forme surélevée permet d’utiliser un siphon suffisamment
haut pour atteindre la vitesse critique nécessaire. Un levier permet
d’ouvrir la vanne de sortie depuis la plate-forme. L’eau s’écoule d’un
récipient aux parois de verre à travers un tube en verre ; un filament
de colorant est injectée à l’entrée du tube, évasée pour ne pas pertur-
ber l’écoulement. La vitesse est déterminée par la mesure du niveau
d’eau dans le récipient.
Initialement, Reynolds écrivait la vitesse critique sous la forme U =
P/BD , où D est le diamètre du tube, P = ν/ν0 est la viscosité ciné-
matique de l’eau divisée par sa valeur ν0 à 0 °C et B est le paramètre
dont la valeur critique est déterminée expérimentalement. Il a déter-
miné la vitesse critique pour laquelle l’écoulement reste laminaire et
stable dans le tube, et obtint B = 278 s ·m−2, soit Re = 2020. Reynolds
notait K le nombre de Reynolds, et le définissait à partir du diamètre
du tube. Il obtenait une transition laminaire/turbulent pour une va-
leur de K située entre 1900 et 2000.
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