## 1 Robot Tecdron

Il faut d'abord écrire les vitesses en fonction des vitesses de rotation des roues. Après calcul, on obtient :

$$V_{y} = -\frac{r+R}{2} \cdot (\omega_{13} + \omega_{24})$$
$$V_{x} = \frac{r+R}{2} \cdot (\omega_{13} - \omega_{24})$$

Pour chaque état, on peut donc connaître les vitesses  $V_x$  et  $V_y$ . Récapitulons :

| État 1 | $V_x = 0 \text{ m/s et } V_y = 1 \text{ m/s}$  |
|--------|------------------------------------------------|
| État 2 | $V_x = 1 \text{ m/s et } V_y = 0 \text{ m/s}$  |
| État 3 | $V_x = -1 \text{ m/s et } V_y = 0 \text{ m/s}$ |
| État 4 | $V_x = 1 \text{ m/s et } V_y = 1 \text{ m/s}$  |
| État 5 | $V_x = -1 \text{ m/s et } V_y = 1 \text{ m/s}$ |

Chaque état dure 2 secondes. La distance parcourue dans la direction  $\overrightarrow{x_0}$  ou  $\overrightarrow{y_0}$  lorsque la vitesse  $V_x$  ou  $V_y$  vaut 1 m/s est donc de 2 mètres. La succession des états est la suivante :

État 
$$0 \to$$
 État  $1 \to$  État  $2 \to$  État  $1 \to$  État  $3 \to$  État  $1 \to$  État  $4 \to$  État  $5 \to$  État  $1 \to$  État  $0 \to$ 

