
Centre d’intérêt 1

Principe fondamental de la dynamique
PSI - MP : Lycée Rabelais

Notions de mécaniques (cinématique, actions mécaniques, principe fondamental de la statique)

Maths : géométrie vectorielle, intégration, matrice

Pré-requis

Calculer/Simplifier/Transporter une matrice d’inertie

Être capable de déterminer une équation de mouvement dans le cas général

Être capable de déterminer une action mécanique en connaissant le mouvement des solides

Objectifs

1 Introduction

Looping en voiture : X-Games 2012

Ce premier chapitre a deux objectifs principaux :

• Déterminer le mouvement d’un solide lorsqu’il n’est pas à l’équilibre ;

• Déterminer les actions mécaniques exercées sur un solide lorsque celui-ci n’est pas à l’équilibre.

Nous nous intéresserons notamment à l’étude de la voiture utilisée pour réaliser le looping présenté sur la première

figure. À la fin du chapitre, nous pourrons déterminer :

1



• La vitesse atteinte à la fin de la phase d’accélération (en entrée du looping) ;

• La vitesse nécessaire pour que la voiture fasse le tour du looping.

Quelques informations peuvent être récupérer sur le net concernant l’évènement :

Puissance de la voiture 375 chevaux

Couple maxi 249 N.m

Poids 1360 kg

Hauteur du looping 20 m

Distance d’accélération ≈ 100 m

Pour répondre à ces problèmes, il faudra introduire le principe fondamental de la dynamique.

1.1 Formulation de "physique" : mécanique du point

Le principe de la dynamique s’énonce, en mécanique du point, de la manière suivante :

Pour un point matériel M dans un référentiel galiléen R, la somme des forces s’exerçant sur ce point matériel est égale au produit de la masse par

l’accélération :
∑−−−−→

Fex t→M = m · −−→aM/R

•
∑−−−−→

Fex t→M : la somme des forces extérieures s’appliquant sur le point matériel M

• m : la masse du point matériel

• −−→aM/R : le vecteur accélération du point matériel M par rapport au repère galiléen R

Cette formulation, bien que juste, n’est pas suffisante en sciences de l’ingénieur. Cela est notamment lié au fait que les

rotations ne sont pas prises en compte dans cet énoncé. Il sera donc nécessaire de faire intervenir la notion de torseurs.

1.2 Formulation de SI : mécanique du solide

Dans un repère Galiléen R, le torseur des actions mécaniques appliquées à un ensemble de solides (E) est égale

au torseur dynamique de cet ensemble de solides dans son mouvement par rapport à R.

∑

{ex t → E} = {DE/R}

Cette égalité est une égalité torsorielle. À partir de ce principe, il est donc possible d’écrire les deux théorèmes

suivants :

Théorème de la résultante dynamique : ...........................................................................................

Théorème du moment dynamique en ....... : ...........................................................................................

La plupart du temps, on préfèrera travailler sur une équation scalaire. On écrira donc l’un de ces deux théorèmes

en projection sur une direction particulière.

À retenir
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: Centre de gravité de la voiture
: Centre de gravité du moteur
: Centre de gravité de la roue avant
: Centre de gravité de la roue arrière
: Centre de gravité du châssis
: Masse de la voiture
: Masse du moteur
: Masse de la roue avant
: Masse de la roue arrière
: Masse du châssisBA

Hypothèses :

• La voiture complète, notée Σ, est composée de son châssis, de ses roues et de son moteur. Elle est, dans le pire des cas, en haut

du looping. La structure fixe du looping est notée 0.

• La voiture complète a une masse M = 1360 kg. On suppose que le centre de gravité de l’ensemble est GΣ.

•
−→
AB = L−→xv ;

−−→
AGΣ =

L
2
−→xv + h−→yv ;

−−→
GΣB = L

2
−→xv − h−→yv

• On suppose que la voiture se déplace à vitesse constante V dans le looping.

• On considère des contacts ponctuels unilatéraux au niveau des contacts roue/sol. Compte-tenu du rayon important du looping,

on considère que ces liaisons ponctuelles sont de normale −→yv . On aura donc :

{0
A
−→ Σ}=

A

( −→
R

0
A
−→Σ
= Y A

0Σ.−→yv
−→
M

A,0
A
−→Σ
=
−→
0

{0
B
−→ Σ}=

B

( −→
R

0
B
−→Σ
= Y B

0Σ.−→yv
−→
M

B,0
B
−→Σ
=
−→
0

Question 1 : Donner les conditions à respecter pour respecter les contraintes d’unilatéralité.

Question 2 : Donner la/les stratégies d’isolement afin de déterminer la vitesse V afin de respecter les contraintes

d’unilatéralité.

Résolution du problème : la voiture peut-elle faire le tour du looping ?
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2 Définition

Le torseur dynamique d’un solide S dans un référentiel R, écrit en un point A quelconque, se définit de la manière

suivante :

{DS/R}=

A



















..............................................................................................................

..............................................................................................................

{DS/R}=

A



















..............................................................................................................

..............................................................................................................

Les calculs à partir de la définition - notamment à cause des intégrales - vont rapidement s’avérer complexes. Il est donc

nécessaire d’introduire au préalable certaines notions concernant la géométrie des masses pour simplifier ces calculs.

On ne prendra pas le temps de tout démontrer mais on admettra qu’il est donc possible d’écrire le torseur dynamique

de la manière suivante :

{DS/R}=

A







−→
RdS/R = m ·

−→
Γ G∈S/R (résultante dynamique de S par rapport à R)

−→
δ A,S/R =

d
d t

�−→σ A,S/R

�

R +m ·
−→
V A/R ∧

−→
V G∈S/R (moment dynamique en A de S par rapport à R)

avec
−→
Γ G∈S/R : le vecteur accélération en G de S par rapport à R et tel que :

−→
Γ G∈S/R =

d
d t

�−→
V G∈S/R

�

R

À retenir
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Et bien entendu, une propriété des torseurs permet d’écrire :

−−−→
δB,S/R =

−−−→
δA,S/R +

−→
BA∧

−→
RdS/R

On peut aussi montrer que, pour un solide S de centre d’inertie G dans un référentiel R, le torseur cinétique

s’écrit, en un point A quelconque :

{CS/R}=
A

¨ −−→pS/R = m ·
−−−−→
VG∈S/R (résultante cinétique - ou quantité de mouvement - de S par rapport à R)

−−−→σA,S/R = I(A, S) ·
−−→
ΩS/R +m ·

−→
AG ∧

−−−→
VA∈S/R (moment cinétique en A de S par rapport à R)

Avec I(A, S), la matrice d’inertie du solide S au point A. Elle contiendra notamment les moments d’inertie du

solide.

Ce torseur cinétique possède bien évidement la propriété de transport du torseur, on a donc :

−−−→σB,S/R =
−−−→σA,S/R +

−→
BA∧−−→pS/R

- Cas d’un ensemble de solides -

Pour un ensemble de solides Σ composé des solides S1, S2, S3... on calculera les torseurs cinétique et dynamique

de la manière suivante :

{CΣ/R}={CS1/R}+ {CS2/R}+ {CS3/R}+ · · ·

{DΣ/R}={DS1/R}+ {DS2/R}+ {DS3/R}+ · · ·

Remarque - La définition du torseur cinétique est la suivante :

−−→
VA/R =

�

d
−−→
OOA
d t

�

R

???
−−−→
VA∈S/R

−−→
VA/R =

�

d
−−→
OOA
d t

�

R
est la vitesse du point géométrique A dans le référentiel R

−−−→
VA∈S/R est la vitesse du point A appartenant au solide S dans le référentiel R

Attention !
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3 Quelques notions autour de la masse des solides

3.1 Définition

x

y

z

O
M2

M
dm

S
Un système matériel S est constitué d’un ensemble de points

M de masse élémentaire dm. La masse mS de ce système

est donc :

mS =

∫

M∈S
dm (en kg)

On calculera souvent la masse infinitésimale dm à partir de la masse volumique du solide considéré notée ρ et son

volume infinitésimal dV . On a effectivement dm= ρ.dV avec ρ en kg/m3.

3.2 Centre d’inertie - centre de gravité

x

y

z

O
M2

M
dm

S

G

On appelle centre d’inertie (ou centre de gravité) du solide

S le point G qui vérifie la relation :

∫

M∈S

−−→
GM · dm=

−→
0

Ou encore :

−→
OG =

1
m
·
∫

M∈S

−−→
OM · dm

Avec O un point quelconque et m la masse du solide.

À retenir

3.3 Masse d’un ensemble de solides

x

y

z

O

S1

S2

S3

G1

G3

G2

La masse est additive. Cela signifie que la masse mΣ de

l’ensemble Σ= {S1, S2, S3, ...} s’écrit:

mΣ = m1 +m2 +m3 + ... (en kg)

Où les mi sont les masses des solides Si .

3.4 Barycentre (ou centre de gravité) d’un ensemble de solides

On pourra également calculer le centre d’inertie ou le barycentre, noté GΣ, d’un ensemble de solides Σ= {S1, S2, S3, ...}.

−−→
OGΣ =

1
mΣ
·

nb de solides
∑

i=1

mi ·
−−→
OGi

Où les mi sont les masses des solides Si de centres d’inertie respectifs Gi .

À retenir
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3.5 Centre d’inertie d’un solide à symétrie matérielle

Si le solide présente un élément de symétrie matérielle, alors le centre de gravité appartient à cet élément

de symétrie.

On parle de symétrie matérielle si le solide présente une symétrie géométrique et une symétrie du matériaux.

À retenir

Point de symétrie Axe de symétrie

G

G appartient
à cet axe

Plan de symétrie Axe de révolution

G appartient
à ce plan

G appartient
à cet axe

Vue en coupe

3.6 Méthode pour la recherche d’un centre d’inertie

Pour trouver le centre d’inertie d’un solide qui n’a pas de formes élémentaires et de plan de symétrie, il faut décomposer

celui-ci. La décomposition doit permettre de déterminer directement la position des centres de gravité de chacun des

solides élémentaires. Pour exemple, le solide S ci-dessous a été décomposé en trois solides élémentaires Sa, Sb et Sc .

La recherche du centre de gravité pour chacun des trois solides est immédiate. Il ne reste qu’à utiliser la formule du

barycentre pour déterminer la position du centre de gravité de l’ensemble.

x

y

z

O

x

y

z

OO

x

y

z

O

x

y

z

O

S Sa

Sb

Sc
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On souhaite déterminer le centre d’inertie GCh du châssis de la voiture. La géométrie de ce châssis est donnée

sur la figure ci-dessous. La géométrie, représentée sur les figures ci-dessous, a volontairement été simplifiée.

On donne également les indications suivantes :

• Le châssis est composé d’un matériau homogène de masse volumique ρ.

• Le centre d’inertie d’un triangle se situe au tiers de chacune de ses hauteurs.

• Le centre d’inertie d’un demi-disque se situe à une distance
4R
3π

de sa base (où R est le rayon du demi-

disque.

Réel

Modélisation

Vue en 3D

Vue de côté

x

y

z

O

p

x

y

z
O

h

h
R

l l l l l l

Application : détermination du centre d’inertie du châssis de la voiture
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4 Simplification du torseur cinétique

Le torseur cinétique a déjà été défini dans la partie précédente. Pour un solide S dans un référentiel R, ce torseur s’écrit,

en un point A quelconque :

{CS/R}=

A















−→p S/R =

∫

M∈S

−→
V M∈S/R.dm

−→σ A,S/R =

∫

M∈S

−→
AM ∧

−→
V M∈S/R.dm

4.1 Cas de la résultante

Le plus simple est de partir de la définition du centre d’inertie d’un solide, puis de la dériver par rapport au temps. On

obtient ainsi, pour un solide S, de masse m et de centre d’inertie G :

m ·
−→
OG =

∫

M∈S

−−→
OM · dm ⇒ m ·

d
d t

�−→
OG

�

R
=

d
d t

�∫

M∈S

−−→
OM · dm

�

R

⇒ m ·
−−−−→
VG∈S/R =

∫

M∈S

d
d t

�−−→
OM

�

R
· dm

⇒ m ·
−−−−→
VG∈S/R =

∫

M∈S

−−−−→
VM∈S/R · dm

On obtient donc finalement :

−−→pS/R = m ·
−−−−→
VG∈S/R

• −−→pS/R : quantité de mouvement de S par rapport à R en kg.m/s
• m : masse du solide S

•
−−−−→
VG∈S/R : vitesse du centre d’inertie appartenant à S par rapport à R

À retenir

4.2 Cas du moment

Concernant le moment cinétique, on peut écrire :

∫

M∈S

−→
AM ∧

−−−−→
VM∈S/R · dm=

∫

M∈S

−→
AM ∧

�−−−→
VA∈S/R +

−→
MA∧

−−→
ΩS/R

�

· dm

=

∫

M∈S

−→
AM ∧

−−−→
VA∈S/R · dm −

∫

M∈S

−→
AM ∧

�−→
AM ∧

−−→
ΩS/R

�

· dm

=

�∫

M∈S

−→
AM · dm

�

∧
−−−→
VA∈S/R +

∫

M∈S

−→
AM ∧

�−−→
ΩS/R ∧

−→
AM

�

· dm

= m ·
−→
AG ∧

−−−→
VA∈S/R +

∫

M∈S

−→
AM ∧

�−−→
ΩS/R ∧

−→
AM

�

· dm

Le terme de gauche est relativement simple. Pour le terme de droite, la présence de l’intégration laisse présager des

calculs laborieux. Les résultats qui suivent seront "admis" d’un point de vue mathématique puisque vous ne maitrisez

pas encore les outils nécessaires (cours de maths). Une relecture en fin d’année pourra être bénéfique.
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Le terme

∫

M∈S

−→
AM ∧

�−−→
ΩS/R ∧

−→
AM

�

· dm est une opération linéaire (composition d’opérations linéaires : intégration et

produit vectoriel). Il est donc possible de l’écrire comme le produit d’une matrice que l’on appellera matrice d’inertie

de S en A et du vecteur
−−→
ΩS/R. Cette matrice d’inertie ne dépend que du solide étudié (mais se définit en un point).

Sachant que cette matrice d’inertie ne dépend que du solide étudié, ce sera donc une donnée du problème (tout comme

la masse du solide par exemple). On a donc :

∫

M∈S

−→
AM ∧

�−−→
ΩS/R ∧

−→
AM

�

· dm= I(A, S) ·
−−→
ΩS/R

On peut donc finalement simplifier l’écriture du moment cinétique :

−−−→σA,S/R = I(A, S) ·
−−→
ΩS/R +m ·

−→
AG ∧

−−−→
VA∈S/R

• −−−→σA,S/R : moment cinétique en A de S par rapport à R en kg.m2/s
• I(A, S) : matrice d’inertie en A du solide S en kg.m2

•
−−→
ΩS/R : vitesse de rotation du solide S par rapport à R en rad/s

•
−−−→
VA∈S/R : vitesse du point A appartenant à S par rapport à R en m/s

À retenir

4.3 Récapitulatif

On a donc montré que, pour un solide S de centre d’inertie G dans un référentiel R, le torseur cinétique s’écrit, en un

point A quelconque :

{CS/R}=
A

¨ −−→pS/R = m ·
−−−−→
VG∈S/R

−−−→σA,S/R = I(A, S) ·
−−→
ΩS/R +m ·

−→
AG ∧

−−−→
VA∈S/R

Ce torseur cinétique possède bien évidement la propriété de transport du torseur, on a donc :

−−−→σB,S/R =
−−−→σA,S/R +

−→
BA∧−−→pS/R

À retenir

4.4 Détermination de la matrice par méthode calculatoire

On a donc été capable de simplifier l’écriture du torseur cinétique. Cette simplification a cependant fait intervenir la

matrice d’inertie dont l’expression reste encore, pour le moment, inconnue. On sait simplement que cette matrice est

la représentation d’une application linéaire intervenant dans le calcul du moment cinétique. Il est donc nécessaire de

la définir plus en détail.

x

y

z

A

M

x0

y0

z0

O

Solide S
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On considère dans le repère lié au solide S :
−→
AM =







x

y

z






et
−−→
ΩS/R =







ωx

ωy

ωz






, il faut donc calculer

∫

M∈S
−→
AM ∧

�−−→
ΩS/R ∧

−→
AM

�

· dm. On pourra ensuite identifier I(A, S) sachant que :

I(A, S) ·
−−→
ΩS/R =

∫

M∈S

−→
AM ∧

�−−→
ΩS/R ∧

−→
AM

�

· dm

Commençons les calculs...

−−→
ΩS/R ∧

−→
AM =







ωx

ωy

ωz






∧







x

y

z






=







ωy · z −ωz · y
ωz · x −ωx · z
ωx · y −ωy · x







On a ensuite :

−→
AM ∧

�−−→
ΩS/R ∧

−→
AM

�

=







x

y

z






∧







ωy · z −ωz · y
ωz · x −ωx · z
ωx · y −ωy · x






=







ωx · y2 −ωy · x · y −ωz · x · z +ωx · z2

ωy · z2 −ωz · y · z −ωx · x · y +ωy · x2

ωz · x2 −ωx · x · z −ωy · z · y +ωz · y2







=







y2 + z2 −x · y −x · z
−x · y x2 + z2 −y · z
−x · z −y · z x2 + y2






·







ωx

ωy

ωz







Il ne reste plus qu’à intégrer :

I(A, S) ·
−−→
ΩS/R =

∫

M∈S







y2 + z2 −x · y −x · z
−x · y x2 + z2 −y · z
−x · z −y · z x2 + y2






·
−−→
ΩS/R · dm

Par identification, on obtient donc l’expression suivante pour la matrice d’inertie :

I(A, S) =

















∫

M∈S
(y2 + z2) · dm

∫

M∈S
−x · y · dm

∫

M∈S
−x · z · dm

∫

M∈S
−x · y · dm

∫

M∈S
(x2 + z2) · dm

∫

M∈S
−y · z · dm

∫

M∈S
−x · z · dm

∫

M∈S
−y · z · dm

∫

M∈S
(x2 + y2) · dm

















(−→x ,−→y ,−→z )

4.5 Détermination de la matrice par passage à la limite

4.5.1 Moment d’inertie d’un point matériel par rapport à un axe

On considère ici un point matériel M , de masse m et un axe quelconque ∆. Le point M est situé à une distance r de

l’axe ∆.
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x

y

z

O

M

Δ

r

Le moment d’inertie de ce point matériel autour de l’axe ∆ est noté :

I∆(M) = m · r2

Une première interprétation physique est possible. Lorsqu’un point matériel est en mouvement rectiligne, on comprend

bien que plus sa masse est importante plus il sera difficile de l’accélérer ou de le freiner. Lorsque ce point matériel est

maintenant en rotation autour d’un axe, si on souhaite l’accélérer ou le freiner, on comprend également que d’une part

sa masse intervient mais également l’écartement entre l’axe de rotation et la position de la masse. C’est donc bien la

rotation éventuelle des solides qui impose d’introduire ce concept de moment d’inertie.

4.5.2 Matrice d’inertie

Dans le cas général, le solide en mouvement peut tourner autour des trois axes de l’espace. C’est cela qui nécessite

d’introduire la notion de matrice d’inertie. Considérons maintenant que le point M , de masse élémentaire dm, soit de

coordonnées (x , y, z) dans le repère (A,−→x ,−→y ,−→z ), cela signifie donc que
−→
AM = x · −→x + y · −→y + z · −→z .

x

y

z

A

M

x0

y0

z0

O

Solide S

On peut donc définir les différents moments d’inertie en calculant la distance de la masse à l’axe considéré :

• Moment d’inertie de la masse M par rapport à l’axe (A,−→x ) : dA= dm · ....................
• Moment d’inertie de la masse M par rapport à l’axe (A,−→y ) : dB = dm · ....................
• Moment d’inertie de la masse M par rapport à l’axe (A,−→z ) : dC = dm · ....................

Il sera aussi nécessaire d’introduire les produits d’inertie (dont le sens physique est plus difficile à saisir) :

• Produit d’inertie de la masse M par rapport aux axes (A,−→y ) et (O,−→z ) : dD = dm · y · z
• Produit d’inertie de la masse M par rapport aux axes (A,−→x ) et (O,−→z ) : dE = dm · x · z
• Produit d’inertie de la masse M par rapport aux axes (A,−→x ) et (O,−→y ) : dF = dm · x · y

La matrice d’inertie de M , en A, dans la base (−→x ,−→y ,−→z ) se définit donc de la manière suivante :

I(A, M) =







dA −dF −dE

−dF dB −dD

−dE −dD dC







(−→x ,−→y ,−→z )
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4.5.3 Matrice d’inertie d’un solide

x

y

z

A

M

x0

y0

z0

O

Solide S

Pour obtenir les éléments de la matrice d’inertie en A pour le solide S, il suffit de passer à la limite en considérant que

le solide est composé d’une infinité de points M , de masse élémentaire dm. On a donc :

I(A, S) =







A −F −E

−F B −D

−E −D C







(−→x ,−→y ,−→z )

Avec :

A=

∫

M∈S
(yz + z2) · dm B =

∫

M∈S(x
z + z2) · dm C =

∫

M∈S
(xz + y2) · dm (1)

D =

∫

M∈S
y · z · dm E =

∫

M∈S x · z · dm F =

∫

M∈S
x · y · dm (2)

(3)

4.6 Récapitulatif

La matrice d’inertie permet de prendre en compte le caractère inertiel des solides lorsque ces derniers sont en rotation.

La masse et la répartition de celle-ci ont une influence sur l’inertie en rotation. Il s’agit bien d’une matrice puisqu’il

peut y avoir trois rotations dans l’espace. Par exemple, il est plus simple de faire un tour sur soi-même qu’un salto. Cela

s’explique simplement par le fait qu’à masse égale, votre masse est plutôt répartie sur une ligne verticale (voir figure

ci-dessous).

x

y

z

O

Peu d'inertie pour
une rotation

autour de cet axe
x

y

z

O

Plus d'inertie pour
une rotation

autour de cet axe
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.....................................................................................................

.....................................................................................................

.....................................................................................................

Cette matrice représente la masse du solide mais aussi la répartition de la masse (c’est un calcul intégral). Cette

matrice sera donc une donnée du problème. Elle est quasi-toujours donnée dans une base (−→x ,−→y ,−→z ) qui est

associée au solide considéré. Elle sera souvent exprimée de la manière suivante :

I(A, S) =







A −F −E

−F B −D

−E −D C







(−→x ,−→y ,−→z )

Avec :

A : Moment d’inertie par rapport à l’axe (A,−→x ) D : Produit d’inertie par rapport aux axes (A,−→y ) et (A,−→z )
B : Moment d’inertie par rapport à l’axe (A,−→y ) E : Produit d’inertie par rapport aux axes (A,−→x ) et (A,−→z )
C : Moment d’inertie par rapport à l’axe (A,−→z ) F : Produit d’inertie par rapport aux axes (A,−→x ) et (A,−→y )

L’unité des moments d’inertie, des produits d’inertie (et donc de la matrice d’inertie) est le kg ·m2
.

La notion de "moment" d’inertie n’a rien à voir avec la notion de "moment" dans un torseur.

À retenir

Et c’est quoi 1 kg.m2 ?
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5 Quelques notions autour de la matrice d’inertie

5.1 Simplification de la matrice d’inertie

5.1.1 Petit rappel de mathématiques

x

f2(x) = y2 = x²

x0

-x0

f1(x) = y1 = x

5.1.2 Symétrie par rapport à un plan

On considère ici le châssis de la voiture. On cherche à simplifier la matrice d’inertie (sans calculer tous les termes).

Réel

Modélisation

Vue en 3D

x

y

z

O

p

On sait que :

I(O, Ch) =







∫

M∈Ch(y
2 + z2) · dm

∫

M∈Ch−x · y · dm
∫

M∈Ch−x · z · dm
∫

M∈Ch−x · y · dm
∫

M∈Ch(x
2 + z2) · dm

∫

M∈Ch−y · z · dm
∫

M∈Ch−x · z · dm
∫

M∈Ch−y · z · dm
∫

M∈Ch(x
2 + y2) · dm







(−→x ,−→y ,−→z )
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5.1.3 Symétrie par rapport à un axe de révolution

On considère ici une des roues de la voiture. On cherche toujours à simplifier la matrice d’inertie (sans calculer tous

les termes).

Réel Modèle

x

y

z Oar

On sait que :

I(Oar , Rar) =







∫

M∈Rar
(y2 + z2) · dm

∫

M∈Rar
−x · y · dm

∫

M∈Rar
−x · z · dm

∫

M∈Rar
−x · y · dm

∫

M∈Rar
(x2 + z2) · dm

∫

M∈Rar
−y · z · dm

∫

M∈Rar
−x · z · dm

∫

M∈Rar
−y · z · dm

∫

M∈Rar
(x2 + y2) · dm







(−→x ,−→y ,−→z )
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5.2 Matrice d’un point matériel

x

y

z

O

p

G

Soit un point matériel, noté p, de masse m et de centre

d’inertie G.

I(G, p) =







0 0 0

0 0 0

0 0 0







(−→x ,−→y ,−→z )

Attention, la matrice n’est nulle qu’au centre

d’inertie !

À retenir

5.3 Matrice d’un solide composé de plusieurs pièces

x

y

z

O

S1

S2

S3

G1

G3

G2

A

On pourra calculer la matrice d’inertie, I(A,Σ), d’un ensem-

ble de solides Σ= {S1, S2, S3, ...} au point A en additionnant

les matrices d’inertie de chacun des solides.

I(A,Σ) = I(A, S1) + I(A, S2) + I(A, S3) + ...

Bien entendu, il faut que les points soient les

mêmes et que les bases de calcul soient les mêmes

également.

À retenir

5.4 Théorème de Huygens

Ce théorème permet de changer le point d’écriture de la matrice. Plus exactement, il permet de passer du centre

d’inertie G d’un solide S à un autre point A quelconque.

18



x

y

z

O
M2

S

G

A

La plupart du temps, compte-tenu des symétries, on vous

donnera la matrice au centre d’inertie :

I(G, S) =







A −F −E

−F B −D

−E −D C







(−→x ,−→y ,−→z )

Pour obtenir I(A, S), il faut utiliser le théorème de Huygens :

I(A, S) = I(G, S) + I(G→ A, S)

À retenir

Avec :

• I(A, S) : la matrice d’inertie en A du solide S ;

• I(G, S) : la matrice d’inertie en G du solide S ;

• I(G→ A, S) : la matrice de transfert de masse du point G vers le point A. Cette matrice est la matrice d’inertie,

écrite en A, du point matériel G associé à la masse du solide m.

Il faut commencer par calculer les coordonnées du vecteur

−→
GA= (xA− xG) ·

−→x + (yA− yG) ·
−→y + (zA− zG) ·

−→z = xGA ·
−→x + yGA ·

−→y + zGA ·
−→z

Où xA, yA, ... sont les coordonnées des points A et G dans le repère (O,−→x ,−→y ,−→z ) et xGA, yGA et zGA sont les coordonnées

du vecteur
−→
GA dans la base (−→x ,−→y ,−→z ).

On a ensuite :

I(G→ A, S) =







m · (y2
GA+ z2

GA) −m · xGA · yGA −m · xGA · zGA

−m · xGA · yGA m · (x2
GA+ z2

GA) −m · yGA · zGA

−m · xGA · zGA −m · yGA · zGA m · (x2
GA+ y2

GA)







(−→x ,−→y ,−→z )

À retenir

Cette relation n’est valable que si G est le centre d’inertie de la pièce.

Les matrices doivent être exprimées dans la même base.

Attention !

Remarque -
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5.5 Application : calcul de la matrice d’inertie de l’ensemble {châssis, moteur}

On donne, en kg ·m2 :

• la matrice d’inertie du châssis en GCh, son centre de gravité,

IGCh
(Ch)≈







415 0 0

0 1350 0

0 0 1247







(−→x ,−→y ,−→z )

• la matrice d’inertie du moteur en GMot , son centre de gravité,

IGMot
(Mot)≈







650 0 0

0 520 0

0 0 210







(−→x ,−→y ,−→z )

On donne également, en mètres, les coordonnées des points GCh et GMot , dans le repère (O,−→x ,−→y ,−→z ) :

−−−−→
OGMot ≈







1.5

0.75

0







(−→x ,−→y ,−→z )

et
−−−→
OGCh ≈







0

0.85

0







(−→x ,−→y ,−→z )

Le châssis a une masse mCh ≈ 815 kg et le moteur a une masse mMot ≈ 510 kg.

x

y

z

O

Châssis : Ch

Moteur : Mot
Gch

Gmot

Calculer la matrice IGCh
({Ch, Mot}).
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6 Exemples

6.1 Châssis de la voiture

x

y

z
ar Oav

Châssis : Ch

Sol : 0

GCh

O

On considère les hypothèses suivantes :

• Le châssis est en translation rectiligne et se déplace

à une vitesse v(t) dans la direction −→x .

• Sa masse est mCh et sa matrice d’inertie est :

I(GCh, Ch) =







ACh 0 0

0 BCh 0

0 0 CCh







(−→x ,−→y ,−→z )

Calcul du torseur dynamique en GCh du châssis par rapport au sol ?
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6.2 Roue de la voiture

x

y

z

Oar

Roue arrière : Rar

Sol : 0

A
O

R

On considère les hypothèses suivantes :

• La cinématique de la roue est définie par :

{VRar/0}=
Oar

¨ −−−→
ΩRar/0 =ω ·

−→z
−−−−−−→
VOar∈Rar/0 = v(t) · −→x

• Le rayon de la roue est R, sa masse est mRar
, son

centre d’inertie est Oar et sa matrice d’inertie est :

I(Oar , Rar) =







ARar
0 0

0 BRar
0

0 0 CRar







(−→x ,−→y ,−→z )

• Il y a roulement sans glissement en A.

A l'instant
du contact

A(t0)

A l'instant t0

Oar(t0)

B(t0) Є Rar

Trajectoire du
point B Є Rar

A l'instant t 
quelconque

A = B Є Rar A(t)

v.x

Donner la condition de roulement sans glissement en A puis l’exploiter ?

22



Méthode de calcul pour déterminer le moment dynamique en A de la roue par rapport au sol

Méthode 1 : Calcul du moment dynamique en A de la roue par rapport au sol ?

23



Méthode 2 : Calcul du moment dynamique en A de la roue par rapport au sol ?
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Il y a 2 cas où il faut faire très attention au calcul de
−−→
VA/0 :

• Points de contacts (vu précédemment).

• Point qui n’appartient pas physiquement au solide (voir exemple ci-dessous).

Attention !

O0

1

2

D
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7 Première application

GΣ

O
x

y

z

α

r

xv

yv

A

B

Entrée looping Sortie looping

Géométrie voiture

0

Situation la plus défavorable

GΣ

L/2

h

L/2

Modélisation simplifiée yv

xv
z

Oar

Gch

Oav

Châssis : Ch

Roue avant : RavRoue arrière : Rar

Gv

Gmot

Oav

Oar

Gch

Mv

Mmot

Mav

Mar

Mch

Moteur : Mot

Gv
Gmot

: Centre de gravité de la voiture
: Centre de gravité du moteur
: Centre de gravité de la roue avant
: Centre de gravité de la roue arrière
: Centre de gravité du châssis
: Masse de la voiture
: Masse du moteur
: Masse de la roue avant
: Masse de la roue arrière
: Masse du châssisBA

Hypothèses :

• La voiture complète, notée Σ, est composée de son châssis, de ses roues et de son moteur. Elle est, dans le pire des cas, en haut

du looping. La structure fixe du looping est notée 0.

• La voiture complète a une masse M = 1360 kg. On suppose que le centre de gravité de l’ensemble est GΣ. L’inertie et la masse

des roues sont négligées. La matrice d’inertie de l’ensemble V = {châssis,moteur} est la suivante :

I(GΣ, V ) =







Av 0 0

0 Bv 0

0 0 Cv







(−→xv ,−→yv ,−→z )

• On considère que l’ensemble V se déplace à une vitesse constante v dans le looping et que son torseur cinématique est le

suivant :

{VV/0}=
GΣ

¨ −−→
ΩV/0 = α̇

−→z
−−−−→
VGΣ∈V/0 = v−→xv

avec α̇=
v
r

•
−→
AB = L−→xv ;

−−→
AGΣ =

L
2
−→xv + h−→yv ;

−−→
GΣB = L

2
−→xv − h−→yv

• On considère des contacts ponctuels unilatéraux au niveau des contacts roue/sol. Compte-tenu du rayon important du looping,

on considère que ces liaisons ponctuelles sont de normale −→yv . On aura donc :

{0
A
−→ Σ}=

A

( −→
R

0
A
−→Σ
= Y A

0Σ.−→yv
−→
M

A,0
A
−→Σ
=
−→
0

{0
B
−→ Σ}=

B

( −→
R

0
B
−→Σ
= Y B

0Σ.−→yv
−→
M

B,0
B
−→Σ
=
−→
0

Question 1 : Donner les conditions à respecter pour respecter les contraintes d’unilatéralité.

La voiture reste en contact avec le sol si : −→R
0

A
−→Σ
· −→yv > 0 et donc Y A

0Σ > 0.

De même, il faut que Y B
0Σ > 0.

Question 2 : Donner la/les stratégies d’isolement afin de déterminer la vitesse V afin de respecter les contraintes

d’unilatéralité.

J’isole la voiture complète Σ soumise aux actions mécaniques extérieures suivantes :

• 0 A
−→ Σ

Résolution du problème : la voiture peut-elle faire le tour du looping ?
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• 0 B
−→ Σ

• poids → Σ

Pour déterminer Y A
0Σ, j’écris le théorème des moments en B et en projection sur −→z .

−→
M

B,0
A
−→Σ
· −→z +

−→
M

B,0
B
−→Σ
· −→z +

−→
M B,poids→Σ ·

−→z = ......................

27
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