
Centre d’intérêt 6

Cahier de révisions

PSI - MP : Lycée Rabelais

Méthodes numériques

Centre d’intérêt 6

Dérivation numérique

PSI - MP : Lycée Rabelais

On cherche à dériver numériquement une fonction f . Cela revient calculer, de manière approximée, la pente de la

courbe représentative de la fonction.

Il existe plusieurs méthodes d’approximation dites "arrière" ou "avant". On discrétise l’axe des abscisses (variable x) et

on note d x un "petit" incrément sur l’axe des abscisses de telle sorte que x i+1−d x = x i = x i−1+d x . On note également

M , un point de la courbe étudiée ayant pour coordonnées (x , f (x)).

Dériver la fonction f numériquement revient à calculer, pour chaque x i , la pente de la droite :

• ∆− entre les points Mi−1 et Mi (approximation "arrière") ;

• ∆+ entre les points Mi+1 et Mi (approximation "avant").

On a donc :

x

f(x)

f(xi)

xi xi+1xi-1

f(xi-1)

f(xi+1)

Approximation "arrière"

Δ-

Mi

Mi-1

d f
d x
(x i)≈

f (x i)− f (x i−1)
d x

x

f(x)

f(xi)

xi xi+1xi-1

f(xi-1)

f(xi+1)

Approximation "avant"

Δ+

Mi

Mi+1

d f
d x
(x i)≈

f (x i+1)− f (x i)
d x

Une autre méthode consiste à calculer une pente moyenne entre Mi−1 et Mi+1. Dans ce cas, on aura :

x

f(x)

f(xi)

xi xi+1xi-1

f(xi-1)

f(xi+1)

Approximation "milieu"

Δ-

Mi

Mi-1

Mi+1

Δ+

Δ

d f
d x
(x i)≈

1
2

�

f (x i)− f (x i−1)
d x

+
f (x i+1)− f (x i)

d x

�

≈
f (x i+1)− f (x i−1)

2 · d x

Exercice d’application

On définit la fonction f telle que : f (x) = cos(x). On veut calculer et tracer la dérivée de la fonction f sur l’intervalle

[0,
π

2
].

Question 1. Définir la fonction f(x).

Question 2. Représenter cette fonction pour sur l’intervalle [0, π2]. On pourra s’aider des instructions ci-dessous :
1 import numpy as np
2 import matplotlib . pyplot as plt
3

4 a = 0
5 b = np.pi/2
6 n = 100 ## nombre de subdivisions
7

8 def f(x):
9

10

11 lx = [i*dx for i in range (0,)] ## lx est la liste des xi
12

13 lf = [..... for xi in lx]
14

15 plt.plot (.... ,)

Question 3. Écrire les instructions permettant de calculer et tracer la dérivée de la fonction f par :

• la méthode dite "arrière" ;

• la méthode dite "avant" ;

• la méthode dite "milieu".

Centre d’intérêt 6

Intégration numérique

PSI - MP : Lycée Rabelais

On cherche à intégrer numériquement une fonction f sur un intervalle [a, b]. Cela revient donc à calculer l’aire sous

la courbe représentant la fonction. On cherche donc I telle que :

I =

∫ b

a
f (x).d x

Il existe plusieurs méthodes d’approximation. On notera dans la suite n, le nombre de subdivision de l’intervalle [a, b]
et d x le "petit" segment résultant de cette subdivision. On a donc :

d x =
b− a

n
a b

dx dx dx dx

n subdivisions

x

1 Méthode des rectangles

1.1 Méthode des rectangles "à gauche" ou "arrière"

Elle revient à réaliser l’approximation suivante :

I ≈ Ig ≈
n−1
∑

i=0

f (x i).d x avec x i = a+ i.d x

a b x

f(x)
f(xi)

xi

1.2 Méthode des rectangles "à droite" ou "avant"

Elle revient à réaliser l’approximation suivante :

I ≈ Id ≈
n
∑

i=1

f (x i).d x avec x i = a+ i.d x

a b x

f(x)
f(xi)

xi

2 Méthode des trapèzes

Dans cette approximation, on a :

I ≈ It ≈
n−1
∑

i=0

f (x i) + f (x i+1)
2

· d x avec x i = a+ i.d x

On pourra remarquer que It =
Ig + Id

2
a b x

f(x)
f(xi)

xi xi+1

f(xi+1)

Exercice d’application

On définit la fonction f telle que : f (x) = (cos(x))x . On veut calculer l’intégrale I telle que :

I =

∫
π
2

0

f (x).d x

Question 1. Définir la fonction f(x).

Question 2. Représenter cette fonction pour sur l’intervalle [0, π2]. On pourra s’aider des instructions ci-dessous :
1 import numpy as np
2 import matplotlib . pyplot as plt
3

4 a = 0
5 b = np.pi/2
6 n = 100 ## nombre de subdivisions
7

8 def f(x):
9

10

11 lx = [i*dx for i in range (0,)] ## lx est la liste des xi
12

13 lf = [..... for xi in lx]
14

15 plt.plot (.... ,)

Question 3. Calculer l’intégrale I par :

• la méthode des rectangles "arrières" ;

• la méthode des rectangles "avants" ;

• la méthode des trapèzes.

On pourra s’aider des instructions suivantes :
1 Ig = 0
2

3 for i in range (......) :
4
5 print (’Ig =’,Ig)

Centre d’intérêt 6

Résolution d’une équation f (x) = 0

PSI - MP : Lycée Rabelais

On considère une fonction f continue sur un intervalle

[a, b]. On cherche α ∈ [a, b] tel que f (α) = 0. Cette solu-

tion existe si f (a)× f (b)< 0. Les méthodes pour approcher

la valeur de α consistent à construire une suite (xn)n≥0 telle

que lim
n→+∞

xn = α.

On fixe usuellement une tolérance ε (valeur fixée). On peut

utiliser plusieurs critères d’arrêt :

• Critère absolu : |xn+1 − xn|< ε

• Critère relatif :

�

�

�

�

xn+1 − xn

xn+1

�

�

�

�

< ε

• Critère résiduel : | f (xn)|< ε

xα
b

a

f(x)

0

1 Méthode de dichotomie

Les étapes de l’algorithme sont les suivantes :

1. Calculer le point milieu m de l’intervalle [a, b].
2. Évaluer le signe de f (a)× f (m).
3. En déduire le sous-intervalle [a, m] ou [m, b] dans

lequel chercher la solution.

4. Repartir à l’étape 1 tant que le critère d’arrêt n’est

pas vérifié.

xα
b0 = b1

a0

f(x)

0
a2 = a1

b2 = b3

a3

[a0,b0]

[a1,b1]

[a2,b2]

[a3,b3]

2 Méthode de Newton

Pour cette méthode, la fonction f doit être dérivable sur

l’intervalle [a, b].
Pour résoudre l’équation f (α) = 0, il faut suivre les étapes

suivantes :

1. Calculer une valeur x0 ∈ [a, b].

2. Construire la valeur suivante xn+1 = xn −
f (xn

f ′(xn)
.

3. Repartir à l’étape 2 tant que le critère d’arrêt n’est

pas vérifié.

Pour retrouver la relation de récurrence, il faut écrire la

pente f ′(x i) en un point (x i , f (x i)).

xαa

f(x)

0 b
x0 x1

x2

f(x1)

f(x2)

f(x0)

pente = f'(x1) =
0 - f(x1)
x2 - x1

Exercice d’application

On considère la fonction f (x) = sin(sin(x))−sin(sin(2x)). On veut trouver la solution α ∈ [1, 2] de l’équation f (α) = 0.

Question 1. Définir la fonction f.

Question 2. Tracer la courbe représentative de la fonction sur l’intervalle souhaité en utilisant le script ci-dessous :
1 import numpy as np
2 import matplotlib . pyplot as plt
3

4 def f(x):
5 return
6

7 Lx = np. linspace (...................) ## documentation numpy fournie ci - dessous
8

9 Lf = f(Lx) ## fonctionne car tableaux numpy !
10

11 plt.plot(Lx ,Lf)

Le module numpy permet de gérer notamment des vecteurs et des tableaux. La plupart des opérations sur les

listes peuvent s’appliquer sur les tableaux numpy. Quelques opérations élémentaires sont données ci-dessous :

• A = numpy.zeros((a,b)) crée un tableau de a lignes et b colonnes.

• numpy.shape(A) donne le tuple associé à la taille de A (ici (a,b)).

• A[i] permet d’accéder à la ligne i au complet.

• A[i,j] permet d’accéder à la valeurs stockée à l’indice i de la ligne et j de la colonne (cela est équivalent à

A[i][j]). Les slices du type A[i:j,:k] permettent de parcourir une portion du tableau (mais ce n’est pas

équivalent à A[i:j][:k]).

• La fonction append ne fonctionne pas pour des tableaux numpy !

numpy.linspace(start , stop , num) renvoie un vecteur numpy de num valeurs régulièrement réparties sur

l’intervalle [start , stop].

Documentation numpy

Question 3. Postuler sur les solutions à trouver.

Question 4. Déterminer la solution α ∈]a, b[par la méthode de dichotomie

Question 5. Calculer puis définir la fonction fprim(x) qui renvoie la dérivée de la fonction f .

Question 6. En déduire la solution α ∈]a, b[par la méthode de Newton.

Centre d’intérêt 6

Filtrage numérique

PSI - MP : Lycée Rabelais

On s’intéresse ici aux signaux obtenus par des capteurs puis à leur filtrage. Le vocabulaire suivant, propre à la mesure,

est à connaitre :

• Incertitudes : elles caractérisent la dispersion des valeurs attribuées à une mesure ;
• Résolution : plus petite mesure que l’on peut réaliser avec le capteur ;
• Quantification : plus petite grandeur que l’on peut quantifier avec un codage numérique donné ;
• Échantillonnage : action qui consiste à prélever les valeurs d’un signal à intervalles définis, généralement réguliers ;
• Justesse : aptitude d’un capteur à mesurer, en moyenne, la valeur attendue ;
• Fidélité : aptitude d’un capteur à mesurer la même valeur pour une même grandeur (mais pas nécessairement la bonne) ;
• Linéarité : capacité d’un capteur à fournir un signal proportionnel à la grandeur mesurée ;
• Sensibilité : paramètre exprimant la variation du signal de sortie d’un appareil de mesure en fonction de la variation du signal d’entrée.

On présente ici plusieurs méthodes de filtrage de signaux. On considère un signal d’entrée E dont on dispose des valeurs

échantillonnées ei = E (t i) pour tous les temps t i . On note également si = S (t i), le signal de sortie à l’instant t i .

1 Filtre à moyenne glissante

Un filtre à moyenne glissante sur k valeurs consiste à renvoyer, en sortie du filtre et au temps t i , la moyenne des k

échantillons de S précédant le temps t i .

On aura donc :

S (t i) = si =
1
k
·

i
∑

j=i−k+1

e j =
1
k
·

i
∑

j=i−k+1

E (t i)

Bien entendu, avec un tel filtre, on perd les k premières

valeurs du signal d’entrée.

tti ti+1ti-1

Signal d'entrée
Signal filtré pour k = 2

ei

si

si est la moyenne de
ces deux valeurs ei et ei-1

2 Filtre avec fonction de transfert

On note F(p) =
S(p)
E(p)

la fonction de transfert du filtre reliant la sortie S à l’entrée E . Pour obtenir, l’équation de

récurrence entre la sortie et l’entrée, il faut réécrire l’équation S(p) = F(p) · E(p) dans le domaine temporel.

2.1 Filtre passe-bas du premier ordre : F(p) =
S(p)
E(p)

=
1

1+τ · p

On a ici τ ·
dS
dt
(t)+S (t) = E (t) ce qui donne τ ·

si − si−1

Te
+ si = ei avec Te la période d’échantillonnage. Ce qui permet

donc d’écrire :

si =
Te

Te+τ
· ei +

τ

Te+τ
· si−1

2.2 Filtre passe-bas du deuxième ordre : F(p) =
S(p)
E(p)

=
1

1+
2ξ
ω0
· p+

1
ω2

0

· p2

Ici, il faut suivre la même méthode en remarquant que
d2S
dt2
(t i)≈

dS
dt
(t i)−

dS
dt
(t i−1)

Te
.

Exercice d’application

On définit un "faux" signal mesuré prenant les valeurs ei = E (t i) rangées dans le tableau numpy Ei associées au temps

t i du tableau Ti.

Question 1. Compléter le code fourni ci-dessous pour définir le signal filtré en utilisant une moyenne glissante sur

k = 2 valeurs.
1 import random
2 import numpy as np
3 import matplotlib . pyplot as plt
4

5 def f(t):
6 return t**3 -5*t**2+ random . random ()
7

8 Ti = np. linspace (-2 ,2 ,100) ## instants ti pour mesure du signal
9 Ei = [f(ti) for ti in Ti] ## "faux" signal mesuré ei = E(ti)

10 plt. scatter (Ti ,Ei ,s=10, label=’mesure ’) ## tracé
11

12 ## Filtrage avec moyenne glissante et k = 2
13 Tfiltre = []
14 Ffiltre = []
15

16 k = 2
17 for j in range (.........) :
18
19 ...
20

21

22 ... à compléter
23

24

25 ...
26

27 plt.plot(Tfiltre ,Ffiltre ,color=’red ’,label=’signal filtre par moyenne glissante ’) ## tracé
28

29 ## Affichage de la légende et de la grille
30 plt. legend ()
31 plt.grid(True)

Question 2. Mettre en place un filtre passe-bas d’ordre 1. Analyser l’influence de la constante de temps de ce filtre.

Question 3. Mettre en place un filtre passe-bas d’ordre 2. Analyser l’influence de ses paramètres.

Centre d’intérêt 6

Résolution d’équations différentielles

PSI - MP : Lycée Rabelais

1 Contexte mathématique

On peut montrer que toute équation différentielle sur un intervalle I ∈ R peut se mettre sous la forme suivante :

Y ′(t) =F (Y (t), t)

Avec :

• Y la fonction inconnue de I dans Rn. Dans le cas général, Y est bien un vecteur. Dans le cas d’une équation

différentielle "ordinaire" d’ordre 1, Y est un scalaire.

• et F , une fonction de Rn ×R qui à Y (t) et t associe une valeur dans Rn.

Pour une résolution numérique, on discrétise l’intervalle I en n subdivisions de longueur dt (le pas de la discrétisation).

On notera tk la k-ième discrétisation de t de telle sorte que tk = k · dt+ t0 où t0 est le temps "initial".

On notera également Yk l’approximation de Y (tk). Y0 sera le vecteur contenant les conditions initiales de telle sorte

que Y (t0) = Y0.

En faisant l’approximation d’Euler : Y ′(tk) ≈
Y (tk+1)− Y (tk)

dt
, on montre la relation de récurrente ci-dessous qui

permet de calculer tous les Yk à partir de Y0 :

Yk+1 = Yk + dt · F(Y (tk), tk)

2 Mise en œuvre sur Python

Sur Python, de nombreuses bibliothèques per-

mettent de résoudre ce type de problème. Nous

utiliserons ici le module odeint de la biblio-

thèque scipy.integrate. Cette bibliothèque

utilise une approximation plus fine que celle

d’Euler mais le concept est le même.

Pour résoudre une équation différentielle avec

ce module, il faudra donc écrire tab_sol =
odeint(F,Y0,tab_t) où :

• tab_sol est le tableau contenant la so-

lution (tous les Yk) ;

• F est la fonction F définie précédem-

ment qui prendra en argument Y (cor-

respondant à Yk) et t (correspondant

au temps tk) ;

• Y0 est le vecteur conditions initiales ;

• tab_t est le tableau des temps

(tk) issus de la discrétisa-

tion (s’obtient facilement avec

np.linspace(debut,fin,nb de
points)).

Le code fourni ci-dessous à titre d’exemple permet de résoudre

l’équation différentielle suivante sur l’intervalle I = [t0, t f] =
[0,10] :

y ′(t) = −2 · t · y(t) + cos(t) et y(0) = 1

Ce qui équivaut à :
y ′(t) =F (y(t), t) et y(0) = 1

avec F (y(t), t) = −2 · t · y(t) + cos(t)

1 import numpy as np
2 import matplotlib . pyplot as plt
3 from scipy. integrate import odeint
4

5 def F(Y,t):
6 return - 2*t*Y + np.cos(t)
7

8 t0 = 0
9 tf = 10.

10 n = 500 ## nb de subdivisions
11 Y0 = 1
12

13 tab_t = np. linspace (t0 ,tf ,n+1)
14 tab_sol = odeint (F,Y0 ,tab_t)
15 plt.plot(tab_t , tab_sol)

Exercices d’application

Exercice n°1

Résoudre, sur l’intervalle [0,5], l’équation différentielle suivante :

x ′(t) + 5 · x(t) · sin(x(t)) =
1

x(t)
et x(0) = 2

Exercice n°2

On pose Y =

�

u

v

�

. On veut résoudre, sur l’intervalle [0,1], le système d’équations différentielles suivant :

u′(t) + cos(v(t)) + cos(t) = 0

v′(t) + sin(u(t)) + sin(t) = 0
avec u(0) = 2 et v(0) = 4

Q1. Déterminer la fonction F et Y0 tels que le système d’équations différentielles s’écrive :

Y ′(t) =F (Y (t), t) avec Y (0) = Y0

Q2. Résoudre l’équation différentielle numériquement puis tracer la courbe paramétrée représentant les points M(u, v).

Exercice n°3 : Balançoire sous oscillations forcées

On considère une balançoire de moment d’inertie J = 90 kg.m2, de masse m= 10 kg et suspendue à un portique avec

une corde de longueur L = 3 m. On exerce, par intermittence, un couple sur la balançoire d’intensité C = 50 N.m. On

note θ l’angle entre la corde et la verticale. On prendra g = 9.81 m/s2.

Les conditions initiales sont θ (0) = 0.1 et θ̇ (0) = 0

L’étude dynamique mène à l’équation suivante :

J · θ̈ (t) +m · g · L · sin(θ (t)) = C si θ (t)≤ 0 et θ̇ (t)≥ 0

J · θ̈ (t) +m · g · L · sin(θ (t)) = 0 sinon.

Q1. On introduit le vecteur Y =

�

θ

θ̇

�

. Mettre le problème sous la forme :

Ẏ (t) =F (Y (t), t) avec Y (0) = Y0

Q2. Résoudre l’équation différentielle numériquement puis tracer l’évolution de θ en fonction du temps entre t = 0 et

t = 60 secondes. Commenter.

Q3. Que se passe-t-il si on lance une simulation pendant 120 secondes.

Centre d’intérêt 6

Résolution d’un système linéaire

PSI - MP : Lycée Rabelais

On s’intéresse ici à la résolution d’un système linéaire de la forme A · x = b où A est une matrice carrée d’ordre n, b un

vecteur colonne de taille n et x le vecteur inconnu. Si A est une matrice inversible (ce qui sera considéré être le cas),

alors la solution de ce problème est : x = A−1 · b.

Dans Python, le module numpy (par exemple), permet de résoudre un tel problème. Pour déterminer le vecteur inconnu

X = [x , y, z, v] à partir de ce système :


















x + 2y + 3z + 4v = 10

4x + 5y + 6z + 7v = 11

7x + 8y + 9z + 10v = 12

10x + 11y + 12z + 13v = 13

Il suffira d’écrire :
1 import numpy
2 A = numpy.array ([[1 ,2 ,3 ,4] ,[4 ,5 ,6 ,7] ,[7 ,8 ,9 ,10] ,[10 ,11 ,12 ,13]])
3 b = numpy.array ([10 ,11 ,12 ,13])
4 x = numpy. linalg .solve(A,b)
5 print (x)

Exercice d’application

On considère le système suivant :










x + y + 2z = 5

x = y + z + 1

x = 3− z

On pose : X = [x , y, z].

Question 1. Déterminer A et b tels que A · X = b.

Question 2. Déterminer la solution X de ce système matriciel.

	Méthode de dichotomie
	Méthode de Newton
	Filtre à moyenne glissante
	Filtre avec fonction de transfert
	Filtre passe-bas du premier ordre : F(p) = ,...S(p)E(p) = ,...11 + p
	Filtre passe-bas du deuxième ordre : F(p) = ,...S(p)E(p) = ,...11 + ,...2 0 p + ,...102 p2

	Contexte mathématique
	Mise en œuvre sur Python

