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PSI - MP : Lycée Rabelais

1 Introduction au chapitre

L'apprentissage machine (ou Machine Learning en anglais) est une branche de '"I'intelligence artificielle". L'apprentissage
automatique consiste a utiliser beaucoup de données pour apprendre a faire une tiche de maniére autonome. Ces
données peuvent étre des images, des sons, des tableaux, etc.

1.1 Phases d’apprentissage

Un algorithme d’apprentissage machine a globalement trois étapes de fonctionnent :

e Une premiere étape est la phase d’apprentissage. On fournit ici des données, dites d’apprentissage, a I'algorithme
qui va alors régler ses parametres internes pour répondre au mieux au probleme posé. Cette phase nécessite
de trés grandes ressources informatiques (serveurs, temps de calcul, données, etc.) afin de déterminer les
parameétres du modéle.

e Une deuxiéme étape est la phase de test. On vérifie ici, sur des données particuliéres, que I'algorithme est bien
capable de répondre au probléme posé. Si la performance est suffisante, on peut passer a la derniére étape
sinon il faut rajouter des données d’apprentissage ou modifier le modéle.

e Dans la derniere étape, dite phase d’inférence, on utilise les paramétres déja établis dans I'étape d’apprentissage
pour effectuer de nouvelles prédictions. Cette phase nécessite tres peu de ressources informatiques parce que

le modele est établi et n’évolue plus.
1.2 Mode d’apprentissage

D’une maniére tres générale, il est classique de classer les algorithmes d’apprentissage selon leur mode d’apprentissage.
On distinguera (voir schéma ci-dessous) :

e Les algorithmes supervisés qui ont pour but de générer un résultat a partir d’'un ensemble de données d’apprentissage
ol les entrées et les sorties de I'algorithme sont connues.

e Les algorithmes non supervisés qui ont pour but de générer un résultat a partir d’'un ensemble de données
d’apprentissage ot les sorties de 1’algorithme ne sont pas connues.

e Les algorithmes par renforcement (hors programme) qui ont pour but de s’améliorer au fur et a mesure de leur
utilisation : ici les phases d’apprentissage et d’'inférence ne se suivent pas.
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Exemple d’algorithme supervisé

On dispose d'une base de données avec des photos de chats et de chiens. Ces données sont libellées : cela
signifie qu'une photo de chat est associé a la sortie chat et qu'une photo de chien est associé a la sortie chien. Un
algorithme supervisé ajustera ses parametres afin de classer les images selon les deux groupes prédéfinis chat et

chien.

Exemple de données disponibles pour la phase d’apprentissage :

<= . . 7

Exemple d’algorithme non supervisé
On dispose d’'une base de données avec des photos de chats et de chiens qui ne sont pas libellées. Dans ce cas,
la machine ne sait pas qu'’il existe deux groupes chat et chien. On pourra utiliser un algorithme non supervisé

afin de classer les images selon deux groupes distincts non-connus a ’avance.

Exemple de données disponibles pour la phase d’apprentissage :

Selon certains réglages, on pourra retrouver un regroupement chat et chien (sans pour autant savoir qu'une photo
de chat est associée & un groupe appelé chat). On pourra aussi, avec d’autres parametres, avoir un regroupement

en fonction de la couleur, du contraste, etc.

1.3 Régression ou classification ?

Il existe deux grandes classes de problémes. Les problemes dits de régression et ceux dits de classification. IIs se

différentient par le type de la sortie attendue.

Pour un probléme de régression, la sortie peut prendre une infinité de valeurs dans un intervalle.



Pour un probleme de classification, la sortie ne prendra qu’'un nombre fini de valeurs. Lorsqu’il n’y a que deux valeurs
de sortie, on parle de classification binaire. Lorsqu’il y a plusieurs valeurs, on parle de classification multiclasse.

Quelques exemples...
Type d’algorithme : Utilité
...... Régression . prédire le bénéfice (en euros) d’une production agricole en fonction des
données météorologiques, du type de sol, etc.
...... Régression . prédire I'age d’une personne a partir d’une photo.
..... Classification . prédire si un mail est un spam ou non.
............................ : Prédire le prix d’un bien immobilier en fonction de sa surface, son emplacement, etc.

............................ : Reconnaitre la langue d’un texte.

............................ : Reconnaitre si une plante est comestible ou non.

1.4 Qualité d’un algorithme

Pour analyser la qualité d’'un algorithme, il faut utiliser des données de test. Il faut bien comprendre que la phase
d’apprentissage est terminée et que les parametres du modeéles sont fixés. On cherche seulement, dans la phase de test,
a évaluer si la qualité d’'un algorithme est satisfaisante étant donnés les paramétres fixés.

1.4.1 Probléme de régression
Considérons un probléme de régression monovariable (une variable en entrée et une variable en sortie) dont la sortie

est notée Y et I'entrée X.

On dispose d’un jeu de Ny données de test qui est ici un ensemble de couples (X[**, Y/**"). Lindice i correspond a la
i-éme donnée.

Le modele peut se représenter par une fonction qui permet de prédire la sortie Y pour n’importe qu’elle entrée X. On
a donc simplement Y = f(X). Pour la valeur particuliere X = X*', on peut alors prédire la valeur de la sortie en
calculant : Yl.prEd = f(X*).

On peut visualiser cela sur le graphique ci-dessous :

Sortie : Y
vaéd — f(xtest)
Yf(est
X Données test
N Modele
Entrée : X

test
Xi

/ T . réd
Pour la donnée d’indice i, on peut calculer l'erreur : E; = Yip

—Y/**. On veut ensuite calculer la somme des erreurs
associées & chaque donnée test. Le probléme, si I'on calcule D’ E;, provient du signe de E; qui peut étre tantot positif et
tantot négatif. De ce fait, la somme des erreurs peut étre quasiment nulle alors que les erreurs, en valeur absolue, sont

trés grandes !
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On calculera plutdt, pour la donnée d’indice i, I'erreur quadratique : (E;)? = (Yfréﬂ1 — YiteSt)Z.

Enfin, pour avoir un indicateur (on parle aussi de métrique) de la qualité de 'ensemble du modéle avec les N, données
de test, on calculera 'erreur quadratique moyenne (mean squared error) :

1 ‘ 2
MSE = Z (Y_Pred _ YiteSt)

A
test j—q

. 2
On remarquera que l'on ne calcule pas erreur globale Y. (Yipred — Yite“) parce que ce terme risque d’étre tres grand,
et donc difficilement stockable par un ordinateur, étant donné le nombre trés grand de données N, utilisées.

On peut aussi utiliser le coefficient de détermination R? défini tel que :

Ot1 Y'*t est la moyenne des valeurs valeurs Y de sortie.
1.4.2 Probléme de classification

Pour un probleme de classification, on utilise généralement la matrice de confusion (aussi appelé tableau de contin-

gence). Cette matrice est un tableau dans lequel on note :

En ligne : Les comptages associés aux données réelles ;

En colonne : Les comptages associés aux valeurs prédites.

Exemple

On suppose qu’on dispose d’un algorithme qui permet d’identifier, a partir d'une photo, si I'image est un chien

ou un chat. Les parameétres de 'algorithme sont déja déterminés et on cherche simplement a évaluer la qualité
de I'algorithme. Pour I’évaluation, on dispose donc d’'images labellisées (c’est-a-dire que I'utilisateur sait lorsqu’il

s’agit d’'un chien ou d’un chat.

Le résultat de I'algorithme (de classification) est donné ci-dessous.

Prédictions

‘ 4 %

Données

Images de test labellisées

Algorithme




Remplir la matrice de confusion revient a remplir la matrice :

Chats prédits Chiens prédits
0 P

Chats (p) 4 2

Chiens (5) 1 4

On pourra lire le tableau en disant que :

e 6.. photos de chats ont été utilisées et .2. photos de chiens.

e Pour les .. photos de chats utilisées, I'algorithme a donné 4.. fois la bonne prédiction (un chat) et 2..
fois la mauvaise (un chien).

e Pour les 5.. photos de chats prédits, 'algorithme a donné 4.. fois la bonne prédiction (un chat) et 1..
fois la mauvaise (un chien).

Un algorithme sera d’autant performant que la matrice de confusions s’apparente a une matrice diagonale.

La justesse de ’algorithme sera le pourcentage de bonnes prédictions, c’est-a-dire :

justesse =

~73%
4+2+1+4

Généralisation

Pour un algorithme de test dont la sortie est binaire : positif ou négatif. Le tableau de contingence s’écrira :

Sorties positives | Sorties négatives

Entrées positives VP FN
Entrées FP VN
négatives

On observe que :

e VP (vrais positifs) représente le nombre d’entrées positives répondant "Positif" au test,

o FP (faux positifs) représente le nombre d’entrées négatives répondant "Positif" au test,

e FN (faux négatifs) représente le nombre d’entrées positives répondant "Négatif" au test,
e VN (vrais négatifs) représente le nombre d’entrées négatives répondant "Négatif" au test.

On calculera alors :

» la justesse de l'algorithme (accuracy). Il s’agit du ratio :

Nponnes prédictions VP + VN

Niest ~ VP+VN+FP+FN

justesse =
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» la spécificité de I'algorithme (accuracy). 1l s’agit du ratio :
spécificité = ———
VN + FP

» la sensibilité de I'algorithme (accuracy). 1l s’agit du ratio :

sensibilité =

VP + FN

1.4.3 Retour sur la structure d’un algorithme d’apprentissage

Le schéma ci-dessous représente les trois phases de vie de I'algorithme avec, pour chacune, les données a apporter.

v Sorties conformes aux attentes : modeéle validé
X Sorties non-conformes aux attentes :

. Rajouter des données d'apprentissage

. Modifier le modéle

Données d'apprentissage
fournies par le programmeur

Modéele prédictif

Phase d'apprentissage
Données de test des paramétres

fournies par le programmeur v
(données labellisées)

Phase de test

Données quelconques Phase d'inférence Sortie(s)
fournies par I'utilisateur (d'utilisation)

Dans le cas ol la phase de test n’est pas satisfaisante, il y a globalement deux possibilités :

e Rajouter des données d’apprentissage : cela signifie que les données n’étaient pas suffisantes et que, de ce fait,
les parametres du modéle ont été évalués de maniére inappropriée.

e Modifier le modeéle : cela signifie que la structure choisie n’est pas adaptée et donc que le nombre de parametres
du modéele est également inadapté. Un probléme récurrent et associé a ce manque est la notion de données
"underfitted" ou "overfitted".

Lorsque les données sont underfitted, on parlera aussi de sousapprentissage, cela signifie que le modéle ne possede pas
assez de parametres pour prendre en compte les spécificités des données. Dit autrement, la moyenne des données est
trop grossiere.

Lorsque les données sont overfitted, on parlera aussi de surapprentissage, cela signifie que le modéle posséde trop de
parameétres comparativement au nombre de données d’apprentissage. Dit autrement, le modele va "suivre" les données

d’apprentissage sans en tirer de tendance générale.

Sortie : Y | x Données d'apprentissage M Sortie : Y| x Données d'apprentissage . Sortie : Y| x Données d'apprentissage
7 Modéle underfitted

~ Modeéle overfitted

~ Modele adapté

Entrée ; X Entrée ; X Entrée ; X




2 Base de données utilisée pour présenter les algorithmes

On considére une base de données contenant des mesures sur des fleurs d’iris qui ont été réalisées par des botanistes.

Dans cette base de données, on retrouve les longueurs et largeurs des pétales et des sépales pour différentes fleurs et

I'espece d’iris associée : setosa, versicolor et virginica.

Longueur d’'un sépale (cm) | Largeur d'un sépale (cm) | Longueur d’un pétale (cm) | Largeur d’'un pétale (cm) Espece
5.1 3.5 1.4 0.2 setosa
5.5 2.6 4.4 1.2 versicolor
6.1 3.0 4.6 1.4 versicolor
5.9 3.0 5.1 1.8 virginica
iris setosa iris versicolor iris virginica

petal

sepal

2.1 Problématique de classification

petal

sepal

sepal

petal

Un premier probléme concerne la classification qui permet de prédire I'espece d’iris (setosa, versicolor ou virginica) en

connaissant, par exemple, la longueur et la largeur d’un pétale de fleur.
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On voit bien sur les tracés précédents que les especes d’iris peuvent se regrouper en fonction des caractéristiques des

pétales ou des sépales.
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2.2 Problématique de régression

Un autre probleme concerne la prévision de la largeur d’un pétale si ’'on connait la longueur de celui-ci. Ici, c’est bien un
probleme de régression. On visualise sur le graphe ci-dessous (toutes espéces d’iris confondues) que plus la longueur
du pétale est importante, plus la largeur le sera aussi. L'algorithme devra alors trouver une relation entre ces deux

parametres.
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2.3 Notations retenues et bibliotheque Python utilisée

On notera pour la suite :

e X : une donnée d’entrée. X sera un scalaire s’il n’y a qu'une seule entrée et un vecteur si I'on s’intéresse a
plusieurs entrées. S’il y a plusieurs caractéristiques (on parle aussi d’attribut) en entrée, on notera x; la j-éme
caractéristique de la donnée X. On note N_,,,. le nombre de caractéristiques. On pourra également parler de la
i-eme donnée utilisée que 'on notera également x;. En cas de besoin, on notera x; ; qui correspondra a j-eéme
caractéristique de la i-eme donnée utilisée.

e Y : la valeur de la sortie. Y prendra des valeurs continues pour des problemes de régression et des valeurs
finies pour des problémes de classification. On notera y; la sortie associée a la i-eme donnée utilisée.

Python posséde de nombreuses bibliothéques permettant de faire de 'analyse de données. L'une des plus commune
(et que I'on utilisera dans le cours) est la librairie scikit learn. Pour importer une fonction dans un module de la

bibliothéque, on pourra écrire : from sklearn.module import fonction.
On utilisera également les modules issus de la bibliotheque numpy.
Un début de programme est détaillé ci-dessous. Il permet seulement de préparer les données a travailler en :

e important les bibliothéques nécessaires ;

e lisant le fichier contenant les données et en les stockant dans les variables X et Y ;

e préparant une portion des données pour la phase d’apprentissage (entrées X_train et sortie Y_train) et une
portion pour la phase de test (entrées X_test et sortie Y_test) (ici 33% des données seront utilisées pour le test
et 67% pour I'apprentissage). Linstruction shuffle=True permet de mélanger les données avant la séparation
pour éviter d’utiliser une base de données déja triée ce qui engendre de nombreux problémes. Dans le fichier
’iris.csv’ par exemple, les données sont classées par type de fleur. Si on utilise 67% pour 'apprentissage, il

n’y aura quasiment aucune iris virginica (rangées "a la fin").
import ## appel de la bibliothéque numpy

from import * ## fonction pour lire le fichier contenant les data

> ] > > = ( )



## stocke les données liées aux 1T%s dans
## longeurs/largeurs des pétales/sépales

## et espéce d’iris associée

[[ [i]1, [i1]1 for in range (0, len( ]

from . import
## Préparation des données
2 2 b = ( 2 2 = b =O'33)

3 Algorithme des k-plus proches voisins

L'algorithme des k-plus proches voisins, aussi noté algorithme k-NN pour k-Nearest Neighbors, est un algorithme pour
I'apprentissage supervisé qui peut étre utilisé aussi bien pour des problemes de régression que pour des problemes de
classification.

3.1 Explication du fonctionnement pour un probléme de régression

Explications. On dispose d’'une entrée X correspondant par exemple a la longueur mesurée sur un pétale. On cherche
4 prédire la sortie YP*? correspondant par exemple 4 la largeur du pétale de longueur X.
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® 000000 o
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Il faut suivre les deux étapes de l'algorithme suivant :

1- Rechercher les k données "voisines" dont I'entrée X92@ de la base de données est la plus proche de X ;
2 - Affecter 4 YP*d J]a moyenne (ou la médiane) des sorties Y92 de la base de données correspondant aux k plus

- . . ( . . ; 1+1+1.3
proches voisins déterminés dans I'étape précédente. Ici, avec k = 3, on calcule : YP*d ~ —s ~ 1.1 cm.
Mise en ceuvre sur Python.
import ## appel de la bibliothéque numpy
from import * ## fonction pour lire le fichier contenant les data
bl s bl s = ( )

## stocke les données liées auz 17T%is dans
## longeurs/largeurs des pétales/sépales

## et espéce d’iris assoctée
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= [[long petale[i]l] for i in range(0,len(long_petale))]

= np.array (X)

larg_petale

## permet de créer,

## contenant

ict

par exemple, les données d’entrées

la longueur de chaque pétale

## crée les données de sortie

ici la largeur du pétale

from sklearn.model_selection import train_test_split

## Préparation des données

X_train, X_test, Y_train, Y_test =

train_test_split(X, Y,shuffle=True,

test_size=0.33)

## pour importer le modéle des k-NN adapté a la classification

from sklearn.neighbors

model =

import KNeighborsRegressor

model.fit(X_train,Y_train) ## Apprentissage

Y_pred =

## test X_test

print (’score >’ ,model.score(X_test,

import matplotlib.pyplot as plt
plt

Y_test)) ##

model .predict (X_test) ## Y_pred est la prédiction du modéle pour les entrées

Score obtenu

.plot(X_train,Y_train,’xr’,label="données d’entrainement")

plt.plot(X_test,Y_test,’*b’,label="données de test")
plt.plot(X_test,Y_pred,’.g’,label="valeurs prédites")
plt.legend ()

plt.xlabel("Longueur d’un pétale (cm)")

plt.

ylabel ("Largeur d’un pétale (cm)")

KNeighborsRegressor(n_neighbors=3) ## Création du modéle avec le nombre de voisins

La compilation affiche score = 0.8955501976801652 et le graphique suivant :

Pour 4.6 cm, il n'y a que des
données d'apprentissage.

Largeur d'un pétale (cm)

2,54 X données d'entrainement X Xk

* données de test ;X**.*X * % x
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Xk X ¥k kX X
X egX
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X
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‘ V4
Commenter les résultats obtenus.

- Score renvoie le R2,
- L'allure des prédictions est plutdét bonne.
- Quelques remarques ci-dessus.
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3.2 Explication du fonctionnement pour un probléme de classification

Explications. On dispose d’'une entrée X correspondant par exemple a la longueur et a la largeur mesurée sur un

pétale (ici X est un vecteur de dimension 2). On cherche a prédire la sortie ypréd

correspond par exemple a I'espece diris.

ol YP* est une valeur finie. Cela
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*  virginica k=4 plus * % *
proches voisins
2.0 A
5
L
Q
815
T .
c L] 0000000
=l e o o o
© . oo
5 1.0 oo o oo
[
<
© - A -
- % Iris a identifier.
0.5 1 X
X XXX X
XXX X
X XXX X
X XX
0.0+ T T T T T T T
1 2 3 4 5 6 7

Longueur d'un pétale (cm)

Il faut suivre les deux étapes de I’algorithme suivant :

1- Rechercher les k données "voisines" dont I'entrée X9 de la base de données est la plus proche de X ;

2 - Affecter & YP™ ]a valeur du groupe majoritaire. Ici, pour k = 4 et I'exemple largeur/longueur, on a 3 iris

versicolor, 1 iris virginica et aucune setosa. On prendra donc Y

Mise en ceuvre sur Python.

préd

import numpy as np ## appel de la bibliothéque numpy

from lecture_fichier import * ## fonction pour lire le fichtier contenant

long_sepale,larg_sepale
## stocke

,long_petale,larg_petale,type_fleur =

les données liées aux iris dans

## longeurs/largeurs des pétales/sépales

## et espé

k)
]

np.array (X)

type_fleur

ce d’iris associée

from sklearn.model_selection import train_test_split

## Préparation des donn
X_train, X_test,
## pour importer les mo
from sklearn.neighbors

model =

Y_train,

ées

Y test =

deles des k-NN

import KNeighborsClassifier

model . fit(X_train,Y_train) ## Apprentissage

Y_pred =

from sklearn.metrics
cm = confusion_matrix (Y

print (’score > ‘model.

model .predict(X_test) ## Y_pred est

la prédiction du

import confusion_matrix

_test,

Y_pred)

score(X_test, Y_test)) ## Score obtenu

11

train_test_split (X, Y,shuffle=True,

= versicolor.

les data

lecture_fichier(’iris.csv’)

[[long_petalel[i]l,larg_petale[i]] for i in range(0,len(long _petale))]

test size=0.33)

KNeighborsClassifier (n_neighbors=4) ## Création du modéle

modéle pour les entrées X_test



29 rint ( ,cm) ## Affichage de la matrice de confusion
p g

On donne également la documentation associée a la fonction confusion_matrix :

sklearn.metrics.confusion_matrix(y_true, y_pred)
Calcule la matrice de confusion pour évaluer la justesse d'une classification.

Parametres :

e y_true : Vecteur de dimension N, contenant les vraies sorties de la base de données

e y_pred : Vecteur de dimension N, contenant les sorties prédites par un modele de classification
Sortie(s) :

e Cndarray : Tableau de dimension (Nieet, Niest) qui représente la matrice de confusion dans laquelle la

cellule ligne L, colonne C contient le nombre d'éléments de la classe réelle L qui ont été estimés comme

appartenant a la classe C

Le résultat affiché est le suivant :
prédictions
score = 0.94 ver.

set vir

matrice de confusion = [[17 O 0] setosa

[0 14 2]  versicolor valeurs réelles

[0 1 16]] virginica

<> ’
Commenter les résultats obtenus.

17 +14 + 16 . .
-Score =0.94 = : C'est la justesse.

17+14+16+1+2

- Toutes les setosas ont été prédites correctement.

- Pour les 16 versicolors, 14 ont été prédites correctement et 2 ont été confondues avec des virginicas.
On peut parler de la sensibilité de la prédiction pour les versicolors :

14
Sensibilité versicolor = —— ~ 87.5%
16

3.3 Calcul de distance

Pour trouver quels sont les k voisins les plus proches, il faudra calculer la distance de 'entrée X i toutes les entrés X 921

de la base de données. On retiendra ensuite les k données dont les distance entre X et X92®@ notée d(X,X92?), sont

les plus faibles.

La plupart du temps, la distance euclidienne est utilisée. En supposant que les données d’entrées possédent N, ..
caractéristiques (par exemple N_,.,. = 2 si on s'intéresse en entrée a la largeur et a la longueur d’'un pétale), on aura :

N,

carac
d(x, x4y = Z (x;— x;?““a)2 oll x; et xfata sont les j-éme caractéristiques des données X et X9,
=1
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4 Algorithme des k-moyennes

L'algorithme des k-moyennes, aussi noté algorithme k-means, est un algorithme pour 'apprentissage non-supervisé qui

est utilisé pour des problemes de classification.

Cet algorithme permet de regrouper les données dans k groupes différents. Cet algorithme n’a donc rien a voir avec

celui des k-plus proches voisins !

Explications. On dispose d’une entrée X correspondant par exemple a la longueur et la largeur mesurées sur un pétale.
On cherche a former k groupes distincts. Bien entendu, ici on suppose qu’on ne connait pas I'espéce d’iris associée a
chaque mesure : il s’agit d’'un algorithme a apprentissage non-supervisé. Si on choisit k = 2, par exemple, I'algorithme

aura pour vocation de former deux groupes de la maniére suivante :

2.51 2.51 -
Lo //. R \
csee s o e . g csee s oo .
.o . // .o . ‘
2.0 cee 0" o e 2.0 /7 cee 0" o e /
= . = .
E wt el E /7 et //
= . = .
K} K}
£1s] Clial T £1s] / clial
a . o eoe . a . o o0 . 7
c L TYTYTY = I LR TYTY T Vs
° . o't résultat . S s
;5}1,0— e oo oo 510 Nt e P groupe 1
g attendu g S~ ——
8 8
.
0.5 . 0.5
o oo o
. ooesen s sveses o/ groupe 2
. oo
0.0 1— T T T T T T 0.0 T T T T T
1 2 3 4 5 6 7 3 4 5 6 7
Longueur d'un pétale (cm) Longueur d'un pétale (cm)

D’un point de vue mathématique, cet algorithme doit répartir les données en k ensembles &;, &, ... , & de telle sorte

que les distances entre les données au sein d’'un ensemble soient les plus faibles possibles.

Dit autrement, si on note X le barycentre des données de I'ensemble &}, I'algorithme doit répartir les données en k
ensembles &, &, ... , & pour minimiser les distances entre les données d’'un ensemble et le barycentre de cet ensemble.

On notera, pour 'ensemble &}, la somme des distances entre les données de cet ensemble X; et le barycentre de celui-ci
X & "
Sij = Z d(Xg,X;)

€8

L'algorithme a donc pour objectif de former k ensembles &;, &,, ... , & de telle sorte que la grandeur cofit globale :

k
colit = Z Z dX X ) soit minimale.

Programmation. D’un point de vue algorithmique, on suivra donc les étapes suivantes pour la phase d’apprentissage :

1 - Choisir aléatoirement la position initiale des barycentres X & s

2 - Pour chaque donnée, I'affecter au groupe dont elle est le plus proche du barycentre ;
3 - Recalculer la position des k barycentres (ou des k moyennes) pour chaque groupe ;
4 - Réitérer les étapes 2 et 3 jusqu’a ce que la position des barycentres n’évolue plus.

Une fois que le modele est entrainé, on connait alors la position des k barycentres X &> Xg,s - » Xg . Pour utiliser le
modele avec une nouvelle donnée, il suffit de regarder de quel barycentre cette donnée est la plus proche et I'affecter

au groupe associé.

Les graphiques ci-dessous montrent les résultats obtenus en 5 itérations avec une initialisation aléatoire. On a ici
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décidé un regroupement avec uniquement deux groupes mais I'algorithme fonctionne tout aussi bien pour k = 3 ce qui

semblerait plus pertinent si I'on sait qu’il y a trois especes d’iris.

Initialisation
Barycentre 1
. Barycentre 2
31 Données groupe 1
X Données groupe 2
s XX
c %oo;éé X X
T 2 x %
- *x x X< x
5 x
e X
c
2
° 1A
5
[
<
©
-
0 -
_1 -
1 2 3 4 5 6 7
Longueur d'un pétale (cm)
Itération n°2
Barycentre 1
. Barycentre 2
31 Données groupe 1
X Données groupe 2
s XX
c %oo;éé X X
T 21 x %
© xx x XS x
@ « X
Q
c X X
3
° 1A
5
[
<
©
-
0 -
_1 -
1 2 3 4 5 6 7
Longueur d'un pétale (cm)
Itération n°4
Barycentre 1
. Barycentre 2
31 Données groupe 1
X Données groupe 2
s XX
£ %ogééé X X
O
; 2 A X >§
< xx x X< x
@ % X
Q
c X X
=)
S 14 X X
=
>
[}
<
©
-
0 -
-1 1
1 2 3 4 5 6 7

Longueur d'un pétale (cm)

5 Régressions linéaires

5.1 Régression linéaire monovariable

Largeur d'un pétale (cm) Largeur d'un pétale (cm)

Largeur d'un pétale (cm)

Itération n°1

Barycentre 1
Barycentre 2
31 Données groupe 1
Données groupe 2 -
%(XX X X
2 X%
x X x
X
X X
1 .
0 .
_1 .
2 3 4 5 6 7
Longueur d'un pétale (cm)
Itération n°3
Barycentre 1
Barycentre 2
31 Données groupe 1
Données groupe 2
group ¢
%OO;O& X X
2 x %%
xx x X< x
X
X
% X
1A X
o -
_1 -
2 3 4 5 6 7
Longueur d'un pétale (cm)
Itération n°5
Barycentre 1
Barycentre 2
31 Données groupe 1
Données groupe 2
group o
%oo;& X X
21 X%
xx x X< x
X
X
x X
1A X X
0 .
_1 .
2 3 4 5 6 7

Longueur d'un pétale (cm)

Explications. Ce type de modélisation permet de prédire, pour une entrée X correspondant par exemple a la longueur

mesurée sur un pétale, la sortie YPd correspondant par exemple a la largeur du pétale mesuré. Comme son nom



I'indique, la relation recherchée entre I'entrée et la sortie est une relation linéaire. Parler de régression monovariable
signifie que ’entrée est a une seule dimension (c’est le cas si X ne représente que la longueur mesurée sur un pétale).

On cherche donc ici a et b tels que YP®! = q - X + b. Durant la phase d’apprentissage, on cherche & minimiser I'erreur
(ou la distance) entre la prédiction, pour des entrées de la base de données, et la sortie connue de la base de données.
Il faut donc chercher a et b pour minimiser la grandeur J(a, b), appelée fonction de cofit, définie telle que :

Ntest

J(a,b) = \ Z(ylpréd _quata)z
i=1

N,

test

= \ Z(a - x; + b— yfaa)2
i=1

Chercher a et b pour minimiser la grandeur J(a, b) revient a trouver a et b tels que :

dJ(a,b) dJ(a,b)
EP =0 et b =0

Il existe deux méthodes pour résoudre ce type de probleme :

e Une premiere méthode, analogue a celle dite des moindres carrés, revient a calculer les dérivées et a résoudre le
systeme d’équation par inversion de matrice. Cette méthode ne sera pas utilisée car elle présente de nombreux
inconvénients liés au nombre de parameétres qui pourra devenir tres important lors des régressions multivari-
ables ou dans les réseaux de neurones.

e Une deuxieme méthode, dite méthode de la descente de gradient, revient a utiliser une méthode itérative. Cette
méthode est mieux adaptée avec un nombre important de parametres. Ce sera donc cette méthode qui sera
détaillée puis utilisée dans la suite.

Méthode de la descente de gradient. Pour trouver a et b, il faut observer le graphique ci-dessous et remarquer qu'’il

y a deux cas a analyser. On notera a; les valeurs successives de "recherche" de a lors de la descente de gradient.

e Lorsque la fonction de cofit J est une fonction décroissante. Pour que les a; menent au minimum, il faut qu'’ils
augmentent. Dit autrement, il faut écrire : a;,; = a; + terme positif.

e Lorsque la fonction de cofit J est une fonction croissante. Pour que les ¢; menent au minimum, il faut qu'’ils
diminuent. Dit autrement, il faut écrire : a;,; = a; + terme négatif.

j(a,b) Cas ou ) Casou)
est décroissante est croissante

\

aJ(ab) _

da 0

a; CIFeY I

dJ(a;, b;)

En choisissant a;,; = a; —n , on résout le probléme du signe a ajouter a q; : cela permet bien de converger

a

vers le minimum. En choisissant la dérivée, on permet aussi de prendre en compte "'’éloignement vis-a-vis du minimum"

9J(a;, b;)
a

: si J(a;, b;) est loin de son minimum, il faut donc faire évoluer a rapidement ce qui sera le cas car sera

grand.
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Le parameétre 7) est appelé vitesse de convergence ou learning rate. On dira que c’est un hyper-parameétre du modele.
Sila valeur de 7 est trop faible, la convergence sera trop lente. Mais si 1) est trop grand, on peut observer des probléemes
de convergence au voisinage du minimum. Ces phénomenes sont représentés sur le schéma ci-dessous. Une valeur
classique de learning rate est n ~ 0.001.

J(a,b) J(a,b)

Learning rate
trop faible !

Learning rate
trop grand !

ao ao

dJ(a;, b;)

Bien entendu, on a une formule analogue pour b : b; ; = b; — b

Mise en ceuvre sur Python.
import numpy as np ## appel de la bibliothéque numpy

from lecture_fichier import * ## fonction pour lire le fichier contenant les data
long_sepale,larg_sepale,long_petale,larg_petale,type_fleur = lecture_fichier(’iris.csv’)
## stocke les donmnées liées aux iris dans
## longeurs/largeurs des pétales/sépales

## et espéce d’iTris associée

[[long_petale[i]] for i in range(0,len(long _petale))]

np.array(X) ## permet de créer, par ezemple, les données d’entrées

## contenant ict lalargeur de chaque pétale

<
1]

larg_petale ## crée les données de sortie : %ci la largeur du pétale

from sklearn.model_selection import train_test_split

## Préparation des données

X_train, X_test, Y_train, Y_test = train_test_split(X, Y,shuffle=True, test_size=0.33)

## pour importer le modéle des k-NN adapté a la classtification

from sklearn.linear_model import SGDRegressor

model = SGDRegressor (max_iter=1000,eta0=0.001) ## Création du modéle avec le nmnombre de v0%isins

model .fit(X_train,Y_train) ## Apprentissage

Y_pred = model.predict(X_test) ## Y_pred est la prédiction du modéle pour les entrées test
X_test

print (’score = ’,model.score(X_test, Y_test)) ## Score obtenu
import matplotlib.pyplot as plt
plt.plot(X_train,Y_train,’xr’,label="données d’entrainement")
plt.plot(X_test,Y_test,’*b’,label="données de test")

plt.plot(X_test,Y_pred,’.g’,label="valeurs prédites")

¥ = np.linspace(min(X) ,max(X),2)
y = model.predict(x)

plt.plot(x,y,label="Régression linéaire’)
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5.2 Régression linéaire multivariable

11 s’agit ici d’une généralisation de la méthode précédente. Il faut prédire, pour une entrée X, la sortie YP*d. La relation
recherchée entre I'entrée et la sortie est une relation linéaire. Parler de régression multivariable signifie que I'entrée a
plusieurs dimensions. On peut s'imaginer prédire, par exemple, la largeur d’un sépale en fonction de la longueur et de

la largeur mesurées sur un pétale.

On cherche donc ici a;, a, ... ay_ (0l Ny st le nombre de caractéristiques de la donnée d’entrée) et b tels que

carac

NCaraC
Ypred: Z aJxJ"l‘b
j=1

Durant la phase d’apprentissage, on cherche a minimiser I'erreur (ou la distance) entre la prédiction, pour des entrées

de la base de données, et la sortie connue de la base de données. Il faut donc chercher a;, a, ... ay__ et b pour

carac

minimiser la grandeur J(a;, a,...ay__,b), appelée fonction de cofit, définie telle que :

carac

N,

test

J(a,b) = 4| D — yay2
\ i=1

Ntest Ncarac 2
— L __,data
= z: z:aj Xpjtb—y

i=1 \ j=1

Ou x; ; représente la j-eme caractéristique de la i-eme donnée.

Comme pour la régression linéaire monovariable, on utilise usuellement la méthode de descente de gradient pour

évaluer les parameétres a;, a, ... ay___ et b.

carac

6 Réseau de neurones

Les réseaux de neurones sont basés sur certains concepts vus précédemment. Il permettent de s’adapter a deux nom-

breux problemes : apprentissage supervisé ou non-supervisé ; probléme de classification ou de régression.
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6.1 Structure d’un réseau de neurone

Un réseau de neurones représente un algorithme dont le fonctionnement se rapproche de celui du cerveau humain. Ce
réseau de neurones sera constitué de plusieurs couches de neurones.

Chaque neurone génére une sortie a partir de plusieurs entrées.

On distinguera la couche d’entrée, les couches dites cachées, et la couche de sortie. Les neurones seront connectés

entre eux : la sortie de 'un pourra étre I'entrée d’'un ou plusieurs autres.

La couche d’entrée permet simplement de "capter" les entrées a intégrer au modele. La couche de sortie permet

d’exprimer la ou les sorties.

La structure des connexions entre les neurones peut varier d'un modeéle a un autre. Nous utiliserons essentiellement
des réseaux dits fully connected ou la sortie d’'un neurone d’'une couche est connectée a tous les neurones de la couche
suivante. Le choix du nombre de neurones dans chaque couche et du nombre de couches est réservé aux spécialistes

des data-sciences.

= . e
Exemple des iris "en classification"

Si 'on souhaite prédire si une iris est de I'espéce setosa, versicolor ou virginica en fonction de la largeur et de la

longueur d’un pétale, on utilisera un réseau avec :

e Deux entrées : une pour la largeur du pétale et une pour sa longueur ;

e Trois sorties : une pour chaque espéce. Chaque sortie pourra, par exemple, étre la probabilité d’obtenir
'espece associée a la sortie. Sile triplet des trois sorties (y;, ¥, ¥3), associées respectivement aux especes
setosa, versicolor et virginica, est (0.0001,0.002,0.987), on dira que I'espece observée est probablement

une iris virginica.

On peut imaginer, par exemple, utiliser une couche cachée a trois neurones. Ceci donnerait donc la structure

suivante :

Couche Couche Couche
d'entrée cachée de sortie

(setosa)
Largeur d'un pétale e

y, (versicolor)

(virginica)
Longueur d'un pétale Y3 9

6.2 Fonctionnement d’un neurone

Un neurone fonctionne toujours en deux étapes :

e Calcul de la grandeur z a partir des entrées du neurone, notées Xx;.

e Génération de la sortie a partir de la fonction d’activation y = &(z).
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y (sortie)

Entrées

Calcul de z. La grandeur z est une combinaison linéaire des entrées. On exprimera z en fonction :

e des n entrées x; ;
e des poids (pondérations) associés a chacune des entrées w i
e du biais, noté b, qui est une valeur constante.

On écrira alors :

n
ZIZWj'xj+b
j=1

Fonction d’activation. On écrira ensuite y = ®(z) ou ® est la fonction d’activation et y la sortie. Il existe de nom-
breuses fonctions d’activation qui seront a choisir en fonction de la sortie attendue (sortie binaire, sortie comprise
dans un intervalle, etc.). Ces fonctions peuvent étre non-linéaires ce qui permet une adaptation aisée a de nombreux

problémes. On donne, ci-dessous, ’évolution de quatre fonctions d’activation classiques :

1.0 104
0.8 8
0.6 6 1
0.4 41
y=X
0.2 2
y=0
0.0 0+
-100 -75 -50 -25 00 25 50 75 100 Z100 -75 -50 -25 00 25 50 75 100
z z
Fonction échelon Fonction ReLu
1.0 1.00
0.75
0.8
0.50
0.6 0.25 A
> > 0.00 1
0.4 —0.25 1
—0.50 A
0.2
—0.75 1
0.0 —1.00
71‘0.0 7%.5 75‘.0 72‘.5 ofu 2.‘5 5.‘0 7.‘5 10‘.0 71‘0.0 77‘.5 7.":.0 72‘.5 020 2:5 5:0 7:5 16.0
z z
Fonction sigmoide Fonction tangente hyperbolique

NOTA : ReLu signifie Rectified Linear Unit ou, en frangais, Unité Linéaire Rectifiée.
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Choix des poids w; et du biais b. Lors de la création du réseau de neurones, c’est-a-dire au début de la phase
d’apprentissage, les poids et les biais de tous les neurones sont choisis aléatoirement. A la fin de la phase d’apprentissage,
il faut que ces parametres permettent de prédire correctement la ou les sorties en fonction de la ou des entrées.

Pour choisir ces parameétres, la méthode est similaire a celle utilisée pour une régression linéaire. Elle se décompose en

deux étapes :

e Calcul d’une fonction cofit qui dépend de tous les poids et de tous les biais qui apparaissent dans le réseau ;
e Minimisation de cette fonction cofit par méthode de descente de gradient.

= . e
Exemple des iris "en classification"

Reprenons le réseau proposé précédemment.

Couche Couche Couche
d'entrée cachée de sortie

(setosa)
Largeur d'un pétale e

y> (versicolor)

(virginica)
Longueur d'un pétale e 9

Si I'on souhaite que les sorties soient des probabilités de rencontrer I'une ou 'autre des espéces, celle-ci seront

donc comprises entre 0 et 1. Choisir comme fonction d’activation la fonction sigmoide semble donc pertinent.

On peut compter 15 poids et 6 biais. Il faut donc optimiser 21 parametres pour un probléme plut6t simple. Il
faut bien comprendre qu’en augmentant le nombre de neurones, le nombre de parameétres a optimiser explose
! Cela rend ces algorithmes trés coliteux en temps de calcul durant la phase d’apprentissage et nécessite des
serveurs de calculs tres performants. C’est aussi cette explosion du nombre de parameétres qui justifie 'utilisation
de la méthode de descente de gradient plutét qu'une méthode par résolution de systéme linéaire classique par

inversion de matrice.

6.3 Utilisation - parametres et hyperparametres

Pour I'utilisateur, la résolution des problémes mathématiques est complétement cachée. Limportant, au niveau qui

nous concerne, est de savoir créer un modele puis de régler les hyper-parametres associés.

Mise en ceuvre sur Python. On cherche dans le code proposé a créer un modele permettant d’identifier 'espece d’iris
a partir de la longueur et de la largeur d’un pétale. Rappelons qu’ici, on souhaite que :

e La couche d’entrée posséde 2 neurones. Cela est transparent dans la bibliotheque sklearn parce que la variable
X qui est un tableau avec N,.,;, lignes (pour I'apprentissage) posséde également 2 colonnes associées automa-
tiquement aux deux couches d’entrée.

e La couche de sortie posséde 3 neurones. Cela est également transparent a condition que la sortie soit du bon
format, a savoir Ni,;, lignes (pour I'apprentissage) et 3 colonnes associées a la probabilité d’obtenir telle ou

telle espéce. Il faudra donc modifier 1égerement le code : pour une iris virginica, associée a I'étiquette 2 dans
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]

le tableau d’entrée, il faudra créer la liste [0,0,1] (probabilité de 1 d’avoir l'iris de type 2 (rangée a I'indice 2
de la liste)).

Dans les options du modele associé au réseau de neurones MLPClassifier (un réseau de neurones utilisant une opti-
misation par descente de gradient), on pourra saisir :

e solver=’1bfgs’ : choix du solveur pour l'optimisation des poids et biais.

e activation=’logistic’ : choix des fonctions d’activation (’logistic’ est la fonction sigmoide).

e hidden_layer_sizes=(3) : choix du nombre de couches cachées et du nombre de neurones associés. Saisir
(4,6,2) alaplace de (3) aurait signifier un réseau avec 3 couches cachées : la premiere avec 4 neurones, la
deuxiéme avec 6 neurones et la derniere avec 2 neurones.

e random_state=1 : impose un choix aléatoire des poids et biais a I'initialisation.

e learning rate_init=0.4 : choix du learning rate (ici constant et égal a 0,4).

e max_iter=200 : choix du nombre maximal d’itération (lors de la descente de gradient).
import numpy as np ## appel de la bibliothéque numpy

from lecture_fichier import * ## fonction pour lire le fichier contenant les data
long_sepale,larg_sepale,long_petale,larg_petale,type_fleur = lecture_fichier(’iris.csv’)
## stocke les données liées aux tris dans
## longeurs/largeurs des pétales/sépales

## et espéce d’iris associée
X = [[long_petalel[i]l,larg petale[i]] for i in range(0,len(long _petale))]

X = np.array(X)
(]
for j in range(0,len(type_fleur)):
vi = [0,0,0]
Vi[type fleur[j]] =1
Y.append(Yi) ## Y est un tableau de taille N,3

from sklearn.model_selection import train_test_split
## Préparation des données

X_train, X_test, Y_train, Y_test = train_test_split(X, Y,shuffle=True, test_size=0.33)

## pour importer le modéle des k-NN adapté a la classification

from sklearn.neural _network import MLPClassifier

model = MLPClassifier(solver=’1lbfgs’,activation=’logistic’,hidden_layer_sizes=(3),random_state
=1,learning_rate_init=0.4,max_iter=200) ## Création du modéle avec le mombre de couches et

de meurones
model .fit(X_train,Y_train) ## Apprentissage

Y_pred = model.predict(X_test) ## Y_pred est la prédiction du modéle pour les entrées test
X_test

def num(Y):
res = []
for j in range(0,len(Y)):
i = np.argmax(Y[j])
s.append (i)

return res
print (’score = ’,model.score(X_test, Y_test)) ## Score obtenu

from sklearn.metrics import confusion_matrix
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= ( ( ), ( )) ## num(Y) est un tableau de taille N rempls

étiquettes 0,1 et 2
print ( , . ( , )) ## Score obtenu

print ( ,cm) ## Affichage de la matrice de confusion
Le résultat affiché est le suivant :

score = 0.9

matrice de confusion = [[16 0 0]

[0 18 2]

[0 3 11]]

des

<> Je
Commenter les résultats obtenus.

On peut faire sensiblement les mémes commentaires qu'a la page 12.

22


EYER
Machine à écrire
On peut faire sensiblement les mêmes commentaires qu'à la page 12.


	Introduction au chapitre
	Phases d'apprentissage
	Mode d'apprentissage
	Régression ou classification ?
	Qualité d'un algorithme
	Problème de régression
	Problème de classification
	Retour sur la structure d'un algorithme d'apprentissage


	Base de données utilisée pour présenter les algorithmes
	Problématique de classification
	Problématique de régression
	Notations retenues et bibliothèque Python utilisée

	Algorithme des k-plus proches voisins
	Explication du fonctionnement pour un problème de régression
	Explication du fonctionnement pour un problème de classification
	Calcul de distance

	Algorithme des k-moyennes
	Régressions linéaires
	Régression linéaire monovariable
	Régression linéaire multivariable

	Réseau de neurones
	Structure d'un réseau de neurone
	Fonctionnement d'un neurone
	Utilisation - paramètres et hyperparamètres


