
Centre d’intérêt 6

Apprentissage Machine

PSI - MP : Lycée Rabelais

1 Introduction au chapitre

L’apprentissage machine (ou Machine Learning en anglais) est une branche de "l’intelligence artificielle". L’apprentissage

automatique consiste à utiliser beaucoup de données pour apprendre à faire une tâche de manière autonome. Ces

données peuvent être des images, des sons, des tableaux, etc.

1.1 Phases d’apprentissage

Un algorithme d’apprentissage machine a globalement trois étapes de fonctionnent :

• Une première étape est la phase d’apprentissage. On fournit ici des données, dites d’apprentissage, à l’algorithme

qui va alors régler ses paramètres internes pour répondre au mieux au problème posé. Cette phase nécessite

de très grandes ressources informatiques (serveurs, temps de calcul, données, etc.) afin de déterminer les

paramètres du modèle.

• Une deuxième étape est la phase de test. On vérifie ici, sur des données particulières, que l’algorithme est bien

capable de répondre au problème posé. Si la performance est suffisante, on peut passer à la dernière étape

sinon il faut rajouter des données d’apprentissage ou modifier le modèle.

• Dans la dernière étape, dite phase d’inférence, on utilise les paramètres déjà établis dans l’étape d’apprentissage

pour effectuer de nouvelles prédictions. Cette phase nécessite très peu de ressources informatiques parce que

le modèle est établi et n’évolue plus.

1.2 Mode d’apprentissage

D’une manière très générale, il est classique de classer les algorithmes d’apprentissage selon leur mode d’apprentissage.

On distinguera (voir schéma ci-dessous) :

• Les algorithmes supervisés qui ont pour but de générer un résultat à partir d’un ensemble de données d’apprentissage

où les entrées et les sorties de l’algorithme sont connues.

• Les algorithmes non supervisés qui ont pour but de générer un résultat à partir d’un ensemble de données

d’apprentissage où les sorties de l’algorithme ne sont pas connues.

• Les algorithmes par renforcement (hors programme) qui ont pour but de s’améliorer au fur et à mesure de leur

utilisation : ici les phases d’apprentissage et d’inférence ne se suivent pas.

Apprentissage
Machine

(Machine learning)

Apprentissage
Supervisé

(Supervised learning)

Apprentissage
Non-Supervisé

(Unsupervised learning)

Apprentissage
Par Renforcement

(Reinforcement learning)
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On dispose d’une base de données avec des photos de chats et de chiens. Ces données sont libellées : cela

signifie qu’une photo de chat est associé à la sortie chat et qu’une photo de chien est associé à la sortie chien. Un

algorithme supervisé ajustera ses paramètres afin de classer les images selon les deux groupes prédéfinis chat et

chien.

Exemple de données disponibles pour la phase d’apprentissage :

chat chien chien chat

chien chat chat chien

Exemple d’algorithme supervisé

On dispose d’une base de données avec des photos de chats et de chiens qui ne sont pas libellées. Dans ce cas,

la machine ne sait pas qu’il existe deux groupes chat et chien. On pourra utiliser un algorithme non supervisé

afin de classer les images selon deux groupes distincts non-connus à l’avance.

Exemple de données disponibles pour la phase d’apprentissage :

Selon certains réglages, on pourra retrouver un regroupement chat et chien (sans pour autant savoir qu’une photo

de chat est associée à un groupe appelé chat). On pourra aussi, avec d’autres paramètres, avoir un regroupement

en fonction de la couleur, du contraste, etc.

Exemple d’algorithme non supervisé

1.3 Régression ou classification ?

Il existe deux grandes classes de problèmes. Les problèmes dits de régression et ceux dits de classification. Ils se

différentient par le type de la sortie attendue.

Pour un problème de régression, la sortie peut prendre une infinité de valeurs dans un intervalle.
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Pour un problème de classification, la sortie ne prendra qu’un nombre fini de valeurs. Lorsqu’il n’y a que deux valeurs

de sortie, on parle de classification binaire. Lorsqu’il y a plusieurs valeurs, on parle de classification multiclasse.

Type d’algorithme : Utilité

............................ : Prédire le bénéfice (en euros) d’une production agricole en fonction des

données météorologiques, du type de sol, etc.

............................ : Prédire l’âge d’une personne à partir d’une photo.

............................ : Prédire si un mail est un spam ou non.

............................ : Prédire le prix d’un bien immobilier en fonction de sa surface, son emplacement, etc.

............................ : Reconnaître la langue d’un texte.

............................ : Reconnaître si une plante est comestible ou non.

Quelques exemples...

1.4 Qualité d’un algorithme

Pour analyser la qualité d’un algorithme, il faut utiliser des données de test. Il faut bien comprendre que la phase

d’apprentissage est terminée et que les paramètres du modèles sont fixés. On cherche seulement, dans la phase de test,

à évaluer si la qualité d’un algorithme est satisfaisante étant donnés les paramètres fixés.

1.4.1 Problème de régression

Considérons un problème de régression monovariable (une variable en entrée et une variable en sortie) dont la sortie

est notée Y et l’entrée X .

On dispose d’un jeu de Ntest données de test qui est ici un ensemble de couples (X test
i , Y test

i ). L’indice i correspond à la

i-ème donnée.

Le modèle peut se représenter par une fonction qui permet de prédire la sortie Y pour n’importe qu’elle entrée X . On

a donc simplement Y = f (X ). Pour la valeur particulière X = X test
i , on peut alors prédire la valeur de la sortie en

calculant : Y préd
i = f (X test

i ).

On peut visualiser cela sur le graphique ci-dessous :

Sortie : Y

Entrée : X
Xtest

i

Ytest
i

Ypréd
i

Données test

Modèle

= f(Xtest)i

erreur : Ei

Pour la donnée d’indice i, on peut calculer l’erreur : Ei = Y préd
i − Y test

i . On veut ensuite calculer la somme des erreurs

associées à chaque donnée test. Le problème, si l’on calcule
∑

Ei , provient du signe de Ei qui peut être tantôt positif et

tantôt négatif. De ce fait, la somme des erreurs peut être quasiment nulle alors que les erreurs, en valeur absolue, sont

très grandes !
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On calculera plutôt, pour la donnée d’indice i, l’erreur quadratique : (Ei)2 = (Y
préd
i − Y test

i )2.

Enfin, pour avoir un indicateur (on parle aussi de métrique) de la qualité de l’ensemble du modèle avec les Ntest données

de test, on calculera l’erreur quadratique moyenne (mean squared error) :

MSE =
1

Ntest

Ntest
∑

i=1

�

Y préd
i − Y test

i

�2

On remarquera que l’on ne calcule pas l’erreur globale
∑

�

Y préd
i − Y test

i

�2
parce que ce terme risque d’être très grand,

et donc difficilement stockable par un ordinateur, étant donné le nombre très grand de données Ntest utilisées.

On peut aussi utiliser le coefficient de détermination R2 défini tel que :

R2 = 1−

Ntest
∑

i=1

�

Y préd
i − Y test

i

�2

Ntest
∑

i=1

�

Y préd
i − Ŷ test

�2

Où Ŷ test est la moyenne des valeurs valeurs Y de sortie.

1.4.2 Problème de classification

Pour un problème de classification, on utilise généralement la matrice de confusion (aussi appelé tableau de contin-

gence). Cette matrice est un tableau dans lequel on note :

En ligne : Les comptages associés aux données réelles ;

En colonne : Les comptages associés aux valeurs prédites.

On suppose qu’on dispose d’un algorithme qui permet d’identifier, à partir d’une photo, si l’image est un chien

ou un chat. Les paramètres de l’algorithme sont déjà déterminés et on cherche simplement à évaluer la qualité

de l’algorithme. Pour l’évaluation, on dispose donc d’images labellisées (c’est-à-dire que l’utilisateur sait lorsqu’il

s’agit d’un chien ou d’un chat.

Le résultat de l’algorithme (de classification) est donné ci-dessous.

Algorithme

Images de test labellisées
Chats

Chiens

Prédictions

Données

Exemple
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Remplir la matrice de confusion revient à remplir la matrice :

Chats prédits Chiens prédits

Chats

Chiens

On pourra lire le tableau en disant que :

• .... photos de chats ont été utilisées et .... photos de chiens.

• Pour les .... photos de chats utilisées, l’algorithme a donné .... fois la bonne prédiction (un chat) et ....

fois la mauvaise (un chien).

• Pour les .... photos de chats prédits, l’algorithme a donné .... fois la bonne prédiction (un chat) et ....

fois la mauvaise (un chien).

Un algorithme sera d’autant performant que la matrice de confusions s’apparente à une matrice diagonale.

La justesse de l’algorithme sera le pourcentage de bonnes prédictions, c’est-à-dire :

justesse=

Pour un algorithme de test dont la sortie est binaire : positif ou négatif. Le tableau de contingence s’écrira :

Sorties positives Sorties négatives

Entrées positives VP FN

Entrées

négatives

FP VN

On observe que :

• VP (vrais positifs) représente le nombre d’entrées positives répondant "Positif" au test,

• FP (faux positifs) représente le nombre d’entrées négatives répondant "Positif" au test,

• FN (faux négatifs) représente le nombre d’entrées positives répondant "Négatif" au test,

• VN (vrais négatifs) représente le nombre d’entrées négatives répondant "Négatif" au test.

On calculera alors :

É la justesse de l’algorithme (accuracy). Il s’agit du ratio :

justesse=
Nbonnes prédictions

Ntest
=

VP+VN
VP+VN+ FP+ FN

Généralisation
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É la spécificité de l’algorithme (accuracy). Il s’agit du ratio :

spécificité=
VN

VN+ FP

É la sensibilité de l’algorithme (accuracy). Il s’agit du ratio :

sensibilité=
VP

VP+ FN

1.4.3 Retour sur la structure d’un algorithme d’apprentissage

Le schéma ci-dessous représente les trois phases de vie de l’algorithme avec, pour chacune, les données à apporter.

Modèle prédictif

Phase d'inférence

(d'utilisation)

Données d'apprentissage

fournies par le programmeur

Données de test

fournies par le programmeur

(données labellisées)

✔ Sorties conformes aux attentes : modèle validé

✘ Sorties non-conformes aux attentes :

          ˳ Rajouter des données d'apprentissage

          ˳ Modifier le modèle 

Phase d'apprentissage

des paramètres

Phase de test

Données quelconques

fournies par l'utilisateur
Sortie(s)

Dans le cas où la phase de test n’est pas satisfaisante, il y a globalement deux possibilités :

• Rajouter des données d’apprentissage : cela signifie que les données n’étaient pas suffisantes et que, de ce fait,

les paramètres du modèle ont été évalués de manière inappropriée.

• Modifier le modèle : cela signifie que la structure choisie n’est pas adaptée et donc que le nombre de paramètres

du modèle est également inadapté. Un problème récurrent et associé à ce manque est la notion de données

"underfitted" ou "overfitted".

Lorsque les données sont underfitted, on parlera aussi de sousapprentissage, cela signifie que le modèle ne possède pas

assez de paramètres pour prendre en compte les spécificités des données. Dit autrement, la moyenne des données est

trop grossière.

Lorsque les données sont overfitted, on parlera aussi de surapprentissage, cela signifie que le modèle possède trop de

paramètres comparativement au nombre de données d’apprentissage. Dit autrement, le modèle va "suivre" les données

d’apprentissage sans en tirer de tendance générale.

Sortie : Y

Entrée : X

Sortie : Y

Entrée : X

Sortie : Y

Entrée : X

Données d'apprentissage

Modèle overfitted

Données d'apprentissage

Modèle adapté

Données d'apprentissage

Modèle underfitted
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2 Base de données utilisée pour présenter les algorithmes

On considère une base de données contenant des mesures sur des fleurs d’iris qui ont été réalisées par des botanistes.

Dans cette base de données, on retrouve les longueurs et largeurs des pétales et des sépales pour différentes fleurs et

l’espèce d’iris associée : setosa, versicolor et virginica.

Longueur d’un sépale (cm) Largeur d’un sépale (cm) Longueur d’un pétale (cm) Largeur d’un pétale (cm) Espèce

5.1 3.5 1.4 0.2 setosa

5.5 2.6 4.4 1.2 versicolor

6.1 3.0 4.6 1.4 versicolor

5.9 3.0 5.1 1.8 virginica

... ... ... ... ...

2.1 Problématique de classification

Un premier problème concerne la classification qui permet de prédire l’espèce d’iris (setosa, versicolor ou virginica) en

connaissant, par exemple, la longueur et la largeur d’un pétale de fleur.

On voit bien sur les tracés précédents que les espèces d’iris peuvent se regrouper en fonction des caractéristiques des

pétales ou des sépales.
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2.2 Problématique de régression

Un autre problème concerne la prévision de la largeur d’un pétale si l’on connaît la longueur de celui-ci. Ici, c’est bien un

problème de régression. On visualise sur le graphe ci-dessous (toutes espèces d’iris confondues) que plus la longueur

du pétale est importante, plus la largeur le sera aussi. L’algorithme devra alors trouver une relation entre ces deux

paramètres.

2.3 Notations retenues et bibliothèque Python utilisée

On notera pour la suite :

• X : une donnée d’entrée. X sera un scalaire s’il n’y a qu’une seule entrée et un vecteur si l’on s’intéresse à

plusieurs entrées. S’il y a plusieurs caractéristiques (on parle aussi d’attribut) en entrée, on notera x j la j-ème

caractéristique de la donnée X . On note Ncarac le nombre de caractéristiques. On pourra également parler de la

i-ème donnée utilisée que l’on notera également x i . En cas de besoin, on notera x i, j qui correspondra à j-ème

caractéristique de la i-ème donnée utilisée.

• Y : la valeur de la sortie. Y prendra des valeurs continues pour des problèmes de régression et des valeurs

finies pour des problèmes de classification. On notera yi la sortie associée à la i-ème donnée utilisée.

Python possède de nombreuses bibliothèques permettant de faire de l’analyse de données. L’une des plus commune

(et que l’on utilisera dans le cours) est la librairie scikit learn. Pour importer une fonction dans un module de la

bibliothèque, on pourra écrire : from sklearn.module import fonction.

On utilisera également les modules issus de la bibliothèque numpy.

Un début de programme est détaillé ci-dessous. Il permet seulement de préparer les données à travailler en :

• important les bibliothèques nécessaires ;

• lisant le fichier contenant les données et en les stockant dans les variables X et Y ;

• préparant une portion des données pour la phase d’apprentissage (entrées X_train et sortie Y_train) et une

portion pour la phase de test (entrées X_test et sortie Y_test) (ici 33% des données seront utilisées pour le test

et 67% pour l’apprentissage). L’instruction shuffle=True permet de mélanger les données avant la séparation

pour éviter d’utiliser une base de données déjà triée ce qui engendre de nombreux problèmes. Dans le fichier

’iris.csv’ par exemple, les données sont classées par type de fleur. Si on utilise 67% pour l’apprentissage, il

n’y aura quasiment aucune iris virginica (rangées "à la fin").
1 import numpy as np ## appel de la biblioth èque numpy
2

3 from lecture_fichier import * ## fonction pour lire le fichier contenant les data
4 long_sepale , larg_sepale , long_petale , larg_petale , type_fleur = lecture_fichier (’iris.csv ’)
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5 ## stocke les données liées aux iris dans
6 ## longeurs / largeurs des pétales/sépales
7 ## et espèce d’iris associ ée
8

9 X = [[ long_petale [i], larg_petale [i]] for i in range (0, len( long_petale ))]
10

11 X = np.array(X)
12 Y = type_fleur
13

14 from sklearn . model_selection import train_test_split
15 ## Pré paration des données
16 X_train , X_test , Y_train , Y_test = train_test_split (X, Y, shuffle =True , test_size =0.33)

3 Algorithme des k-plus proches voisins

L’algorithme des k-plus proches voisins, aussi noté algorithme k-NN pour k-Nearest Neighbors, est un algorithme pour

l’apprentissage supervisé qui peut être utilisé aussi bien pour des problèmes de régression que pour des problèmes de

classification.

3.1 Explication du fonctionnement pour un problème de régression

Explications. On dispose d’une entrée X correspondant par exemple à la longueur mesurée sur un pétale. On cherche

à prédire la sortie Y préd correspondant par exemple à la largeur du pétale de longueur X .

X

k=3 pétales dont la longueur 
est la plus proche de X

~1 cm

~1.3 cm

Ypréd

Il faut suivre les deux étapes de l’algorithme suivant :

1 - Rechercher les k données "voisines" dont l’entrée X data de la base de données est la plus proche de X ;

2 - Affecter à Y préd la moyenne (ou la médiane) des sorties Y data de la base de données correspondant aux k plus

proches voisins déterminés dans l’étape précédente. Ici, avec k = 3, on calcule : Y préd ≈
1+ 1+ 1.3

3
≈ 1.1 cm.

Mise en œuvre sur Python.
1 import numpy as np ## appel de la biblioth èque numpy
2

3 from lecture_fichier import * ## fonction pour lire le fichier contenant les data
4 long_sepale , larg_sepale , long_petale , larg_petale , type_fleur = lecture_fichier (’iris.csv ’)
5 ## stocke les données liées aux iris dans
6 ## longeurs / largeurs des pétales/sépales
7 ## et espèce d’iris associ ée
8
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9 X = [[ long_petale [i]] for i in range (0, len( long_petale ))]
10 X = np.array(X) ## permet de créer , par exemple , les données d’entrées
11 ## contenant ici la longueur de chaque pétale
12 Y = larg_petale ## crée les données de sortie : ici la largeur du pétale
13

14 from sklearn . model_selection import train_test_split
15 ## Pré paration des données
16 X_train , X_test , Y_train , Y_test = train_test_split (X, Y, shuffle =True , test_size =0.33)
17

18 ## pour importer le modèle des k-NN adapté à la classification
19 from sklearn . neighbors import KNeighborsRegressor
20 model = KNeighborsRegressor ( n_neighbors =3) ## Création du modèle avec le nombre de voisins
21

22 model.fit(X_train , Y_train ) ## Apprentissage
23

24 Y_pred = model. predict ( X_test ) ## Y_pred est la pré diction du modèle pour les entrées
25 ## test X_test
26

27 print (’score = ’,model.score(X_test , Y_test )) ## Score obtenu
28

29 import matplotlib . pyplot as plt
30 plt.plot(X_train ,Y_train ,’xr’,label="données d’entrainement ")
31 plt.plot(X_test ,Y_test ,’*b’,label="données de test")
32 plt.plot(X_test ,Y_pred ,’.g’,label=" valeurs prédites")
33 plt. legend ()
34 plt. xlabel (" Longueur d’un pétale (cm)")
35 plt. ylabel (" Largeur d’un pétale (cm)")

La compilation affiche score = 0.8955501976801652 et le graphique suivant :

ZOOM

Commenter les résultats obtenus.
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3.2 Explication du fonctionnement pour un problème de classification

Explications. On dispose d’une entrée X correspondant par exemple à la longueur et à la largeur mesurée sur un

pétale (ici X est un vecteur de dimension 2). On cherche à prédire la sortie Y préd où Y préd est une valeur finie. Cela

correspond par exemple à l’espèce d’iris.

Iris à identifier.

k=4 plus 
proches voisins

Il faut suivre les deux étapes de l’algorithme suivant :

1 - Rechercher les k données "voisines" dont l’entrée X data de la base de données est la plus proche de X ;

2 - Affecter à Y préd la valeur du groupe majoritaire. Ici, pour k = 4 et l’exemple largeur/longueur, on a 3 iris

versicolor, 1 iris virginica et aucune setosa. On prendra donc Y préd = versicolor.

Mise en œuvre sur Python.
1 import numpy as np ## appel de la biblioth èque numpy
2

3 from lecture_fichier import * ## fonction pour lire le fichier contenant les data
4 long_sepale , larg_sepale , long_petale , larg_petale , type_fleur = lecture_fichier (’iris.csv ’)
5 ## stocke les données liées aux iris dans
6 ## longeurs / largeurs des pétales/sépales
7 ## et espèce d’iris associ ée
8

9 X = [[ long_petale [i], larg_petale [i]] for i in range (0, len( long_petale ))]
10

11 X = np.array(X)
12 Y = type_fleur
13

14 from sklearn . model_selection import train_test_split
15 ## Pré paration des données
16 X_train , X_test , Y_train , Y_test = train_test_split (X, Y, shuffle =True , test_size =0.33)
17

18 ## pour importer les modeles des k-NN
19 from sklearn . neighbors import KNeighborsClassifier
20 model = KNeighborsClassifier ( n_neighbors =4) ## Création du modèle
21

22 model.fit(X_train , Y_train ) ## Apprentissage
23

24 Y_pred = model. predict ( X_test ) ## Y_pred est la pré diction du modèle pour les entrées X_test
25

26 from sklearn . metrics import confusion_matrix
27 cm = confusion_matrix (Y_test , Y_pred )
28 print (’score = ’,model.score(X_test , Y_test )) ## Score obtenu
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29 print (’matrice de confusion =’,cm) ## Affichage de la matrice de confusion

On donne également la documentation associée à la fonction confusion_matrix :

Calcule la matrice de confusion pour évaluer la justesse d’une classification.

Paramètres :

• y_true : Vecteur de dimension Ntest contenant les vraies sorties de la base de données
• y_pred : Vecteur de dimension Ntest contenant les sorties prédites par un modèle de classification

Sortie(s) :

• Cndarray : Tableau de dimension (Ntest, Ntest) qui représente la matrice de confusion dans laquelle la
cellule ligne L, colonne C contient le nombre d’éléments de la classe réelle L qui ont été estimés comme
appartenant à la classe C

sklearn.metrics.confusion_matrix(y_true, y_pred)

Le résultat affiché est le suivant :

score = 0.94

matrice de confusion = [[17 0 0]

[0 14 2]

[0 1 16]]

Commenter les résultats obtenus.

3.3 Calcul de distance

Pour trouver quels sont les k voisins les plus proches, il faudra calculer la distance de l’entrée X à toutes les entrés X data

de la base de données. On retiendra ensuite les k données dont les distance entre X et X data, notée d(X , X data), sont

les plus faibles.

La plupart du temps, la distance euclidienne est utilisée. En supposant que les données d’entrées possèdent Ncarac

caractéristiques (par exemple Ncarac = 2 si on s’intéresse en entrée à la largeur et à la longueur d’un pétale), on aura :

d(X , X data) =

√

√

√

√

Ncarac
∑

j=1

(x j − xdata
j )2 où x j et xdata

j sont les j-ème caractéristiques des données X et X data.
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4 Algorithme des k-moyennes

L’algorithme des k-moyennes, aussi noté algorithme k-means, est un algorithme pour l’apprentissage non-supervisé qui

est utilisé pour des problèmes de classification.

Cet algorithme permet de regrouper les données dans k groupes différents. Cet algorithme n’a donc rien à voir avec

celui des k-plus proches voisins !

Explications. On dispose d’une entrée X correspondant par exemple à la longueur et la largeur mesurées sur un pétale.

On cherche à former k groupes distincts. Bien entendu, ici on suppose qu’on ne connaît pas l’espèce d’iris associée à

chaque mesure : il s’agit d’un algorithme à apprentissage non-supervisé. Si on choisit k = 2, par exemple, l’algorithme

aura pour vocation de former deux groupes de la manière suivante :

résultat
attendu

groupe 1

groupe 2

D’un point de vue mathématique, cet algorithme doit répartir les données en k ensembles E1, E2, ... , Ek de telle sorte

que les distances entre les données au sein d’un ensemble soient les plus faibles possibles.

Dit autrement, si on note XE j
le barycentre des données de l’ensemble E j , l’algorithme doit répartir les données en k

ensembles E1, E2, ... , Ek pour minimiser les distances entre les données d’un ensemble et le barycentre de cet ensemble.

On notera, pour l’ensemble E j , la somme des distances entre les données de cet ensemble X i et le barycentre de celui-ci

XE j
:

Si j =
∑

i∈E j

d(XE j
, X i)

L’algorithme a donc pour objectif de former k ensembles E1, E2, ... , Ek de telle sorte que la grandeur coût globale :

coût=
k
∑

j=1

∑

i∈E j

d(XE j
, X i) soit minimale.

Programmation. D’un point de vue algorithmique, on suivra donc les étapes suivantes pour la phase d’apprentissage :

1 - Choisir aléatoirement la position initiale des barycentres XE j
;

2 - Pour chaque donnée, l’affecter au groupe dont elle est le plus proche du barycentre ;

3 - Recalculer la position des k barycentres (ou des k moyennes) pour chaque groupe ;

4 - Réitérer les étapes 2 et 3 jusqu’à ce que la position des barycentres n’évolue plus.

Une fois que le modèle est entrainé, on connait alors la position des k barycentres XE1
, XE2

, ... , XEk
. Pour utiliser le

modèle avec une nouvelle donnée, il suffit de regarder de quel barycentre cette donnée est la plus proche et l’affecter

au groupe associé.

Les graphiques ci-dessous montrent les résultats obtenus en 5 itérations avec une initialisation aléatoire. On a ici
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décidé un regroupement avec uniquement deux groupes mais l’algorithme fonctionne tout aussi bien pour k = 3 ce qui

semblerait plus pertinent si l’on sait qu’il y a trois espèces d’iris.

5 Régressions linéaires

5.1 Régression linéaire monovariable

Explications. Ce type de modélisation permet de prédire, pour une entrée X correspondant par exemple à la longueur

mesurée sur un pétale, la sortie Y préd correspondant par exemple à la largeur du pétale mesuré. Comme son nom
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l’indique, la relation recherchée entre l’entrée et la sortie est une relation linéaire. Parler de régression monovariable

signifie que l’entrée est à une seule dimension (c’est le cas si X ne représente que la longueur mesurée sur un pétale).

On cherche donc ici a et b tels que Y préd = a · X + b. Durant la phase d’apprentissage, on cherche à minimiser l’erreur

(ou la distance) entre la prédiction, pour des entrées de la base de données, et la sortie connue de la base de données.

Il faut donc chercher a et b pour minimiser la grandeur J(a, b), appelée fonction de coût, définie telle que :

J(a, b) =

√

√

√

√

Ntest
∑

i=1

(ypréd
i − ydata

i )2

=

√

√

√

√

Ntest
∑

i=1

(a · x i + b− ydata
i )2

Chercher a et b pour minimiser la grandeur J(a, b) revient à trouver a et b tels que :

∂ J(a, b)
∂ a

= 0 et
∂ J(a, b)
∂ b

= 0

Il existe deux méthodes pour résoudre ce type de problème :

• Une première méthode, analogue à celle dite des moindres carrés, revient à calculer les dérivées et à résoudre le

système d’équation par inversion de matrice. Cette méthode ne sera pas utilisée car elle présente de nombreux

inconvénients liés au nombre de paramètres qui pourra devenir très important lors des régressions multivari-

ables ou dans les réseaux de neurones.

• Une deuxième méthode, dite méthode de la descente de gradient, revient à utiliser une méthode itérative. Cette

méthode est mieux adaptée avec un nombre important de paramètres. Ce sera donc cette méthode qui sera

détaillée puis utilisée dans la suite.

Méthode de la descente de gradient. Pour trouver a et b, il faut observer le graphique ci-dessous et remarquer qu’il

y a deux cas à analyser. On notera ai les valeurs successives de "recherche" de a lors de la descente de gradient.

• Lorsque la fonction de coût J est une fonction décroissante. Pour que les ai mènent au minimum, il faut qu’ils

augmentent. Dit autrement, il faut écrire : ai+1 = ai + terme positif.

• Lorsque la fonction de coût J est une fonction croissante. Pour que les ai mènent au minimum, il faut qu’ils

diminuent. Dit autrement, il faut écrire : ai+1 = ai + terme négatif.

J(a,b)

a
ai ai+1

∂ J(a,b)
∂ a < 0

∂ J(a,b)
∂ a > 0

Cas où J 
est décroissante

Cas où J 
est croissante

aiai+1

En choisissant ai+1 = ai −η ·
∂ J(ai , bi)
∂ a

, on résout le problème du signe à ajouter à ai : cela permet bien de converger

vers le minimum. En choisissant la dérivée, on permet aussi de prendre en compte "l’éloignement vis-à-vis du minimum"

: si J(ai , bi) est loin de son minimum, il faut donc faire évoluer a rapidement ce qui sera le cas car

�

�

�

�

∂ J(ai , bi)
∂ a

�

�

�

�

sera

grand.
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Le paramètre η est appelé vitesse de convergence ou learning rate. On dira que c’est un hyper-paramètre du modèle.

Si la valeur de η est trop faible, la convergence sera trop lente. Mais si η est trop grand, on peut observer des problèmes

de convergence au voisinage du minimum. Ces phénomènes sont représentés sur le schéma ci-dessous. Une valeur

classique de learning rate est η≈ 0.001.

J(a,b)

a
a0

Learning rate
trop faible !

J(a,b)

a
a0

Learning rate
trop grand !

Bien entendu, on a une formule analogue pour b : bi+1 = bi −η ·
∂ J(ai , bi)
∂ b

.

Mise en œuvre sur Python.
1 import numpy as np ## appel de la biblioth èque numpy
2

3 from lecture_fichier import * ## fonction pour lire le fichier contenant les data
4 long_sepale , larg_sepale , long_petale , larg_petale , type_fleur = lecture_fichier (’iris.csv ’)
5 ## stocke les données liées aux iris dans
6 ## longeurs / largeurs des pétales/sépales
7 ## et espèce d’iris associ ée
8

9 X = [[ long_petale [i]] for i in range (0, len( long_petale ))]
10 X = np.array(X) ## permet de créer , par exemple , les données d’entrées
11 ## contenant ici lalargeur de chaque pétale
12 Y = larg_petale ## crée les données de sortie : ici la largeur du pétale
13

14 from sklearn . model_selection import train_test_split
15 ## Pré paration des données
16 X_train , X_test , Y_train , Y_test = train_test_split (X, Y, shuffle =True , test_size =0.33)
17

18 ## pour importer le modèle des k-NN adapté à la classification
19 from sklearn . linear_model import SGDRegressor
20 model = SGDRegressor ( max_iter =1000 , eta0 =0.001) ## Création du modèle avec le nombre de voisins
21

22 model.fit(X_train , Y_train ) ## Apprentissage
23

24 Y_pred = model. predict ( X_test ) ## Y_pred est la pré diction du modèle pour les entrées test
X_test

25

26 print (’score = ’,model.score(X_test , Y_test )) ## Score obtenu
27

28

29 import matplotlib . pyplot as plt
30 plt.plot(X_train ,Y_train ,’xr’,label="données d’entrainement ")
31 plt.plot(X_test ,Y_test ,’*b’,label="données de test")
32 plt.plot(X_test ,Y_pred ,’.g’,label=" valeurs prédites")
33

34 x = np. linspace (min(X),max(X) ,2)
35 y = model. predict (x)
36

37 plt.plot(x,y,label=’Ré gression linéaire ’)
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38 plt.plot ()
39 plt. legend ()
40 plt. xlabel (" Longueur d’un pétale (cm)")
41 plt. ylabel (" Largeur d’un pétale (cm)")

ZOOM

5.2 Régression linéaire multivariable

Il s’agit ici d’une généralisation de la méthode précédente. Il faut prédire, pour une entrée X , la sortie Y préd. La relation

recherchée entre l’entrée et la sortie est une relation linéaire. Parler de régression multivariable signifie que l’entrée a

plusieurs dimensions. On peut s’imaginer prédire, par exemple, la largeur d’un sépale en fonction de la longueur et de

la largeur mesurées sur un pétale.

On cherche donc ici a1, a2 ... aNcarac
(où Ncarac est le nombre de caractéristiques de la donnée d’entrée) et b tels que

Y préd =
Ncarac
∑

j=1

a j · x j + b

Durant la phase d’apprentissage, on cherche à minimiser l’erreur (ou la distance) entre la prédiction, pour des entrées

de la base de données, et la sortie connue de la base de données. Il faut donc chercher a1, a2 ... aNcarac
et b pour

minimiser la grandeur J(a1, a2...aNcarac
, b), appelée fonction de coût, définie telle que :

J(a, b) =

√

√

√

√

Ntest
∑

i=1

(ypréd
i − ydata

i )2

=

√

√

√

√

Ntest
∑

i=1

 

Ncarac
∑

j=1

a j · x i, j + b− ydata
i

!2

Où x i, j représente la j-ème caractéristique de la i-ème donnée.

Comme pour la régression linéaire monovariable, on utilise usuellement la méthode de descente de gradient pour

évaluer les paramètres a1, a2 ... aNcarac
et b.

6 Réseau de neurones

Les réseaux de neurones sont basés sur certains concepts vus précédemment. Il permettent de s’adapter à deux nom-

breux problèmes : apprentissage supervisé ou non-supervisé ; problème de classification ou de régression.
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6.1 Structure d’un réseau de neurone

Un réseau de neurones représente un algorithme dont le fonctionnement se rapproche de celui du cerveau humain. Ce

réseau de neurones sera constitué de plusieurs couches de neurones.

Chaque neurone génère une sortie à partir de plusieurs entrées.

On distinguera la couche d’entrée, les couches dites cachées, et la couche de sortie. Les neurones seront connectés

entre eux : la sortie de l’un pourra être l’entrée d’un ou plusieurs autres.

La couche d’entrée permet simplement de "capter" les entrées à intégrer au modèle. La couche de sortie permet

d’exprimer la ou les sorties.

La structure des connexions entre les neurones peut varier d’un modèle à un autre. Nous utiliserons essentiellement

des réseaux dits fully connected où la sortie d’un neurone d’une couche est connectée à tous les neurones de la couche

suivante. Le choix du nombre de neurones dans chaque couche et du nombre de couches est réservé aux spécialistes

des data-sciences.

Si l’on souhaite prédire si une iris est de l’espèce setosa, versicolor ou virginica en fonction de la largeur et de la

longueur d’un pétale, on utilisera un réseau avec :

• Deux entrées : une pour la largeur du pétale et une pour sa longueur ;

• Trois sorties : une pour chaque espèce. Chaque sortie pourra, par exemple, être la probabilité d’obtenir

l’espèce associée à la sortie. Si le triplet des trois sorties (y1, y2, y3), associées respectivement aux espèces

setosa, versicolor et virginica, est (0.0001,0.002, 0.987), on dira que l’espèce observée est probablement

une iris virginica.

On peut imaginer, par exemple, utiliser une couche cachée à trois neurones. Ceci donnerait donc la structure

suivante :

Couche
d'entrée

Couche
cachée

Couche
de sortie

Largeur d'un pétale

Longueur d'un pétale

y1 (setosa)

y2 (versicolor)

y3 (virginica)

Exemple des iris "en classification"

6.2 Fonctionnement d’un neurone

Un neurone fonctionne toujours en deux étapes :

• Calcul de la grandeur z à partir des entrées du neurone, notées x j .

• Génération de la sortie à partir de la fonction d’activation y = Φ(z).
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y (sortie)

x1

xn

x2

...

...

xj

z

Entrées

Calcul
de z

Activation

w
1

w
2

...

wj

...

wn

b

Calcul de z. La grandeur z est une combinaison linéaire des entrées. On exprimera z en fonction :

• des n entrées x j ;

• des poids (pondérations) associés à chacune des entrées w j ;

• du biais, noté b, qui est une valeur constante.

On écrira alors :

z =
n
∑

j=1

w j · x j + b

Fonction d’activation. On écrira ensuite y = Φ(z) où Φ est la fonction d’activation et y la sortie. Il existe de nom-

breuses fonctions d’activation qui seront à choisir en fonction de la sortie attendue (sortie binaire, sortie comprise

dans un intervalle, etc.). Ces fonctions peuvent être non-linéaires ce qui permet une adaptation aisée à de nombreux

problèmes. On donne, ci-dessous, l’évolution de quatre fonctions d’activation classiques :

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
z

0.0

0.2

0.4

0.6

0.8

1.0

y

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
z

0

2

4

6

8

10

y

Fonction échelon Fonction ReLu

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
z

0.0

0.2

0.4

0.6

0.8

1.0

y

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
z

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Fonction sigmoïde Fonction tangente hyperbolique

NOTA : ReLu signifie Rectified Linear Unit ou, en français, Unité Linéaire Rectifiée.
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Choix des poids w j et du biais b. Lors de la création du réseau de neurones, c’est-à-dire au début de la phase

d’apprentissage, les poids et les biais de tous les neurones sont choisis aléatoirement. À la fin de la phase d’apprentissage,

il faut que ces paramètres permettent de prédire correctement la ou les sorties en fonction de la ou des entrées.

Pour choisir ces paramètres, la méthode est similaire à celle utilisée pour une régression linéaire. Elle se décompose en

deux étapes :

• Calcul d’une fonction coût qui dépend de tous les poids et de tous les biais qui apparaissent dans le réseau ;

• Minimisation de cette fonction coût par méthode de descente de gradient.

Reprenons le réseau proposé précédemment.

Couche
d'entrée

Couche
cachée

Couche
de sortie

Largeur d'un pétale

Longueur d'un pétale

y1 (setosa)

y2 (versicolor)

y3 (virginica)

Si l’on souhaite que les sorties soient des probabilités de rencontrer l’une ou l’autre des espèces, celle-ci seront

donc comprises entre 0 et 1. Choisir comme fonction d’activation la fonction sigmoïde semble donc pertinent.

On peut compter 15 poids et 6 biais. Il faut donc optimiser 21 paramètres pour un problème plutôt simple. Il

faut bien comprendre qu’en augmentant le nombre de neurones, le nombre de paramètres à optimiser explose

! Cela rend ces algorithmes très coûteux en temps de calcul durant la phase d’apprentissage et nécessite des

serveurs de calculs très performants. C’est aussi cette explosion du nombre de paramètres qui justifie l’utilisation

de la méthode de descente de gradient plutôt qu’une méthode par résolution de système linéaire classique par

inversion de matrice.

Exemple des iris "en classification"

6.3 Utilisation - paramètres et hyperparamètres

Pour l’utilisateur, la résolution des problèmes mathématiques est complètement cachée. L’important, au niveau qui

nous concerne, est de savoir créer un modèle puis de régler les hyper-paramètres associés.

Mise en œuvre sur Python. On cherche dans le code proposé à créer un modèle permettant d’identifier l’espèce d’iris

à partir de la longueur et de la largeur d’un pétale. Rappelons qu’ici, on souhaite que :

• La couche d’entrée possède 2 neurones. Cela est transparent dans la bibliothèque sklearn parce que la variable

X qui est un tableau avec Ntrain lignes (pour l’apprentissage) possède également 2 colonnes associées automa-

tiquement aux deux couches d’entrée.

• La couche de sortie possède 3 neurones. Cela est également transparent à condition que la sortie soit du bon

format, à savoir Ntrain lignes (pour l’apprentissage) et 3 colonnes associées à la probabilité d’obtenir telle ou

telle espèce. Il faudra donc modifier légèrement le code : pour une iris virginica, associée à l’étiquette 2 dans
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le tableau d’entrée, il faudra créer la liste [0,0,1] (probabilité de 1 d’avoir l’iris de type 2 (rangée à l’indice 2

de la liste)).

Dans les options du modèle associé au réseau de neurones MLPClassifier (un réseau de neurones utilisant une opti-

misation par descente de gradient), on pourra saisir :

• solver=’lbfgs’ : choix du solveur pour l’optimisation des poids et biais.

• activation=’logistic’ : choix des fonctions d’activation (’logistic’ est la fonction sigmoïde).

• hidden_layer_sizes=(3) : choix du nombre de couches cachées et du nombre de neurones associés. Saisir

(4,6,2) à la place de (3) aurait signifier un réseau avec 3 couches cachées : la première avec 4 neurones, la

deuxième avec 6 neurones et la dernière avec 2 neurones.

• random_state=1 : impose un choix aléatoire des poids et biais à l’initialisation.

• learning_rate_init=0.4 : choix du learning rate (ici constant et égal à 0,4).

• max_iter=200 : choix du nombre maximal d’itération (lors de la descente de gradient).
1 import numpy as np ## appel de la biblioth èque numpy
2

3 from lecture_fichier import * ## fonction pour lire le fichier contenant les data
4 long_sepale , larg_sepale , long_petale , larg_petale , type_fleur = lecture_fichier (’iris.csv ’)
5 ## stocke les données liées aux iris dans
6 ## longeurs / largeurs des pétales/sépales
7 ## et espèce d’iris associ ée
8

9 X = [[ long_petale [i], larg_petale [i]] for i in range (0, len( long_petale ))]
10

11 X = np.array(X)
12 Y = []
13 for j in range (0, len( type_fleur )):
14 Yi = [0 ,0 ,0]
15 Yi[ type_fleur [j]] = 1
16 Y. append (Yi) ## Y est un tableau de taille N,3
17

18 from sklearn . model_selection import train_test_split
19 ## Pré paration des données
20 X_train , X_test , Y_train , Y_test = train_test_split (X, Y, shuffle =True , test_size =0.33)
21

22 ## pour importer le modèle des k-NN adapté à la classification
23 from sklearn . neural_network import MLPClassifier
24 model = MLPClassifier ( solver =’lbfgs ’,activation =’logistic ’,hidden_layer_sizes =(3) ,random_state

=1, learning_rate_init =0.4 , max_iter =200) ## Création du modèle avec le nombre de couches et
de neurones

25

26 model.fit(X_train , Y_train ) ## Apprentissage
27

28 Y_pred = model. predict ( X_test ) ## Y_pred est la pré diction du modèle pour les entrées test
X_test

29

30 def num(Y):
31 res = []
32 for j in range (0, len(Y)):
33 i = np. argmax (Y[j])
34 res. append (i)
35 return res
36

37 print (’score = ’,model.score(X_test , Y_test )) ## Score obtenu
38

39 from sklearn . metrics import confusion_matrix
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40 cm = confusion_matrix (num( Y_test ), num( Y_pred )) ## num(Y) est un tableau de taille N rempli des
é tiquettes 0,1 et 2

41 print (’score = ’,model.score(X_test , Y_test )) ## Score obtenu
42 print (’matrice de confusion =’,cm) ## Affichage de la matrice de confusion

Le résultat affiché est le suivant :

score = 0.9

matrice de confusion = [[16 0 0]

[0 18 2]

[0 3 11]]

Commenter les résultats obtenus.
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