Rappels sur espaces probabilisés - exercices

Exercice 1 — Une compagnie d'assurance répartit ses clients en trois classes R_1 , R_2 et R_3 : les bons risques,

les risques moyens, et les mauvais risques. Les effectifs de ces trois classes représentent :

20% de la population totale pour la classe R_1 , 50% pour la classe R_2 , et 30% pour la classe R_3 .

Les statistiques indiquent que les probabilités d'avoir un accident au cours de l'année pour une personne de l'une de ces trois classes sont respectivement de 0.05, 0.15 et 0.30.

- 1. Quelle est la probabilité qu'une personne choisie au hasard dans la population ait un accident dans l'année?
- 2. Si M.Martin n'a pas eu d'accident cette année, quelle est la probabilité qu'il soit un bon risque?

Exercice 2 — Vous êtes directeur de cabinet du ministre de la santé.

Une maladie est présente dans la population, dans la proportion d'une personne malade sur 10000.

- Un responsable d'un grand laboratoire pharmaceutique vient vous vanter son nouveau test de dépistage:
 - si une personne n'est pas malade, le test est positif à 0,1%.

Autorisez-vous la commercialisation de ce test?

• si une personne est malade, le test est positif à 99%.

Exercice 3 — Deux joueurs A et B s'affrontent autour d'un jeu. A joue la première partie, B joue la deuxième,

A joue la troisième, et ainsi de suite. Les deux joueurs jouent 2n parties, et le premier qui gagne une partie a gagné l'ensemble du jeu. On suppose que A a une probabilité $a \in]0,1[$ de gagner une partie donnée, B une probabilité $b \in]0,1[$, et que les parties sont indépendantes les unes des autres.

- 1. Quelle est la probabilité que ni *A* ni *B* ne gagne?
- 2. Quelle est la probabilité que A gagne? que B gagne?
- 3. A quelle condition le jeu est-il équilibré?

Exercice 4 — Un joueur décide de jouer aux machines à sous.

Il va jouer sur deux machines \mathscr{A} et \mathscr{B} qui sont réglées de la façon suivante :

- la probabilité de gagner sur la machine \mathscr{A} est de $\frac{1}{5}$;
- la probabilité de gagner sur la machine \mathscr{B} est de $\frac{1}{10}$

Comme le joueur soupçonne les machines d'avoir des réglages différents, mais ne sait pas laquelle est la plus favorable, il décide d'adopter la stratégie suivante :

- il commence par choisir une machine au hasard;
- après chaque partie, il change de machine s'il vient de perdre, il rejoue sur la même machine s'il vient de gagner.

On définit pour tout $k \ge 1$ les événements suivants :

 G_k : « Le joueur gagne la k-ième partie » et A_k : « La k-ième partie se déroule sur la machine $\mathcal A$ ».

- 1. Déterminer la probabilité de gagner la première partie.
- 2. Déterminer la probabilité de gagner la deuxième partie.
- 3. Sachant que la deuxième partie a été gagnée, quelle est la probabilité que la première partie ait eu lieu sur la machine \mathscr{A} ?
- 4. Soit $k \ge 1$.
 - (a) Exprimer $P(G_k)$ en fonction de $P(A_k)$.
 - (b) Montrer que $P(A_{k+1}) = -\frac{7}{10}P(A_k) + \frac{9}{10}$. (c) En déduire $P(A_k)$ puis $P(G_k)$ en fonction de k.

 - (d) Pour $n \ge 1$, on pose $S_n = \sum_{k=1}^n P(G_k)$. Calculer S_n puis déterminer la limite de $\frac{S_n}{n}$ quand $n \to +\infty$.