Chapitre 8: Espaces probabilisés

En l'absence de précision, n désignera un entier naturel non nul.

1 Ensembles dénombrables

Définition

Un ensemble E est dit **dénombrable** s'il est en bijection avec \mathbb{N} . Autrement dit, E est dénombrable s'il existe une application bijective $f: E \to \mathbb{N}$.

Remarques

- On se limitera principalement dans la suite de ce chapitre (et dans les suivants) à travailler sur des ensembles *finis ou dénombrables*, qu'on appelle aussi ensembles **au plus dénombrables**.
- Un ensemble E est fini ou dénombrable si et seulement si il existe une injection de E dans \mathbb{N} .

Définition

On appelle **description en extension** d'un ensemble fini ou dénombrable E toute description de E sous la forme $E = \{x_n ; n \in \mathbb{N}\}.$

Exemple

Écrire en extension les ensembles : $A = \{n \in \mathbb{Z} \setminus n \in [\sqrt{2}; 2\pi]\}$

et
$$B = \{x \in \mathbb{Q} \setminus \exists (n, p) \in \mathbb{N} \times \mathbb{N}, x = \frac{p}{n} \text{ et } 1 \leqslant p \leqslant 2n \leqslant 7\}$$

Propriété _

Tout ensemble fini ou dénombrable peut être décrit en extension sous la forme $\{x_n ; n \in \mathbb{N}\}$.

Propriété _

 $\mathbb Z$ est dénombrable.

Démonstration :

Propriété _

Soient E et F deux ensembles dénombrables.

Alors, le produit cartésien $E \times F$ est un ensemble dénombrable.

Remarques:

- \mathbb{N}^2 est dénombrable
- Le produit cartésien de deux ensembles au plus dénombrables est au plus dénombrable.

2 Espace probabilisé au plus dénombrable

a) Tribu

Définition

Une famille ${\mathscr A}$ de parties d'un ensemble Ω est appelée **tribu** sur Ω si elle vérifie les trois axiomes suivants :

- 1. $\Omega \in \mathcal{A}$
- 2. pour tout $A \in \mathcal{A}$, $\overline{A} = \Omega \setminus A \in \mathcal{A}$,
- 3. pour toute suite $(A_n)_{n\geqslant 0}$ d'éléments de \mathcal{A} , la réunion $\bigcup_{n=0}^{+\infty} A_n$ appartient à \mathcal{A} .

Vocabulaire : Une tribu est également appelée σ -algèbre (« sigma-algèbre »).

Exemple

Soit $\Omega = \mathbb{N}$. Montrer que $\mathcal{T} = \{\emptyset, \mathbb{N}, A, \overline{A}\}$ où A est un sous-ensemble fixe de \mathbb{N} (par exemple, $A = \{\text{nombres pairs}\}$) est une tribu sur Ω .

Propriété

Si ${\mathscr A}$ est une tribu sur un ensemble Ω , on a les propriétés suivantes :

- $-\emptyset \in A$
- Pour toute famille finie $(A_i)_{1 \leqslant i \leqslant n}$ d'éléments de \mathcal{A} , on a $\bigcup_{1 \leqslant i \leqslant n} A_i \in \mathcal{A}$.
- Pour toute famille finie $(A_i)_{1 \leqslant i \leqslant n}$ d'éléments de \mathcal{A} , on a $\bigcap_{1 \leqslant i \leqslant n} A_i \in \mathcal{A}$.
- Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de A, on a $\bigcap_{n\in\mathbb{N}} A_n \in \mathcal{A}$.
- Pour tout A et tout B appartenant à \mathcal{A} , on a $A \setminus B \in \mathcal{A}$.

Démonstration:

b) Probabilité

Définition _

Soit \mathcal{A} une tribu sur Ω . On appelle **probabilité** sur (Ω, \mathcal{A}) une application $P : \mathcal{A} \to [0, 1]$ telle que :

- 1. $P(\Omega) = 1$,
- 2. pour toute suite $(A_n)_{n \in \mathbb{N}}$ d'évènements **incompatibles** (c'est-à-dire disjoints deux à deux),

$$P\left(\bigcup_{n=0}^{+\infty} A_n\right) = \sum_{n=0}^{+\infty} P(A_n)$$

 σ -additivité

Remarque: On peut seulement supposer que P est à valeurs dans \mathbb{R}_+ .

Le fait que ces valeurs soient effectivement dans [0,1] peut se déduire des deux axiomes de la définition.

Vocabulaire : On parle souvent de **loi de probabilité** au lieu de probabilité pour désigner l'application *P*.

Exemple

Soit *a* ∈]0,1[.

1. Démontrer qu'il existe une unique probabilité sur \mathbb{N} telle que, pour tout $n \in \mathbb{N}$, $P(\{n\}) = (1-a)a^n$.

2. On considère les deux événements $A = \{2k : k \in \mathbb{N}\}$ et $B = \{2k + 1 : k \in \mathbb{N}\}$. Calculer P(A) et P(B). Les événements A et B sont-ils incompatibles? indépendants?

Définition

On appelle **espace probabilisé** un triplet (Ω, \mathcal{A}, P) où Ω est un ensemble, \mathcal{A} est une tribu sur Ω et P une probabilité sur (Ω, \mathcal{A}) .

Remarque: Cette définition est compatible avec la définition d'espace probabilisé fini.

Dans tout ce qui suit, (Ω, \mathcal{A}, P) désigne un espace probabilisé.

Propriétés

- 1. $P(\emptyset) = 0$
- 2. Pour toute famille finie $(A_i)_{1 \le i \le n}$ d'éléments disjoints deux à deux de \mathscr{A} , on a : $P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i)$
- 3. Si A et B appartiennent à \mathcal{A} et si $A \subset B$, on a $P(A) \leq P(B)$ et $P(B \setminus A) = P(B) P(A)$
- 4. Pour tout $A \in \mathcal{A}$, on a : $P(\overline{A}) = 1 P(A)$
- 5. $\forall (A,B) \in \mathcal{A}^2$: $P(A \setminus B) = P(A) P(A \cap B)$ et $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Propriétés

6. pour toute suite **croissante** $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} (c'est-à-dire telle que $\forall n\in\mathbb{N}$, $A_n\subset A_{n+1}$):

$$P\left(\bigcup_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} P(A_n)$$
 continuité croissante

7. pour toute suite **décroissante** $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} (c'est-à-dire telle que $\forall n\in\mathbb{N}$, $A_{n+1}\subset A_n$):

$$P\left(\bigcap_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} P(A_n)$$
 continuité décroissante

8. si
$$(A_n)_{n\in\mathbb{N}}$$
 est une suite d'éléments de \mathcal{A} , alors $P\left(\bigcup_{n=0}^{+\infty}A_n\right)\leqslant \sum_{n=0}^{+\infty}P(A_n)$

sous-additivité

où
$$\sum_{n=0}^{+\infty} P(A_n)$$
 désigne la somme de la série $\sum_{n\geqslant 0} P(A_n)$ si elle converge, et $+\infty$ sinon.

Démonstrations:

Exemple

On considère une urne qui contient deux boules vertes, une boule rouge, et dans laquelle on effectue une infinité de tirages successifs avec remise. On définit E l'événement : « On obtient au moins une boule rouge ». On souhaite calculer P(E) par trois méthodes différentes.

Pour cela, on note pour tout $n \in \mathbb{N}^*$ les événements suivants :

- V_n l'événement « on obtient une boule verte au n-ème tirage » , et R_n son complémentaire.
- A_n : « on obtient la première boule rouge au n-ème tirage ».
- B_n : « on obtient n boules vertes au cours des n premiers tirages ».
- C_n : « on obtient au moins une boule rouge lors des n premiers tirages ».
- 1. Calculer $P(A_n)$, $P(B_n)$ et $P(C_n)$.

2. Exprimer *E* à l'aide des événements A_n , $n \in \mathbb{N}^*$, et en déduire P(E).

3. Exprimer E à l'aide des événements B_n , $n \in \mathbb{N}^*$, et en déduire P(E).

4. Exprimer *E* à l'aide des événements C_n , $n \in \mathbb{N}^*$, et en déduire P(E).

5. Que peut-on en déduire sur *E*?

3 Conditionnement et indépendance

a) Probabilités conditionnelles

Définition -

Si A et B sont deux évènements tels que P(B) > 0, on appelle **probabilité conditionnelle de** A **sachant** B le réel : $P_B(A) = P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

_ Propriété _

Soit $B \in \mathcal{A}$ tel que P(B) > 0. Alors, l'application $P_B : \mathcal{A} \to [0,1]$ est une probabilité sur (Ω, \mathcal{A}) .

Démonstration:

Propriété: formule des probabilités composées _____

Soient $A_1, ..., A_n$ des évènements tels que $P(A_1 \cap \cdots \cap A_n) > 0$. Alors :

$$P(A_1 \cap \dots \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \dots P(A_n|A_1 \cap \dots \cap A_{n-1})$$

Dáfinition

Soit $(A_n)_{n\in\mathbb{N}}$ une famille dénombrable d'évènements disjoints deux à deux (autrement dit incompatibles) telle que $\bigcup_{n=0}^{+\infty}A_n=\Omega$. Une telle famille est appelée **système complet (dénombrable) d'évènements**.

Propriété: formule des probabilités totales _

Si $(A_n)_{n\in\mathbb{N}}$ est un système complet d'évènements, alors pour tout $B\in\mathcal{A}$, la série $\sum P(B\cap A_n)$ converge et

$$P(B) = \sum_{n=0}^{+\infty} P(B \cap A_n) = \sum_{n=0}^{+\infty} P(B|A_n)P(A_n)$$

Remarques:

- L'expression $P(B|A_n)$ n'est *a priori* définie que si $P(A_n) > 0$. On adopte cependant dans la formule ci-dessus la convention suivante : si $P(A_n) = 0$, on a $P(B|A_n)P(A_n) = 0$.
- Cette formule reste valable avec une famille $(A_i)_{i \in \mathbb{N}}$ d'évènements disjoints deux à deux telle que $\mathbb{P}(\bigcup_{i=0}^{+\infty} A_i) = 1$ (on parle de système *quasi-complet* d'évènements).

Propriété: formule de Bayes pour deux évènements

Soient deux évènements $A, B \in \mathcal{A}$ de probabilités non nulles. Alors :

$$P(A \mid B) = P(B \mid A) \frac{P(A)}{P(B)}$$

La Théorème : formule de Bayes pour un système complet d'évènements .

Soit $(A_n)_{n\in\mathbb{N}}$ un système complet d'évènements tels que $P(A_n)>0$ pour tout $n\in\mathbb{N}$. On a alors, pour tout $B\in\mathcal{A}$ de probabilité non nulle et pour tout $n\in\mathbb{N}$:

s, pour tout
$$B \in \mathcal{A}$$
 de probabilité non nulle et pour tout $n \in \mathbb{N}$

$$P(A_n|B) = \frac{P(B|A_n)P(A_n)}{\sum_{n=0}^{+\infty} P(B|A_n)P(A_n)}$$

Exemple

Pour chaque entier $n \in \mathbb{N}$, on dispose d'une urne U_n contenant n! jetons, chacun numéroté de 1 à n!. L'expérience aléatoire consiste à :

- choisir un entier k avec une probabilité λx^k , où $x \in]0,1[$.
- une fois k choisi, extraire un jeton de l'urne U_k .

On admet le résultat suivant : $\forall x \in \mathbb{R}, \ e^x = \sum_{n=1}^{+\infty} \frac{x^n}{n!}$

1. Comment choisir λ pour que cela définisse une probabilité sur $\mathbb N$?

2. Quelle est la probabilité de tirer le jeton numéro 1, peu importe l'urne ?

3. À l'issue de l'expérience, on a tiré le numéro 1. Quelle est la probabilité qu'il provienne de U_2 ?

b) Indépendance d'évènements

Définition -

Deux évènements $A \in \mathcal{A}$ et $B \in \mathcal{A}$ sont **indépendants** si : $P(A \cap B) = P(A)P(B)$

Propriété _____

Soient $A \in \mathcal{A}$ et $B \in \mathcal{A}$.

Si A et B sont indépendants, alors les évènements A et \overline{B} d'une part, \overline{A} et B d'autre part, et enfin \overline{A} et \overline{B} sont indépendants.

_ Propriété _____

Soient $A \in \mathcal{A}$ et $B \in \mathcal{B}$.

Si P(B) > 0, alors l'indépendance de A et B équivaut à $P(A \mid B) = P(A)$.

_ Définition ____

Soient $(A_1, ..., A_n) \in \mathcal{A}^n$ une famille d'évènements.

On dit que les évènements sont mutuellement indépendants si

Pour tout $k \in [[1, n]]$, pour tous $i_1, ..., i_k \in [[1, n]]$ distincts, $\mathbb{P}(A_{i_1} \cap \cdots \cap A_{i_k}) = \mathbb{P}(A_{i_1}) \times \cdots \times \mathbb{P}(A_{i_k})$

 \wedge Si n évènements sont mutuellement indépendants, alors ils sont indépendants deux à deux, mais la réciproque est fausse.

Exemple

Soient A_1, \ldots, A_n n événements d'un espace probabilisé (Ω, P) .

On les suppose mutuellement indépendants et de probabilités respectives $p_i = P(A_i)$.

Donner une expression simple de $P(A_1 \cup \cdots \cup A_n)$ en fonction de p_1, \ldots, p_n .

Application : on suppose qu'une personne est soumise à n expériences indépendantes les unes des autres et qu'à chaque expérience, elle ait une probabilité p d'avoir un accident. Quelle est la probabilité qu'elle ait au moins un accident?