Rappels sur espaces probabilisés

n désigne un entier naturel non nul.

Dans le cas où E désigne un ensemble fini, on note |E| le cardinal de E.

1 Modélisation probabiliste

Définitions

- Une **expérience aléatoire** est une expérience dont on ne peut prédire avec certitude le résultat, qu'on considère dépendre du « hasard ».
- L'étude d'une expérience aléatoire commence par la description des résultats possibles, également appelés **éventualités**.
- L'ensemble des résultats possibles, autrement dit l'ensemble des éventualités, est appelé univers.
 Il est généralement noté Ω.
- Un **évènement aléatoire** est un évènement qui peut se produire ou non, suivant le résultat de l'expérience aléatoire. On le représente par l'ensemble des éventualités qui le réalisent.
- On dira qu'une famille finie $(A_i)_{1 \le i \le n}$ d'évènements forme un **système complet d'évènements** si c'est une partition de Ω , c'est-à-dire si les A_i sont deux à deux disjoints et recouvrent Ω :

$$- \bigcup_{i=1}^{n} A_i = \Omega.$$

$$- \forall (i,j) \in [[1,n]]^2, i \neq j \implies A_i \cap A_j = \emptyset.$$

• Un évènement de probabilité nulle est appelé évènement négligeable.

2 Probabilité sur un ensemble Ω fini

Dans cette section, Ω désigne un ensemble fini et non vide.

a) Notion de probabilité sur un ensemble fini

Définition

On appelle **probabilité** sur Ω toute application $\mathbb{P}: \mathcal{P}(\Omega) \to [0,1]$ qui vérifie :

$$--\mathbb{P}(\Omega)=1$$
;

— si A et B sont des évènements incompatibles (c'est-à-dire si $A \cap B = \emptyset$), alors $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.

On dit alors que $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ est un espace probabilisé fini, et pour tout évènement $A \in \mathcal{P}(\Omega)$, on appelle **probabilité de** A le nombre $\mathbb{P}(A) \in [0,1]$.

Cas particulier de la probabilité uniforme sur un ensemble fini :

Définition

On considère une expérience aléatoire d'univers Ω et on suppose que les éventualités sont équiprobables. Soit A une partie de Ω . La probabilité que l'évènement A soit réalisé à l'issue de l'expérience aléatoire est donnée par :

$$\mathbb{P}(A) = \frac{\operatorname{Card}(A)}{\operatorname{Card}(\Omega)} = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}}.$$

Dans tout ce qui suit, $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ désigne un espace probabilisé fini.

b) Propriétés des probabilités finies

Théorème -

Pour tous évènements A et B de $\mathcal{P}(\Omega)$, on a :

1. $\mathbb{P}(\overline{A}) = 1 - \mathbb{P}(A)$.

(En particulier :
$$\mathbb{P}(\emptyset) = 1 - \mathbb{P}(\Omega) = 0$$
.)

- 2. $\mathbb{P}(A \setminus B) = \mathbb{P}(A) \mathbb{P}(A \cap B)$.
- 3. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- 4. $A \subset B \Longrightarrow \mathbb{P}(A) \leqslant \mathbb{P}(B)$ (on parle de *croissance* de la probabilité).
- 5. De plus, si $(A_i)_{1 \leqslant i \leqslant n}$ est une famille finie d'évènements disjoints, alors $\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}(A_i)$.

Théorème

Soit $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ un espace probabilisé fini. Pour tout évènement $A \in \mathcal{P}(\Omega)$, $\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\})$.

Remarque : Ce résultat montre qu'une probabilité finie est entièrement déterminée par la donnée des probabilités des évènements élémentaires.

c) Construction d'une probabilité sur un ensemble fini

Théorème .

Soient $\Omega = \{\omega_1, \dots, \omega_n\}$ un ensemble fini de cardinal $n \in \mathbb{N}^*$, et (p_1, \dots, p_n) un n-uplet de réels positifs. Il existe une probabilité \mathbb{P} telle que pour tout $i \in [[1, n]], \mathbb{P}(\{\omega_i\}) = p_i$ si et seulement si $p_1 + \dots + p_n = 1$. Cette probabilité est alors donnée par la formule $\forall A \in \mathcal{P}(\Omega), \mathbb{P}(A) = \sum_{\{i \mid \omega_i \in A\}} p_i$.

Remarque : Dans le cas où les évènements élémentaires sont équiprobables, la probabilité est alors la probabilité uniforme sur Ω .

Exemple -1

On dispose d'un dé pipé tel que la probabilité d'obtenir une face soit proportionnelle au chiffre porté par cette face. On lance le dé pipé.

- 1. Donner un espace probabilisé modélisant l'expérience aléatoire.
- 2. Quelle est la probabilité d'obtenir un chiffre pair?

Exemple -2

Soit $n \ge 1$.

Déterminer une probabilité sur $\{1,...,n\}$ telle que la probabilité de $\{1,...,k\}$ soit proportionnelle à k^2 .

La probabilité est donc définie par $P(\{k\}) = \frac{2k-1}{n^2}$. On vérifie aisément que réciproquement, cette probabilité vérifie que $P(\{1,\dots,k\})$ est proportionnelle à k^2 .

On cherche une probabilité P telle que $P(\{1,\ldots,k\})=\lambda k^2$. On a alors, pour $k=1,\ldots,n$, $P(\{k\})=P(\{1,\ldots,k\})-P(\{1,\ldots,k-1\})=\lambda k^2-\lambda (k-1)^2=2\lambda k-\lambda$. On va déterminer λ en remarquant que $P(\{1,\ldots,n\})=1$, ce qui entraîne $\lambda n^2=1$ $\Longrightarrow \lambda=\frac{1}{n^2}$.

Correction de l'exemple 2:

On a
$$P(\{\text{obtenir un chiffre pair}\}) = P(\{2\}) + P(\{4\}) + P(\{4\}) + P(\{6\}) = \frac{12}{7}$$
.

Mais, $P(\{1\}) + P(\{2\}) + P(\{3\}) + P(\{4\}) + P(\{5\}) + P(\{6\}) = 21\lambda$. On doit donc avoir $\lambda = \frac{1}{21}$.

Soit P la probabilité modélisant l'expérience aléatoire. D'après l'énoncé : $P(\{i\}) = \lambda \times i$. Le problème est de déterminer λ . Pour cela, on remarque que $P(\{1\}) + P(\{2\}) + P(\{4\}) + P(\{5\}) + P(\{5\}) = 1$.

Correction de l'exemple 1 : L'univers le plus naturel à associer à l'expérience est $\Omega = \{1, ..., 6\}$.

3 Probabilités conditionnelles

Définition

Soit $B \in \mathcal{P}(\Omega)$ un évènement non négligeable. Pour tout évènement $A \in \mathcal{P}(\Omega)$, on définit la **probabilité** conditionnelle de A sachant B par : $\mathbb{P}_B(A) = \mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

Propriété __

Soit $B \in \mathcal{P}(\Omega)$ un évènement non négligeable. L'application $\mathbb{P}_B : \mathcal{P}(\Omega) \to [0,1]$ qui à tout évènement $A \in \mathcal{P}(\Omega)$ associe $\mathbb{P}_B(A)$ défini comme ci-dessus, est une probabilité sur Ω .

Corollaire

Pour tous les évènements A et B tels que $\mathbb{P}(B) > 0$, $\mathbb{P}(A \cap B) = \mathbb{P}(B) \times \mathbb{P}_B(A)$

Propriété : formule des probabilités composées

Soient $(A_i)_{1 \le i \le n}$ une famille d'évènements tels que $\mathbb{P}(A_1 \cap \cdots \cap A_{n-1}) \ne 0$. Alors

$$\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}\right) = \mathbb{P}(A_{1}) \times \mathbb{P}(A_{2} \mid A_{1}) \times \cdots \mathbb{P}(A_{n} \mid A_{1} \cap \cdots \cap A_{n-1})$$

Propriété : formule des probabilités totales _

Soient $(A_i)_{1 \le i \le n}$ un système complet d'évènements. Pour tout évènement $B \in \mathcal{P}(\Omega)$,

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B \cap A_i) = \sum_{i=1}^{n} \mathbb{P}(A_i) \times \mathbb{P}_{A_i}(B)$$

Propriété : formule de BAYES .

Soient $(A_i)_{1 \le i \le n}$ un système complet d'évènements.

Pour tout évènement B non négligeable, et pour tout $j \in [[1, n]]$,

$$\mathbb{P}(A_j \mid B) = \frac{\mathbb{P}(A_j) \times \mathbb{P}(B \mid A_j)}{\sum_{i=1}^n \mathbb{P}(A_i) \times \mathbb{P}(B \mid A_i)}$$

Remarque: Le cas de deux évènements est à connaître tout particulièrement.

4 Indépendance

Définition

Deux évènements A et B sont dits **indépendants** — pour la probabilité \mathbb{P} — si $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$ En particulier, si $\mathbb{P}(B) \neq 0$, A et B sont indépendants si et seulement si $\mathbb{P}_B(A) = \mathbb{P}(A)$.

_ Propriété _

Soient A, B deux évènements indépendants. Alors :

- 1. Les évènements A et \overline{B} sont indépendants.
- 2. Les évènements \overline{A} et B sont indépendants.
- 3. Les évènements \overline{A} et \overline{B} sont indépendants.

∧ Il ne faut pas confondre incompatibles et indépendants.

En particulier, deux évènements incompatibles de probabilités non nulles ne sont pas indépendants.

Définition

Soient $(A_1,...,A_n) \in \mathcal{P}(\Omega)^n$ une famille d'évènements. On dit que les évènements sont **mutuellement indépendants** si, pour tout $k \in [[1,n]]$, pour tous $i_1,...,i_k \in [[1,n]]$ distincts,

$$\mathbb{P}(A_{i_1} \cap \cdots \cap A_{i_k}) = \mathbb{P}(A_{i_1}) \times \cdots \times \mathbb{P}(A_{i_k})$$

∧ Des événements mutuellement indépendants sont indépendants deux à deux mais la réciproque est fausse.

Correction de l'exemple 3 : On a alors :
$$\mathbb{P}(A) = \frac{1}{2}$$
, $\mathbb{P}(B) = \frac{1}{2}$, $\mathbb{P}(C) = \frac{1}{2}$, $\mathbb{P}(C) = \frac{1}{2}$, $\mathbb{P}(A \cap B) = \frac{1}{4} = \mathbb{P}(A) \times \mathbb{P}(B)$, $\mathbb{P}(A \cap C) = \frac{1}{4} = \mathbb{P}(A) \times \mathbb{P}(C)$, $\mathbb{P}(B \cap C) = \frac{1}{4} = \mathbb{P}(B) \times \mathbb{P}(C)$ donc les événements A, B et C sont bien deux à deux indépendants.

Par ailleurs : $P(A \cap B \cap C) = 0$ donc les événements A, B et C ne sont pas mutuellement indépendants

Correction de l'exemple 4:

- 1. Il s'agit d'une probabilité uniforme, en notant Ω l'ensemble des pièces, on a $\mathbb{P}(B) = \frac{|B|}{|\Omega|} = \frac{2}{3}$.
- 2. On applique les formules des probabilités totales et des probabilités composées et on trouve $\mathbb{P}(P) = \mathbb{P}(P \cap B) + \mathbb{P}(P \cap \overline{B}) = \mathbb{P}(B) \times \mathbb{P}_B(P) + \mathbb{P}(\overline{B}) \mathbb{P}_{\overline{B}}(P) = \frac{2}{3} \times \frac{1}{2} + \left(1 \frac{2}{3}\right) \times 0 = \frac{1}{3}$
- 3. Dans le cas d'une pièce « normale », on est ramené au cas de n lancers indépendants d'une pièce non truquée, d'où, d'après la formule des probabilités composées : $\mathbb{P}_B(F_n) = \left(\frac{1}{2}\right)^n = \frac{1}{2^n}$
 - Dans le cas de la pièce truquée, on n'obtient que des faces d'où $\mathbb{P}_{\overline{B}}(F_n)=1$.

Ce qui permet d'écrire, d'après la formule des probabilités totales : $\mathbb{P}(F_n) = \mathbb{P}(B)\mathbb{P}_B(F_n) + \mathbb{P}(\overline{B})\mathbb{P}_{\overline{B}}(F_n) = \frac{1}{3}\left(1 + \frac{1}{2^{n-1}}\right)$

- 4. On applique la formule de Bayes : $\mathbb{P}_{F_n}(\overline{B}) = \frac{\mathbb{P}(\overline{B})\mathbb{P}_{\overline{B}}(F_n)}{\mathbb{P}(F_n)} = \frac{\frac{1}{3}}{\frac{1}{3}\left(1 + \frac{1}{2^{n-1}}\right)} = \frac{1}{1 + \frac{1}{2^{n-1}}} = \frac{2^{n-1}}{1 + 2^{n-1}}$
- 5. Si ces événements étaient mutuellement indépendants, ils seraient deux à deux indépendants et en particulier f_1 et f_2 seraient indépendants.

Or:
$$\mathbb{P}(f_1) = \mathbb{P}(f_2) = \frac{2}{3} \times \frac{1}{2} + \frac{1}{3} \times 1 = \frac{2}{3}$$
 et: $\mathbb{P}(f_1 \cap f_2) = \mathbb{P}(F_2) = \frac{2}{3} \times \left(\frac{1}{2}\right)^2 + \frac{1}{3} \times 1 = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$.

On a donc : $\mathbb{P}(f_1 \cap f_2) = \mathbb{P}(f_1) \times \mathbb{P}(f_2) = \left(\frac{2}{3}\right)^2 = \frac{4}{9} \neq \frac{2}{3}$. ce qui prouve que f_1 et f_2 ne sont pas indépendants.

5. Les événements $(f_k)_{1\leqslant k\leqslant n}$ sont-ils mutuellement indépendants ?

la pièce truquée?

- 4. Soit $n \in \mathbb{N}^*$ Sachant que l'on a obtenu « Face » au n premiers lancers, quelle est la probabilité d'avoir pris
 - 3. Soit $n \in \mathbb{N}^*$ quelle est la probabilité de l'événement F_n ?
 - 2. Quelle est la probabilité de l'événement P?
 - 1. Déterminer la probabilité de l'événement B?

Vous justifierez au mieux vos résultats notamment en indiquant les noms des propriétés utilisées.

 \mathbf{E}^{u} : « on obtient « Face » à chacun des n lancers. »

P: « On obtient « Pile » au premier lancer »; pour $1 \le k \le n$: $f_k:$ « on obtient « Face » au k-ième lancer. »

On considère les événements suivants : B : « la pièce prise est normale » ;

On prend une pièce au hasard dans l'urne et on procède à n lancers indépendants de cette pièce.

une face « Face », la troisième, truquée, possède deux faces « Face ».

Soit $n \in \mathbb{N}$, une urne possède trois pièces équilibrées. Deux d'entre elles sont normales avec une face « Pile » et

Exemple – 4

dants

et C = « On obtient la même chose aux 2 lancers ». Montrer que les événements A, B et C sont donc 2 à 2 indépendants, mais ne sont pas mutuellement indépen-

 $A: {\rm CO}$ obtient pile au $1^{\rm er}$ lancer » ; $B={\rm cO}$ obtient face au $2^{\rm eme}$ lancer »

On lance 2 fois une pièce de monnaie. On considère les événements suivants :

Exemple - 3