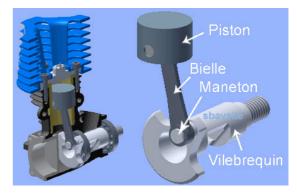
TD3 - Pendulage de bielle

Mise en situation et présentation

L'équilibrage d'un moteur à combustion interne (moteur à essence) nécessite la connaissance des caractéristiques d'inertie des pièces qui le constituent. Notamment de la bielle qui fait le lien entre le piston et le vilebrequin.

Cette bielle est liée en rotation à son pied au vilebrequin et à sa tête au piston.



Objectif

Le but de l'exercice est de déterminer la position du centre de gravité de la bielle et son moment d'inertie par rapport à un axe passant par ce centre de gravité et parallèle à l'axe du vilebrequin.

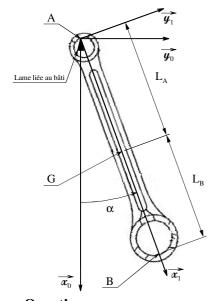
Expérimentation

Pour cela on fait osciller (avec un angle faible) la bielle successivement en A et B sur une « lame » en créant un contact linéaire rectiligne (avec adhérence) de normale $\overrightarrow{x_0}$ et de direction $\overrightarrow{z_0}$. Les points A et B sont situés sur l'axe de la bielle et sur les cylindres des perçages en tête et pied de bielle.

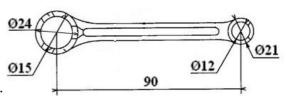
La mesure des périodes d'oscillation nous donne :

 \mathcal{F} Autour de l'axe $(A, \overline{z_1})$: $T_A = 0.575 \text{ s}$

 \mathcal{F} Autour de l'axe (B, $\overline{z_1}$): $T_B = 0.569 \text{ s}$



Paramétrage



Dimensions de la bielle :

Le repère Galiléen lié à la lame est : $R_0 = (O, \overline{x_0}, \overline{y_0}, \overline{z_0})$.

La bielle est un solide S auquel est lié le repère $R_1 = (O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$.

On note:

 \mathcal{F} m = 37.10⁻³ kg la masse de la bielle et G son centre de gravité.

 \mathcal{F} J_G son moment d'inertie par rapport à l'axe (G, $\overrightarrow{z_1}$).

 $^{\text{\tiny GP}}$ L₀ La longueur telle que : L₀ = AB = L_A + L_B = 103,5 mm

$$\overrightarrow{AG} = L_A \cdot \overrightarrow{x_1}$$
 et $\overrightarrow{GB} = L_B \cdot \overrightarrow{x_1}$

- Questions
- 1- On pose J_A et J_B les moments d'inertie de la bielle par rapport aux axes $(A, \overline{z_1})$ et $(B, \overline{z_1})$. Ecrire les équations différentielles des oscillations de la bielle autour des axes $(A, \overline{z_1})$ et $(B, \overline{z_1})$. En déduire les pulsations ω_A et ω_B des ces oscillations en fonction de m, L_A , L_B , J_A , J_B . et g (accélérations de pesanteur : $g = 9.81 \text{ m.s}^{-2}$)
- **2-** En déduire deux équations avec m, g, L_0 , ω_A , ω_B ne faisant intervenir que les deux inconnues L_A et J_G . Et enfin, en déduire L_A en fonctions de m, g, L_0 , ω_A et ω_B .
- 3- En utilisant les résultats de la mesure des périodes d'oscillation (T_A et T_B) en déduire les valeurs numériques de L_A , L_B et J_G .
- **4-** Retrouver ce résultat en supposant que la bielle peut se décomposer en 3 volumes homogènes simples de masse m_1 , m_2 (pour les cylindres creux) et m_3 pour le parallélépipède rectangle.

