Pendulage de bielle : Corrigé

1- Equations différentielles et pulsations des oscillations

Dans le cas d'une oscillation autour de l'axe $(A, \overline{z_1})$

On isole la bielle. Bilan des Actions mécaniques Extérieures :

- Poids de la bielle : Force $\overrightarrow{P} = \text{m.g. } \overrightarrow{x_0}$ appliquée en G
- ${}^{\mbox{\tiny \ensuremath{\not\sim}}}$ Action de la lame sur la bielle : Force $\overrightarrow{F_A}$ appliquée en A

Théorème du Moment dynamique en A en projection sur $\overline{z_0}$:

$$\begin{split} \overrightarrow{AG} \wedge \overrightarrow{P} \cdot \overrightarrow{z_0} + \overrightarrow{AA} \wedge \overrightarrow{F_A} \cdot \overrightarrow{z_0} &= J_A \cdot \ddot{\alpha} \\ L_A \cdot \overrightarrow{x_1} \wedge m.g. \overrightarrow{x_0} \cdot \overrightarrow{z_0} + 0 &= J_A \cdot \ddot{\alpha} \\ - m.g.L_A.sin \alpha &= J_A \cdot \ddot{\alpha} \end{split}$$

L'angle α étant faible on en déduit l'équation différentielle linéaire :

$$\ddot{\alpha} + \frac{\text{m.g.L}_A}{J_A} \cdot \alpha = 0$$
avec: $\omega_A = \sqrt{\frac{\text{m.g.L}_A}{J_A}}$

Cette équation a une solution de la forme : $\alpha(t) = A.\sin(\omega_A.t + \phi)$

$$\alpha(t) = A.\sin(\omega_A.t + \varphi)$$

vec:
$$\omega_{A} = \sqrt{\frac{m.g.L_{A}}{J_{A}}}$$

Donc pour l'oscillation autour de l'axe $(A, \overline{z_1})$ la pulsation est de :

$$\omega_{\rm A} = \sqrt{\frac{{\rm m.g.L}_{\rm A}}{{\rm J}_{\rm A}}}$$

De la même manière pour l'oscillation autour de l'axe $(B, \overline{z_1})$ on obtient :

L'équation différentielle :

$$\ddot{\alpha} + \frac{\text{m.g.L}_{\text{B}}}{\text{J}_{\text{B}}} \cdot \alpha = 0$$
 Et donc la pulsation : $\omega_{\text{B}} = -1$

$$\omega_{\rm B} = \sqrt{\frac{m.g.L_{\rm B}}{J_{\rm B}}}$$

2- Position du centre de gravité

 $J_{A}.\omega_{A}^{2} = m.g.L_{A}$ $J_{B}.\omega_{B}^{2} = m.g.L_{B}$ Des expressions des deux pulsations on en déduit les deux équations :

Or le théorème de huygens permet d'affirmer que : $| J_A = J_G + m L_A^2$ $I_B = I_C + m L_B^2$

D'autre part ayant G appartenant au segment [AB], on a : $L_B = L_0 - L_A$ Par substitution dans les deux première équations on obtient :

$$J_{G}.\omega_{A}^{2} + m.L_{A}^{2}.\omega_{A}^{2} = m.g.L_{A}$$

$$J_{G}.\omega_{B}^{2} + m.(L_{0} - L_{A})^{2}.\omega_{B}^{2} = m.g.(L_{0} - L_{A})$$
(2)

Par une combinaison linéaire de ces équations : $(1).\omega_B^2 - (2).\omega_A^2$ on obtient :

$$\begin{split} &m.L_{A}{}^{2}.\omega_{A}{}^{2}.\omega_{B}{}^{2}-m.(L_{0}-L_{A})^{2}.\omega_{B}{}^{2}.\omega_{A}{}^{2}=m.g.L_{A}.\omega_{B}{}^{2}-m.g.(L_{0}-L_{A}).\omega_{A}{}^{2}\\ &m.(L_{A}{}^{2}-L_{A}{}^{2}-L_{0}{}^{2}+2.L_{0}.L_{A}).\omega_{B}{}^{2}.\omega_{A}{}^{2}.=m.(g.L_{A}.\omega_{B}{}^{2}-g.L_{0}.\omega_{A}{}^{2}+g.L_{A}.\omega_{A}{}^{2})\\ &2.L_{0}.\omega_{B}{}^{2}.\omega_{A}{}^{2}.L_{A}-L_{0}{}^{2}.\omega_{B}{}^{2}.\omega_{A}{}^{2}=g.(\omega_{A}{}^{2}+\omega_{B}{}^{2}).L_{A}-g.L_{0}.\omega_{A}{}^{2}\\ &g.L_{0}.\omega_{A}{}^{2}-L_{0}{}^{2}.\omega_{B}{}^{2}.\omega_{A}{}^{2}=L_{A}.(g.(\omega_{A}{}^{2}+\omega_{B}{}^{2})-2.L_{0}.\omega_{B}{}^{2}.\omega_{A}{}^{2}) \end{split}$$

Soit finalement:

$$L_{A} = \frac{g.L_{0}.\omega_{A}^{2} - L_{0}^{2}.\omega_{B}^{2}.\omega_{A}^{2}}{g.(\omega_{A}^{2} + \omega_{B}^{2}) - 2.L_{0}.\omega_{B}^{2}.\omega_{A}^{2}}$$

3- Applications numériques

On sait que : $\omega_A = \frac{2.\pi}{T_A}$ et : $\omega_B = \frac{2.\pi}{T_B}$ avec : $T_A = 0.575$ s et :

 $T_B = 0.569 \text{ s}$

On obtient donc: $\omega_A = 10.93 \text{ rad.s}^{-1}$ et: $\omega_B = 11.04 \text{ rad.s}^{-1}$

D'autre part : $L_0 = 103.5 \text{ mm} = 0.1035 \text{ m}$ et : $g = 9.81 \text{ m.}^{-2}$

Ce qui nous donne après application numérique : $L_A = 0.0537 \text{ m} = 53.7 \text{ mm}$

En reprenant l'équation (1), on obtient : $\mathbf{J}_{G} = \frac{\mathbf{m.g.L_{A}}}{\omega_{\Lambda}^{2}} - \mathbf{m.L_{A}}^{2} \quad \text{avec} : \quad \mathbf{m} = 37.10^{-3} \text{ kg}$

Ce qui nous donne après application numérique : $J_G = 5,65.10^{-5} \text{ kg.m}^2$

Enfin, on a: $L_B = L_0 - L_A$ Soit: $L_B = 49.8 \text{ mm}$

4- Modèle volumique simplifié et homogène

Calculons la masse volumique du matériau.

Le volume total est de : $V_T = 13.\pi \cdot (12^2 - 7.5^2) + 13.\pi \cdot (10.5^2 - 6^2) + 5 \times 70 \times 14 = 11.516 \text{ mm}^3$

Ce qui donne une masse volumique de : $\rho = \frac{m}{V_T} = \frac{37}{11516} = 3,213.10^{-3} \text{ g/mm}^{-3} = 3213 \text{ kg.m}^{-3}$

Calculons la masse de chacun des 3 volumes homogène simple :

Cylindre creux de pied de bielle : $m_1 = 13.\pi \cdot (12^2 - 7.5^2) \times 3.213.10^{-3} = 11.52 \text{ g}$

Cylindre creux de tête de bielle : $m_2 = 13.\pi \cdot (12^2 - 7.5^2) \times 3.213.10^{-3} = 9.74 \text{ g}$

Parallélépipède entre le pied et la tête : $m_3 = 70 \times 14 \times 5 \times 3,213.10^{-3} = 15,74 \text{ g}$

Déterminons la position du centre d'inertie :

Le centre de gravité est le barycentre des points G_1 , G_2 et G_3 centres de gravité de chacun des 3 volumes simples affectés des coefficients m_1 , m_2 et m_3 masses de chacun des 3 volumes simples.

On a donc : $(m_1 + m_2 + m_3).\overrightarrow{AG} = m.\overrightarrow{AG} = m_1.\overrightarrow{AG_1} + m_2.\overrightarrow{AG_2} + m_3.\overrightarrow{AG_3}$

Avec: $\overrightarrow{AG} = L_A$. $\overrightarrow{x_1}$ $\overrightarrow{AG_1} = (6+44+46)$. $\overrightarrow{x_1}$ $\overrightarrow{AG_2} = 6$. $\overrightarrow{x_1}$ $\overrightarrow{AG_3} = (6+44)$. $\overrightarrow{x_1}$

On a donc: $L_A = \frac{11,52 \times 96 + 9,74 \times 6 + 15,74 \times 50}{37} = 52,7 \text{ mm}$

Déterminons les moments d'inertie des 3 volumes simples par rapport aux axes $(G_i, \overline{z_0})$

Cylindre creux de pied de bielle : $J_1 = \frac{m_1 \cdot (R_1^2 + r_1^2)}{2} = \frac{11,52 \cdot (12^2 + 7,5^2)}{2} = 1153 \text{ g.mm}^2$

Cylindre creux de tête de bielle : $J_2 = \frac{m_2 \cdot (R_2^2 + r_2^2)}{2} = \frac{9.74 \cdot (10.5^2 + 6^2)}{2} = 712 \text{ g.mm}^2$

Parallélépipède entre le pied et la tête : $J_3 = \frac{m_3 \cdot (a^2 + b^2)}{12} = \frac{15,74 \cdot (70^2 + 14^2)}{12} = 6684 \text{ g.mm}^2$

Déterminons le moment d'inertie dela bielle par rapport à l'axe $(G, \overline{z_0})$

On a en mm : $\overrightarrow{G_3G} = \overrightarrow{G_3A} + \overrightarrow{AG} = -(44 + 6). \overrightarrow{x_1} + \overrightarrow{L_A}. \overrightarrow{x_1} = 2,7. \overrightarrow{x_1}$

On en déduit : $\overrightarrow{GG_1} = (46 - 2.7)$. $\overrightarrow{x_1} = 43.3$. $\overrightarrow{x_1}$ et : $\overrightarrow{GG_2} = -(2.7 + 44)$. $\overrightarrow{x_1} = 46.7$. $\overrightarrow{x_1}$

Par le théorème de Huygens (appliqué trois fois) on obtient :

 $J_G = J_1 + m_1.43,3^2 + J_2 + m_2.46,7^2 + J_3 + m_3.2.7^2 = 51504 \text{ g.mm}^2 = 5,15.10^{-5} \text{ kg.m}^2$

Remarque:

Les résultats du modèle simplifié à 3 volumes homogènes simples confirment les ordres de grandeur obtenus par la mesure des périodes d'oscillation. Cependant ce résultat est 10% plus faible.

Cela s'explique par le fait que ce modèle ne tient pas compte qu'on a deux bagues en bronze au pied et en tête de bielle dont la masse volumique (6800 kg.m⁻³) est plus importante que le matériau de la bielle qui est probablement de l'aluminium.

Cela explique également la masse volumique (3200 kg.m⁻³) déterminée à partir du modèle simplifié trop élevée pour de l'aluminium qui a suivant les alliages une masse volumique de 2600 à 2800 kg.m⁻³.