PSI 2023–2024 Sciences de l'Ingénieur

DS N°3 : Sujet A

Le 11 Décembre 2023 - Durée 4h

CELLULE D'ASSEMBLAGE POUR AVION FALCON

D'après Sujet E3A PSI 2015

Figure 1 : vue générale CAO de la cellule d'assemblage en cours de travail

Composition du sujet

Présentation et sujet :

Annexes

Documents réponses :

Consignes pour la réalisation du devoir surveillé

Ce sujet est issu de l'épreuve de SI du concours E3A PSI 2015. Ce sujet a été profondément modifié

Vous traiterez l'ensemble des questions en répondant sur copie ou sur les documents réponses lorsque cela est demandé. Documents réponse que vous dégrafferez et joindrez à votre copie.

Pages 1/13 à 13/13

Pages 1/6 à 6/6

Pages 1/4 à 4/4

Présentation du support d'étude

1 Introduction

Dans un contexte mondial de plus en plus concurrentiel la société DASSAULT doit en permanence améliorer les procédés de production de ses avions.

Une des étapes importantes de la réalisation d'un avion est l'assemblage de sa structure. Comme le montre la Figure 2, la structure d'un avion est composée de plusieurs éléments devant être assemblés entre eux pour donner la structure finale de l'appareil.

Figure 2 : FALCON 7X et vue éclatée des différents sous-ensembles d'un FALCON 7X

Afin de répondre à des exigences de qualité croissantes et permettre une amélioration de sa productivité, la société DASSAULT développe en permanence de nouveaux moyens d'assemblage des éléments de structure. La cellule d'assemblage de cette étude répond à cette problématique. Elle permet d'assister les opérateurs dans la réalisation des tâches d'assemblage.

Les éléments de structure sont assemblés entre eux par des éléments de fixation appelés rivets : c'est l'opération de rivetage. L'assemblage complet correspond à une succession d'opérations à répéter pour chacun des points de fixations :

- Time en place des éléments à assembler ;
- perçage des éléments ;
- dépose d'un rivet ;
- pose d'une bague déformable ;
- 📽 serrage du rivet par déformation de la bague.

Ces opérations devant être répétées un très grand nombre de fois (environ 300 heures d'opérations d'assemblages sur un avion) le gain de productivité apporté par la cellule est important. De plus, l'utilisation d'un robot permet de diminuer le nombre d'opérations de montage / démontage des éléments à assembler (comparativement à un travail manuel) ce qui permet un gain de travail supplémentaire.

Le support de cette étude, la cellule d'assemblage, permet la réalisation de l'assemblage du tronçon central du fuselage du Falcon 7X. La Figure 3 présente l'extrémité du robot en cours de travail sur ce tronçon central (composé des tronçons 1 et 2).

Figure 3 : structure de Falcon 7X en cours d'assemblage par la cellule

2 Présentation du procédé d'assemblage par rivetage

2.1 Positionnement des éléments à assembler

Les différents éléments de l'appareil sont assemblés par rivetage. Pour permettre cet assemblage, chacun des éléments possède à son extrémité un épaulement (partie moins épaisse) permettant l'assemblage. Lorsque les deux éléments à assembler sont en vis-à-vis, les deux tôles des extrémités se superposent permettant ensuite l'obtention d'une structure unique d'épaisseur uniforme.

Figure 4 : principe de l'assemblage par superposition de tôles

Les deux extrémités ainsi positionnées sont prêtes à être percées pour recevoir l'élément de fixation. Dans notre étude, nous supposerons que tous les éléments sont déjà positionnés et que des éléments de maintien en position permettent le respect de ce positionnement durant la totalité des opérations de fixation.

2.2 Assemblage des éléments

Le rivetage consiste à assembler deux pièces de façon permanente, il permet donc la réalisation d'une liaison encastrement non démontable. Les opérations de rivetage connaissent également des évolutions technologiques liées à l'emploi de matériaux plus performants comme le titane. Le rivet en aluminium, massivement employé dans la construction aéronautique, est partiellement remplacé par le rivet en titane. Ces rivets en titane permettent de meilleures performances mécaniques ; les fixations obtenues ont une tension entre tôles assemblées plus importante que pour les rivets en aluminium. Les rivets en titane permettent ainsi de réduire le nombre de rivets comparativement aux rivets en aluminium.

Figure 5 : bagues et rivets

Pour ces raisons, notre étude ne portera que sur l'assemblage par rivetage avec rivets de type titane. La phase d'assemblage étudiée est réalisée conjointement par le bras robot de la cellule et un opérateur. Le bras robot est situé à l'extérieur de l'avion (voir Figure 3) tandis que l'opérateur est situé à l'intérieur de l'avion. L'opérateur contrôle le bras robot à l'aide d'une télécommande et il dispose les bagues déformables (voir Figure 5) nécessaires à la réalisation de l'opération de rivetage.

La phase d'assemblage se décompose en cinq opérations :

- opération 1 : mise en position des tronçons d'avion à assembler sur un châssis de montage ;
- Topération 2 : perçage des tronçons par le bras robot ;
- opération 3 : introduction dans le trou (percé) d'un rivet titane par le bras robot ;
- opération 4 : pose d'une bague déformable par l'opérateur sur l'extrémité du rivet située à l'intérieur de l'avion ;
- The opération 5 : déformation de la bague et rupture du rivet

Figure 6 : rivet installe

La fixation obtenue à la fin de ces cinq opérations est celle de la Figure 6. Les cinq opérations sont répétées sur chacune des fixations de l'avion. Chaque rivet installé permet l'établissement d'une action mécanique (appelée tension installée) entre les deux tôles assemblées. La somme des tensions installées, correctement réparties sur les éléments, permet d'obtenir un assemblage rigide non démontable permettant de résister aux contraintes mécaniques subies pendant l'utilisation de l'avion. Le détail des opérations 4 et 5 est donné en annexe 1.

3 Structure de la cellule d'assemblage

3.1 Présentation fonctionnelle

Figure 7 : vue partielle de la cellule d'assemblage

La cellule d'assemblage (Figure 7) est un système permettant de réaliser, en collaboration avec l'opérateur, l'ensemble des opérations d'assemblage décrites précédemment. Les exigences fonctionnelles de la cellule sont données dans l'annexe 2.

3.2 Description structurelle de la cellule

La cellule est composée de plusieurs sous-ensembles fonctionnels (voir Figure 7 et annexe 2) :

- In pupitre de commande permettant de piloter et paramétrer la cellule, ce pupitre peut être déporté grâce à une télécommande ce qui permet le pilotage à distance ;
- In une plateforme permettant d'assurer la liaison au bâti et le positionnement des autres sous ensembles;
- In robot six axes de marque ABB équipé d'un effecteur, cet effecteur intègre les outils nécessaires à l'assemblage;
- T un magasin de stockage des rivets ;
- regional des copeaux (non représentée sur la Figure 7).

Partie 1 : choix du robot

1 Objectif

L'objectif de cette partie sera de choisir un robot permettant de satisfaire aux exigences fonctionnelles 1 et 1.3. Pour cela l'étude va porter sur :

- The position de la cellule dans le hall de production (exigence 1.3) ;
- I'assemblage des tronçons à l'aide des rivets en choisissant le robot permettant d'atteindretous les points de la couture (exigence 1);
- ☞ la stabilité de la plateforme (exigence 1.3).

2 Étude de la liaison plateforme (1) / sol (0)

La plateforme réalise l'interface entre le robot et le hall de production. Chaque plateforme est composée : d'une partie supérieure qui permet de fixer le robot et les accessoires associés à la plateforme ;

^{ce} d'une partie inférieure qui permet de lier la plateforme (1) au sol du hall (0). Le positionnement de la plateforme au sol du hall (annexe 3) est réalisé par trois liaisons. Afin de pouvoir déplacer la plateforme sur les différentes zones d'assemblage, elles sont dupliquées dans le hall de production.

Question 1

En vous aidant de l'annexe 3, tracer le graphe de structure entre le sol (0) et la plateforme (1).

Question 2

Nommer et caractériser les liaisons entre le sol (0) et la plateforme (1).

Question 3

Donner le nom de la liaison équivalente entre le sol (0) et la plateforme (1). Vous justifierez votre réponse en déterminant la forme du torseur cinématique ou du torseur sthénique de cette liaison équivalente.

3 Choix du robot – Exigence 1

L'implantation est considérée comme optimale lorsque la totalité des points visés est accessible : l'extrémité du robot doit atteindre le point de fixation de la demi-couture des tronçons. Dans le cas de l'étude, le robot doit réaliser une couture orbitale entre deux tronçons et éviter les collisions éventuelles (annexe 5). La masse de l'effecteur positionnée à l'extrémité du robot est de 100 kg.

Ce choix sera une estimation : cette pré-étude sera validée si plus de 90 % de la zone à couturer est atteinte. Pour cela, les enveloppes de travail de l'annexe 5 seront à utiliser.

Une analyse plus fine sera réalisée par une étude d'implantation dans un environnement numérique 3D de l'atelier de production, des tronçons et des robots permettant ainsi la validation du choix.

Question 4

À l'aide de la documentation des annexes 4 et 5, choisir le robot qui permettra de réaliser la couture orbitale de la position extrême 1 à la position extrême 2 en complétant le schéma du document réponse DR1. L'échelle de ce schéma est : $1 \text{ cm} \Leftrightarrow 400 \text{ mm}$ Votre schéma devra faire apparaitre :

- \checkmark la position de l'embase de rotation du robot (point O_1) sur l'axe $\overrightarrow{y_p}$;
- The position du centre de l'axe 2 du robot (point O₂) à l'horizontale du centre du tronçon (point O)
- Une ébauche de l'enveloppe de travail permettant de vérifier que le robot est en mesure d'atteindre l'ensemble de la zone à couturer.

Partie 2 : étude de l'assemblage

1 Objectif

L'objectif de cette partie est de vérifier que le robot choisi permet d'assurer le perçage des tronçons de l'avion.

2 Détermination des actions mécaniques – Exigence 1.2

2.1 Objectif

L'objectif est de déterminer l'effort lié au perçage des tôles dans le cas le plus défavorable (exigence 1.2 en annexe 2).

2.2 Données

L'effort lié au perçage peut être déterminé par le modèle suivant : F = K'.K_c.R.f Avec :

- \bullet F : effort lié au perçage (en N) ;
- K' : coefficient lié à la forme de l'outil ;
- K_c : pression spécifique de coupe fonction du matériau (en N.mm⁻²) ;
- R : rayon de l'outil de perçage (en mm) ;
- f : avance de l'outil en $(mm.tour^{-1})$.

Les essais expérimentaux de perçage sont donnés dans les tableaux de l'annexe 6. Ces essais ont été réalisés sur les deux matériaux les plus utilisés pour les tronçons de l'avion (aluminium et composite aluminium/carbone).

Question 5

Déterminer l'effort F dans chacun des quatre cas correspondant aux 4 essais dont les résultats sont précisés dans l'annexe 6.

Question 6

Quel est le cas le plus défavorable pour l'opération de perçage ?

Cette valeur d'effort sera ensuite choisie pour les validations des caractéristiques robots.

3 Validation des caractéristiques du robot – Exigence 1.2

3.1 Objectif

L'objectif est de déterminer le couple articulaire C12 à appliquer sur le bras 2 afin de garantir l'effort de perçage et l'effort presseur (exigence 1.2).

3.2 Notations

Les éléments de réduction d'un torseur d'action mécanique du solide i (noté S_i) sur le solide j (noté S_j) au point O dans le repère R_0 seront notés :

$$\{S_{i} \rightarrow S_{j}\} = \begin{cases} \overline{R_{Si}} \\ \overrightarrow{\mathcal{M}_{O,Si}} \\ \overrightarrow{\mathcal{M}_{O,Si}} \\ \end{cases} = \begin{cases} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \\ \end{cases} = \begin{cases} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \\ \end{cases}$$

3.3 Hypothèses

Tiétude est réalisée pour une demi couture orbitale (couture supérieure) ;

 $\ensuremath{\mathfrak{F}}$ le repère R₀ (O₀, $\overrightarrow{x_0}$, $\overrightarrow{y_0}$, $\overrightarrow{z_0}$) sera supposé galiléen ;

- $\overline{y_0}$ est l'axe vertical ascendant et l'accélération gravitationnelle est de g = 9.81 m.s.²;
- Toutes les liaisons sont supposées parfaites.

3.4 Repérage et paramétrage (Figure 8)

Le repère associé à **l'embase fixe (0)** est le repère $R_0(O_0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}), \overrightarrow{y_0}$ étant l'axe vertical ascendant.

L'embase de rotation (1), en liaison pivot d'axe $(O_1, \overrightarrow{y_1})$ par rapport au bâti (0), a pour repère associé le repère $R_1(O_1, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$, tel que $O_0 = O_1$, $(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}) = (\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$

Le bras (2), en liaison pivot d'axe $(O_2, \overrightarrow{z_2})$ par rapport à l'embase de rotation (1), a pour repère associé le repère $R_2(O_2, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$, tel que $\overrightarrow{O_1O_2} = L_{2x}$. $\overrightarrow{x_1} + L_{2y}$. $\overrightarrow{y_1}$, $\overrightarrow{z_1} = \overrightarrow{z_2}$ et $(\overrightarrow{x_1}, \overrightarrow{x_2}) = (\overrightarrow{y_1}, \overrightarrow{y_2}) = \theta_{12}$.

Le bras (3), en liaison pivot d'axe $(O_3, \overrightarrow{z_3})$ par rapport au bras (2), a pour repère associé le repère $R_3(O_3, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$, tel que $\overrightarrow{O_2O_3} = L_{3x}$. $\overrightarrow{x_2}$, $\overrightarrow{z_1} = \overrightarrow{z_3}$ et $(\overrightarrow{x_1}, \overrightarrow{x_3}) = (\overrightarrow{y_1}, \overrightarrow{y_3}) = \theta_{13}$.

Le bras (4), en liaison pivot d'axe $(O_4, \overrightarrow{x_4})$ par rapport au bras (3), a pour repère associé le repère $R_4(O_4, \overrightarrow{x_4}, \overrightarrow{y_4}, \overrightarrow{z_4})$, tel que $\overrightarrow{O_3O_4} = L_{4x}$. $\overrightarrow{x_3} + L_{4y}$. $\overrightarrow{y_3}$, $\overrightarrow{x_3} = \overrightarrow{x_4}$ et $(\overrightarrow{y_3}, \overrightarrow{y_4}) = (\overrightarrow{z_3}, \overrightarrow{z_4}) = \theta_{34}$.

L'ensemble (E1) composé du bras (5), du poignet et de l'outil, en liaison pivot d'axe $(O_5, \overline{z_5})$ par rapport au bras (4), a pour repère associé le repère R_5 $(O_5, \overline{x_5}, \overline{y_5}, \overline{z_5})$, tel que $O_4O_5 = L_{5x}$. $\overline{x_3}$, $\overline{z_1} = \overline{z_5}$ et $(\overline{x_1, x_5}) = (\overline{y_1, y_5}) = \theta_{15}$.

La masse du bras (2) est notée M₂ et la position du centre de gravité est définie par $\overrightarrow{O_2G_2} = \frac{1}{2} \cdot L_{3x} \cdot \overrightarrow{x_2}$

La masse du bras (3) et du bras (4) est notée M₃₄ et la position du centre de gravité est définie par $\overrightarrow{O_3G_3} = \frac{1}{3} \cdot L_{4x} \cdot \overrightarrow{x_3} + L_{4y} \cdot \overrightarrow{y_3}$

La masse de l'ensemble (E1) est M_{E1} et la position du centre de gravité est définie par : $\overrightarrow{O_5G_5} = \mathbf{L}_{5G}$. $\overrightarrow{\mathbf{x}_5}$

L'extrémité de l'outil est définie par le point P définie par $\overline{O_5P} = L_{5P}$. $\overline{x_5}$

Le torseur d'action mécanique lié au perçage sera noté :

$$\{\text{Tronçon}(\text{perçage}) \rightarrow E_1\} = \begin{cases} -F & 0\\ 0 & 0\\ 0 & 0 \end{cases}_{R_5}$$

Un effort presseur est de plus nécessaire pour le perçage optimal des deux tronçons. Le torseur d'action mécanique associé sera noté :

$$\{\text{Tronçon}(\text{presseur}) \rightarrow E_1\} = \begin{cases} -P & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{R_5}$$

La rotation entre les solides (0) et (1) est supposée bloquée dans la suite du sujet.

Question 7

Réaliser le graphe de structure de l'ensemble en précisant les liaisons et les différentes actions extérieures.

Question 8

Quel est l'ensemble Σ à isoler afin de déterminer le couple C_{12} ?

Question 9

Réaliser un bilan des actions mécaniques extérieures appliquées à Σ .

Question 10

Quel théorème doit-être appliqué, et sur quel axe de projection, pour déterminer le couple C_{12} ?

La configuration correspondant à la position extrême supérieure de la couture orbitale correspond aux angles suivant : $\theta_{12} = 60^\circ$, $\theta_{13} = -4^\circ$, $\theta_{15} = -90^\circ$

Dans la suite de l'étude, l'angle θ_{13} sera considéré comme nul. Soit :	$\overrightarrow{\mathbf{x}_3} = \overrightarrow{\mathbf{x}_1}$	et	$\overrightarrow{y_3} = \overrightarrow{y_1}$
D'autre part étant donné que $\theta_{15} = -90^\circ$ on a également :	$\overrightarrow{\mathbf{x}_5} = - \overrightarrow{\mathbf{y}_1}$	et	$\overrightarrow{y_5} = \overrightarrow{x_1}$

Les valeurs considérées sont :

$M_2 = 264 \text{ kg}$	$M_{34} = 430 \text{ kg}$	$M_{E1} = 150 \text{ kg}$	P = 150 N
$L_{2x} = 0,405 \text{ m}$	$L_{2y} = 0,433 \text{ m}$	$L_{3x} = 1,075 \text{ m}$	$L_{4x} = 1,762 \text{ m}$
$L_{4y} = 0,165 \text{ m}$	$L_{5x} = 0,250 \text{ m}$	$L_{5G} = 0,550 \text{ m}$	$L_{5P} = 0,750 \text{ m}$

Question 11

Déterminer la valeur du couple C₁₂.

La valeur limite supérieure du coupe C12 est fixée à 9 000 N.m

Question 12

Le choix du robot permettra-t-il de garantir les conditions d'assemblage dans cette position ? Justifier la réponse.

Partie 3 : étude de la sélection des fixations

L'objectif de cette partie est de valider les choix effectués par la société pour le sous ensemble de sélection des fixations de la cellule (exigence 1.1).

1 Fonctionnement du magasin de rivets

<u>1.1 Présentation</u>

Le magasin de rivets doit assurer le stockage des rivets prévus pour l'assemblage ainsi que leur distribution vers le robot. Les rivets sélectionnés dans le magasin sont acheminés vers l'effecteur au moyen d'un système d'aspiration (non étudié ici).

Avant d'être acheminés vers l'effecteur, les rivets sont stockés dans des cassettes rangées verticalement dans l'armoire de stockage (Figure 11). Un chariot de sélection se déplace verticalement pour déplacer la buse d'aspiration qui permettra d'acheminer les rivets contenus dans la cassette vers l'effecteur (Figure 10).

Figure 11 : localisation du magasin de stockage sur la cellule

1.2 Axe chariot

Le déplacement du chariot est assuré par un axe numérique asservi en position. Cet axe est composé d'un moteur à courant continu, d'un système de transmission de puissance de type poulies / courroie et d'un rail (Figure 12 et annexe 7).

Figure 12 : schéma de principe du guidage

1.3 Modélisation du système de déplacement du chariot

Figure 13 : modèle cinématique

2 Sélectionner les fixations - Exigence 1.1

Afin de sélectionner le type de fixation, la buse d'aspiration doit être déplacée en face de la cassette avec une erreur inférieure à 0,5 mm (voir exigences fonctionnelles). Cependant le fabricant du système pouliecourroie du rail indique déjà une erreur de +/- 0,25 mm due notamment à l'élasticité de la courroie. Par conséquent, l'erreur en position de la commande doit être nulle.

De plus, afin de ne pas perdre de temps lors de la production, le temps maximal de déplacement lors de la sélection est imposé à une seconde.

L'étude se fera dans le cas le plus défavorable c'est-à-dire un déplacement du chariot vers le haut entre les deux cassettes de rivets les plus éloignées. L'axe de déplacement est appelé \overrightarrow{y}

2.1 Notations domaine temporel – domaine de Laplace

Les notations entre le domaine temporel et celui de Laplace sont données dans la suite. Ainsi, si la fonction f(t) possède une transformée de Laplace, elle sera notée : $F(p) = \mathcal{L}[f(t)]$

Les équations caractéristiques du moteur à courant continu sont rappelées ci-dessous (les conditions de Heaviside sont respectées) :

$u(t) = e(t) + R.i(t) + L.\frac{di(t)}{dt}$	Avec :	\mathfrak{F} u(t) : tension moteur ; \mathfrak{F} i(t) : courset motour :
dt		 I(t): courant moteur , e(t): force contre-électromotrice ;
$e(t) = K_E \cdot \omega_m(t)$		$\mathfrak{F} \omega_m(t)$: vitesse de rotation moteur ;
$c_{\rm m}(t) = K_{\rm C}.i(t)$		$\mathfrak{F}_{\mathrm{CM}}(t)$: couple moteur ;
$J_{eq.} \frac{d \omega_m(t)}{dt} + f.\omega_m(t) = c_m(t) - c_R(t)$		CR(t) : couple résistant modélisant l'action de pesanteur

2.2 Critères à respecter pour l'exigence 1.2 : Cahier des charges de l'asservissement

Exigence	Critères	Niveaux
	Stabilité	
	Marge de phase	$M_G \ge 10 \text{ dB}$
	Marge de gain	$M_{\phi}\!\ge\!50^\circ$
Déplacer le	Stabilité	
chariot	Erreur statique par rapport à une consigne de position constante	$\varepsilon_{\rm S} = 0$
	Rapidité	
	Temps de réponse à 5% en réponse à un échelon de consigne	$T_{5\%} \le 0.3 \ s$
	Pulsation de coupure à 0 dB de la Fonction de Transfert en Boucle Overte (FTBO)	$\omega_{0dB} \ge 20 \text{ rad.s}^{-1}$

2.3 Détermination de l'inertie équivalente

Les grandeurs caractéristiques (notations et valeurs) des éléments de l'axe du chariot sont données dans le tableau ci-dessous :

Moment d'inertie du rotor du moteur autour de son axe	J _m	140.10^{-6} kg.m ²
Moment d'inertie du réducteur ramené à l'arbre moteur	$\mathbf{J}_{\mathrm{Red}}$	60.10^{-4} kg.m ²
Moment d'inertie de la poulie motrice autour de son axe	J_{PM}	38.10^{-4} kg.m ²
Moment d'inertie de la poulie réceptrice autour de son axe	J_{PR}	38.10^{-4} kg.m ²
Masse totale du chariot	М	5 kg
Vitesse de rotation de l'arbre moteur	ω _m	
Vitesse de rotation de l'arbre de sortie du réducteur	ω _r	
Rayon d'une poulie motrice ou réceptrice	R _P	45 mm
Rapport de réduction du réducteur (ω_r/ω_m)	λ	1/5

Question 13

A partir des grandeurs définies, déterminer l'expression littérale de l'inertie équivalente (J_{eq}) de l'ensemble de pièces en mouvement $\Sigma = \{\text{Rotor moteur} + \text{Réducteur} + \text{Poulies} + \text{Chariot}\}$. Cette inertie équivalente est définie par l'énergie cinétique de Σ dans son en mouvement par rapport au bâti :

$$E_{C}(\Sigma/B\hat{a}ti) = \frac{1}{2} \cdot J_{eq} \cdot \omega_{m}^{2}$$

Question 14

Déterminer la valeur numérique de l'expression précédente.

2.4 Modèle de connaissance du moteur à courant continu

L'objectif de cette partie est d'établir un modèle de la motorisation de l'axe afin de simuler un déplacement.

Question 15

A partir des équations du moteur à courant continu, compléter le schéma bloc du moteur à courant continu sur le document réponse DR2.

Question 16

En considérant la perturbation nulle ($C_R(p) = 0$), déterminer la fonction de transfert $H_M(p) = \frac{\Omega_m(p)}{U(p)}$ sous sa forme canonique.

Question 17

En utilisant les valeurs numériques des constantes de l'axe linéaire (Voir annexe 7), montrer que cette fonction de transfert peut s'écrire sous la forme : $H_M(p) = \frac{K_M}{(1 + T_M.p).(1 + T_E.p)}$ puis déterminer les valeurs numériques des constantes K_M , T_M et T_E , de cette fonction de transfert. Quelque soit les résultats précédents, on considèrera : $J_{eq} = 7.10^{-3}$ kg.m².

2.5 Modèle de connaissance de l'asservissement en positon de l'axe

La partie précédente a permis de déterminer un modèle du moteur. La suite de l'étude va permettre, par simulation, de déterminer les réglages nécessaires de l'axe vis-à-vis du cahier des charges. La Figure 14 ci-après présente le principe de l'asservissement de l'axe du chariot :

Figure 14 : schéma de principe de l'asservissement

Les grandeurs caractéristiques des blocs de l'asservissement de l'axe chariot sont données ci-dessous :

- [©] Générateur : Gain pur K_Gà déterminer
- $rac{}$ Capteur de position : Gain pur : $K_{capt} = 5.10^{-3} \text{ V.rad}^{-1}$
- Torrecteur amplificateur fonction de transfert C(p) : Variable, voir différentes partie de l'énoncé

Question 18

Compléter sur le document réponse DR3, le schéma bloc de l'asservissement en position de l'axe linéaire.

Question 19

Quel doit être la valeur de K_G (donner l'expression littérale puis la valeur numérique) pour assurer un asservissement normal. C'est-à-dire pour avoir un écart ε nul lorsque la position du chariot Y(p) est égale à la consigne Y_{Cons}(p).

Une première étude à permis de mettre en place le schéma bloc simplifié à retour unitaire de la figure 15.

Figure 15 : schéma avec retour unitaire

Question 20

Donner en fonction des constantes de la figure 15, $H_{BONC}(p)$ l'expression littérale de la Fonction de transfert en Boucle Ouverte (FTBO) non corrigée (pour C(p) = 1).

2.6 Etude des performance de l'asservissement avec un correcteur proportionnel

Dans cette partie 2.6 on utilise un correcteur proportionnel de gain K_P : $C(p) = K_P$.

Question 21

Déterminer en fonction de K_P et des constantes de la figure 15, l'expression littérale de la Fonction de Transfert en Boucle Fermée (FTBF) : $H_{BF}(p)$ pour une perturbation nulle ($C_R(p) = 0$). Cette FTBF sera donnée sous sa forme canonique.

Pour toute la suite de l'énoncé on suppose que la FTBO non corrigé (Pour C(p) = 1) s'écrit :

$$H_{BONC}(p) = \frac{3,84.10^{-5}}{p.(1+7,4.10^{-3}.p).(1+5,1.10^{-3}.p)}$$

Question 22

Le diagramme de Bode de $H_{BONC}(p)$ la fonction de transfert en boucle ouverte non corrigé (C(p) = 1) est donné sur le document réponse DR4. Tracer sur ce diagramme de Bode les diagrammes asymptotiques de gain et de phase. Vous préciserez les abscisses des intersections des asymptotes et donnerez la pente (lorsqu'elle n'est pas nulle) des ces asymptotes.

Question 23

Par une lecture sur ce diagramme de Bode, Déterminer la valeur maximale du gain K_P du correcteur permettant de respecter le critère de marge de phase de l'asservissement. Vous laisserez sur votre diagramme les constructions nécessaires à la détermination de ce gain K_P .

Question 24

Avec cette valeur de K_P , les critères de stabilité : marge de gain (M_G) ; Et de rapidité : pulsation de coupure à 0 dB de la FTBO (ω_{0dB}) sont-ils respectés ? Justifier votre réponse.

Question 25

Une simulation numérique avec cette valeur de K_P à permis d'obtenir la réponse temporelle de l'asservissement à un échelon de consigne de 0,1 m avec différentes valeurs de la perturbation $C_R(p)$ (supposée constante). Voir document réponse DR5. Les critères de rapidité : temps de réponse à 5% ($t_{5\%}$) et de précision (ϵ_S) sont-ils respectés ? Justifier la réponse en laissant les tracés nécessaires à la détermination de $t_{5\%}$ sur le document DR5.

Question 26

Etant donné la réponse trouvée à la question 21 (Expression de la FTBF pour $C_R(p) = 0$), qu'est ce qui justifie que le critère de précision ne soit pas respecté ?

2.7 Etude des performance avec un correcteur à double étage

Dans cette partie 2.7 on utilise un correcteur à double étage : $C(p) = C_1(p) \cdot C_2(p)$ avec : $C_1(p) = \frac{1}{p}$

Question 27

Justifier l'obligation d'utiliser d'un deuxième étage de correction : $C_2(p) \neq C^{te}$ pour assurer la stabilité de l'asservissement. Pour pourrez, pour justifier votre réponse, vous appuyer sur la variation de la phase de la FTBO non corrigée (Voir DR4) pour des pulsations variant de 0 à + ∞ .

Question 28

Par une lecture sur le diagramme de Bode de la FTBO non corrigé (Voir DR4), à la pulsation : $\omega_{0dB} = 20 \text{ rad.s}^{-1}$, justifier que les valeurs de la phase et du gain du deuxième étage de correction : $C_2(p)$ qui permettront des respecter simultanément les critères de stabilité (Marge de phase M_{ϕ}) et de rapidité (Pulsation de coupure à 0dB : ω_{0dB}) sont $\phi_{C2}(\omega_{0dB}) = 64^{\circ}$ et $G_{dBC2}(\omega_{0dB}) = + 100 \text{ dB}$.

Question 29

On utilise pour le deuxième étage un correcteur à avance de phase : $C_2(p) = \frac{K_{Cor} \cdot (1 + c.\tau.p)}{1 + \tau.p}$. Déterminer

les constantes c et τ de cet étage de correction permettant d'obtenir la marge de phase recherchée à la pulsation $\omega_{0dB} = 20 \text{ rad.s}^{-1}$. Ces constantes seront choisies de manière à ce que la phase maximale de $C_2(p)$ soit obtenue à $\omega_{0dB} = 20 \text{ rad.s}^{-1}$.

Question 29

Avec ces valeurs de c et de τ , déterminer la valeur de K_{Cor} permettant d'obtenir la pulsation de coupure à 0 dB de la FTBO corrigée de $\omega_{0dB} = 20 \text{ rad.s}^{-1}$.

Question 30

Une simulation numérique avec le correcteur à double étage $C(p) = C_1(p).C_2(p) = \frac{K_{Cor.}(1 + c.\tau.p)}{p.(1 + \tau.p)}$ à

permis d'obtenir la réponse temporelle de l'asservissement à un échelon de consigne de 0,1 m avec différentes valeurs de la perturbation $C_R(p)$ (supposée constante). Voir document réponse DR6. Les critères de rapidité : temps de réponse à 5% ($t_{5\%}$) et de précision (ϵ_S) sont-ils respectés ? Justifier la réponse en laissant les tracés nécessaires à la détermination de $t_{5\%}$ sur le document DR6.

2.8 Etude des performance avec un correcteur proportionnel intégral : PI

Dans cette partie 2.7 on utilise un correcteur Proportionnel intégral (PI) de fonction de transfert :

$$C(p) = \frac{K_{Cor} \cdot (1 + \tau \cdot p)}{p}$$

Question 31

Donner les expressions en fonction de K_{Cor} , τ et de la pulsation ω , de la phase $\phi_C(\omega)$ et du gain dynamique $G_{dBC}(\omega)$ de ce correcteur PI.

Question 32

En vous aidant du diagramme de Bode de la FTBO non corrigé (Voir DR4). Et en lisant ses valeurs à la pulsation $\omega_{0dB} = 20 \text{ rad.s}^{-1}$, déterminer la phase $\phi_C(\omega_{0dB})$ et le gain $G_{dBC}(\omega_{0dB})$ qui permettront des respecter simultanément les critères de stabilité (Marge de phase M_{ϕ}) et de rapidité (Pulsation de coupure à 0dB : ω_{0dB}).

Question 33

Déterminer les constantes τ et K_{Cor} du correcteur PI permettant d'obtenir la marge de phase recherchée à la pulsation $\omega_{0dB} = 20 \text{ rad.s}^{-1}$.

Question 34

Une simulation numérique avec ce correcteur PI à permis d'obtenir la réponse temporelle de l'asservissement à un échelon de consigne de 0,1 m avec différentes valeurs de la perturbation $C_R(p)$ (supposée constante). Voir documet réponse DR7. Les critères de rapidité : temps de réponse à 5% ($t_{5\%}$) et de précision (ϵ_S) sont-ils respectés ? Justifier la réponse en laissant les tracés nécessaires à la détermination de $t_{5\%}$ sur le document DR6.

Question 35

Le diagramme de Bode de la FTBO ainsi corrigé est donné sur le document réponse DR8. Tracer sur ce diagramme de Bode les diagrammes asymptotiques de gain et de phase. Vous préciserez les abscisses des intersections des asymptotes et donnerez la pente (lorsqu'elle n'est pas nulle) de ces asymptotes.

----- Fin de l'énoncé ------

ANNEXE 2 : diagrammesSysML

1 Diagramme des exigences

2 Critères et valeurs associées aux exigences fonctionnelles

Exigence	ld	Critères	Valeurs associées
1	Assembler les	Tension installée entre les tôles	150 daN
rivets		Déplacements relatifs entre les tôles	Aucun
1.1	Sélectionner le type	Temps de sélection	1 s maxi
de fixation		Erreur de position du convoyeur	Inférieure à 0,5 mm
1.2 Percer les tronçons		Erreur par rapport à la position nominale dans le repère avion	Erreur inférieure à 0,1 mm
		Quantité de matière enlevée	Aucun copeau après perçage
	Positionner la cellule	Position de la cellule par rapport à l'avion	Position cellule +/- 1 cm
1.3 dans le hall de production		Stabilité de la position	Aucun basculement en fonctionnement
1.4	Piloter la cellule Aider à poser la fixation	Opérateur nécessaire pour le pilotage et la pose	Un opérateur

3 Diagramme de blocs internes de la cellule d'assemblage

ANNEXE 3 : schéma de la plateforme

ANNEXE 4 : description du robot

Dénomination des articulations du robot

$$\overrightarrow{O_1O_2} = L_{2x} \cdot \overrightarrow{x_1} + L_{2y} \cdot \overrightarrow{y_1} \qquad \overrightarrow{O_2O_3} = L_{3x} \cdot \overrightarrow{x_2} \qquad \overrightarrow{O_3O_4} = L_{4x} \cdot \overrightarrow{x_3} + L_{4y} \cdot \overrightarrow{y_3} \qquad \overrightarrow{O_4O_5} = L_{5x} \cdot \overrightarrow{x_3}$$

ANNEXE 5 : choix du robot

1 Schéma d'implantation

Hypothèse :

La zone de fixation du robot est dans le même plan que la zone à couturer.

Données :

- O : centre des troncons ;
- A : position de l'ancrage 1 ;
- B : position de l'ancrage 2 ;
- H : hauteur du centre du tronçon au sol du hall d'implantation H = 2700 mm;
- h : hauteur du plan supérieur de la plateforme au sol du hall d'implatation h = 300 mm ;
- R : rayon du tronçon à couturer R = 1170 mm ;
- L : distance entre centre du tronçon et l'axe \vec{y}_p L = 3180 mm ;
- I : distance entre l'axe \vec{y}_p et le bord intérieur de la plateforme l = 1240 mm.

2 Données complémentaires

Robot	IRB 7600-500/2.30	IRB 7600-400/2.55	IRB 7600-340/2.80	IRB 7600-150/3.50
L _{2x}	405 mm	405 mm	405 mm	405 mm
L _{2y}	433 mm	433 mm	433 mm	433 mm
L _{3x}	1075 mm	1075 mm	1075 mm	1075 mm
L_{4x}	556 mm	806 mm	1056 mm	1762 mm
L_{4y}	165 mm	165 mm	165 mm	165 mm
L _{5x}	250 mm	250 mm	250 mm	250 mm
C ₁₂ limite	9000 N.m	9000 N.m	9000 N.m	9000 N.m

$$\overrightarrow{O_1O_2} = \mathsf{L}_{2x}. \overrightarrow{x_1} + \mathsf{L}_{2y}. \overrightarrow{y_1} \qquad \overrightarrow{O_2O_3} = \mathsf{L}_{3x}. \overrightarrow{x_2} \qquad \overrightarrow{O_3O_4} = \mathsf{L}_{4x}. \overrightarrow{x_3} + \mathsf{L}_{4y}. \overrightarrow{y_3} \qquad \overrightarrow{O_4O_5} = \mathsf{L}_{5x}. \overrightarrow{x_3}$$

3 Documentation ABB pour les robots IRB 7600

IRB 7600

Robot industriel

200-600 V, 50/60 Hz

1206,5 x 1200 mm

2500 kg

CARACTÉRISTIQUES TECHNIQUES, ROBOT INDUSTRIEL IRB 7600

Rayon d'action	Capacité de charge	Centre de gravité	Couple du poignet
2,30 m	500 kg	360 mm	3010 Nm
2,55 m	400 kg	512 mm	3010 Nm
2,80 m	340 kg	360 mm	2750 Nm
3,50 m	150 kg	360 mm	1880 Nm
	Rayon d'action 2,30 m 2,55 m 2,80 m 3,50 m	Rayon Capacité d'action de charge 2,30 m 500 kg 2,55 m 400 kg 2,80 m 340 kg 3,50 m 150 kg	Rayon Capacité Centre d'action de charge de gravité 2,30 m 500 kg 360 mm 2,55 m 400 kg 512 mm 2,80 m 340 kg 360 mm 3,50 m 150 kg 360 mm

Nombre d'axes	6		
Protection	Robot : IP 67		
Montage	Fixé au sol		
PERFORMANCES			
Mouvement des axes	5		
Axe 1	+180° à -180°		
Axe 2	+80° à -60°		
Axe 3	+60° à -180°		
Axe 4	+300° à -300°		
Axe 5	+100° à -100°		
Axe 6	+300° à -300°		

Vitesses maximum des axes

	500 kg	340/400 kg	150 kg
Axe 1	75°/s	75°/s	100°/s
Axe 2	60°/s	60°/s	60°/s
Axe 3	60°/s	60°/s	60°/s
Axe 4	100°/s	100°/s	100°/s
Axe 5	100°/s	100°/s	100°/s
Axe 6	160°/s	160°/s	160°/s
Une fonction de superv nécessitant des mouve	vision évite la surchau ements fréquents.	uffe lors d'applica	tions

ENVIRONNEMENT Température ambiante unité mécanique En fonctionnement Lors du transport et du stockage de +5° C à +50° C de -25° C à +55° C jusqu'à +70° C Pendant de courtes périodes Humidité relative 95 % maxi Niveau sonore 73 dB (A) maxi Sécurité Circuits redondants avec supervision, arrêts d'urgence et fonctions de sécurité, palette homme-mort 3 positions Blindage CEM/IEM Immunité droits de ion des caractéristiques techniqu

RACCORDEMENTS ÉLECTRIQUES

Tension d'alimentation
DIMENSIONS ET POIDS

Dimensions embase robot Poids (toutes versions)

IRB 7600-340/2.80

1699

3500

ABB France - Division Robotique Rue de l'Equerre - ZI des Béthunes 95310 Saint-Ouen l'Aumone - France Tél. : +33 (0) 1 34 40 25 25 - Fax : +33 (0) 1 34 40 24 24

АЫ

182

Avril 2005

JM411BF

1798 2540

ANNEXE6 : résultats des essais de perçage

Essai	1	2	3	4
Matériaux	1	1	2	2
K _c (en N/mm²)	750	750	1750	1750
Type d'outil	1	1	2	3
Ø outil (en mm)	5	6	5	5
K'	0.5	0.5	0.4	0.5
f (en mm/tour)	0.16	0.20	0.24	0.3

ANNEXE 7 : documentation axe linéaire

1 Vue 3D extérieure axe chariot de sélection

2 Caractéristiques du moteur d'axe

Vitesse nominale (N)	Couple nominal (C _{nom})	Courant nominal (I _{nom})	Courant maxi (I _{max})	Tension nominale (U _{nom})	Inductance (L)	Résistance de l'induit (R)
3000 tr.min ⁻¹	3 Nm	4,8 A	30 A	400 V	9 mH	3 ohms

Coefficient de frottement visqueux (f)	Constante de couple (K _c)	Constante de fcem (K _E)
0,2.10 ⁻² Nm.s.rad ⁻¹	1,3 Nm.A ⁻¹	1,3 V.(rad.s ⁻¹) ⁻¹

Document DR4 : FTBO Non corrigée

Page 2/4

Document DR5 : Réponse avec correcteur proportionnel

Document DR6 : Réponse avec correcteur a deux étages

Document DR7 : Réponse avec correcteur PI

Document DR8 : FTBO corrigée avec correcteur PI

Page 4/4