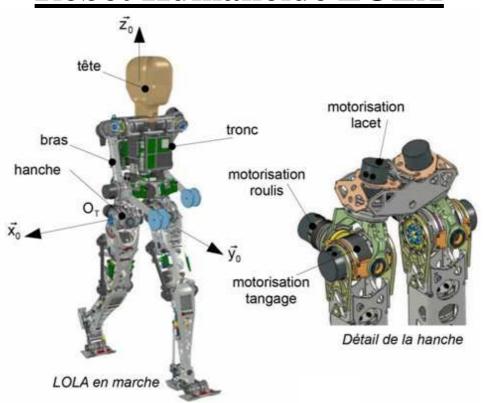
PSI 2023–2024

Sciences Industrielles de l'Ingénieur

DS N°3: Sujet B

Le 11 Décembre 2023 - Durée 4h

Robot Humanoïde LOLA



D'après concours Mines-Ponts PSI – 2015

(Sujet légèrement modifié par rapport au sujet original)

Composition du sujet

Présentation et sujet : Pages 2/12 à 12/12

Documents annexes : Pages 1/5 à 5/5

PRESENTATION DU ROBOT HUMANOIDE LOLA

Le développement de robots à forme humaine est en croissance constante depuis quelques dizaines d'années.

En robotique, il est difficile d'affirmer que tous les robots remplaçant l'homme dans ses tâches doivent être de forme humaine. Les véhicules autonomes, par exemple, ne sont pas anthropomorphes.

Les tâches auxquelles sont destinées les robots définissent leur forme idéale. Si nous souhaitons un jour que les robots remplacent l'homme dans ses tâches ennuyeuses, ils devront s'intégrer au mieux à notre société, à notre environnement et donc à notre ergonomie.

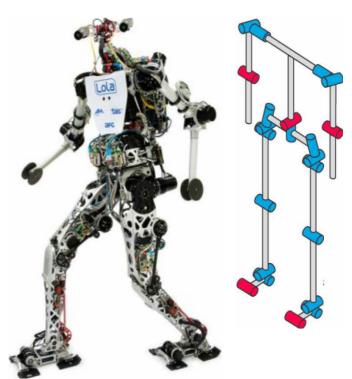


Figure 1 : le robot humanoïde LOLA et sa structure cinématique (sans la tête)

Les dimensions d'une maison et la hauteur des meubles sont adaptées à notre forme humaine. L'avantage des robots humanoïdes devient alors économique : il n'est pas indispensable de modifier l'environnement quotidien pour les utiliser.

Le robot humanoïde LOLA (figure 1), développé par l'Université de Munich, est un robot de forme humaine conçu pour un mode de marche rapide. LOLA possède une structure à 25 degrés de liberté lui permettant une flexibilité accrue. Chaque jambe possède 7 degrés de liberté, le haut du corps 8 et la tête 3.

Le robot est équipé d'une caméra stéréoscopique haute définition afin de percevoir son environnement, d'une centrale inertielle équipée de 3 gyroscopes et de 3 accéléromètres. Chaque articulation possède un codeur angulaire absolu et chaque pied est muni d'un capteur d'effort 6 axes permettant d'obtenir l'effort de contact avec le sol. Les caractéristiques techniques de LOLA sont données dans le tableau suivant:

Caractéristiques	Valeurs
Hauteur	180 cm
Masse	55 kg
Nombre de degrés de liberté	25
Vitesse de marche	5 km/h maxi
Hauteur du centre de gravité	105cm

Le diagramme partiel des exigences est donné en annexe 1.

L'objectif de l'étude proposée est de justifier le respect du cahier des charges. Elle se décomposera en 3 parties : l'étude de la stabilité du robot bipède, Etude de l'articulation de la cheville et l'étude des performances de l'asservissement angulaire du tronc.

Partie 1 : Stabilité du robot

Par définition, le robot humanoïde bipède s'appuie sur ses deux jambes. Comme tout système de solides en équilibre statique, LOLA est à l'équilibre si la projection de son centre de gravité sur le sol est contenu dans le polygone de sustentation qui est tracé en noir autour de ses deux pieds sur la figure 2. Lorsque le robot marche, il y a une phase où il n'est en appui que sur un seul pied. Dans ce cas, le polygone de sustentation est réduit à un seul pied.

Figure 2 : polygone de sustentation sur deux pieds

L'objectif de cette partie est de trouver à quelle condition le maintien du contact sur le sol est possible lorsque le robot marche et si l'accélération est compatible avec le cahier des charges, dont un extrait est donné ci-après.

Exigence 1.3 : Le robot ne doit pas basculer lors de la marche					
Description : La position du ZMP* reste dans le polygone de sustentation * : défini dans la suite					
Exigence 1.1 : Le robot doit pouvoir atteindre les performances cibles					
Sous-exigence	Description				
Id=1.1.4	La longueur d'une foulée est de 150 cm au maximum				
Id=1.1.3	Le robot peut accélérer jusqu'à 1,39 m.s ⁻²				

1. Modélisation de l'effort de contact entre le sol et le robot.

Sous la semelle du robot, la pression de contact avec le sol est supposée répartie de manière uniforme transversalement (suivant la direction $\overrightarrow{x_0}$). Le problème se ramène donc à une répartition linéique de pression sur les deux segments de contact $[O_S;A_S]$ et $[B_S;C_S]$. Voir figure 3 ci-dessous.

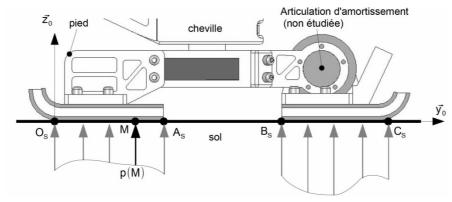


Figure 3 : modélisation du contact entre le pied et le sol

En chaque point M (d'ordonnée $y: \overrightarrow{OM} = y. \overrightarrow{y_0}$) de ces segments, la densité d'efforts de contact est $p(M). \overrightarrow{z_0}$, avec p(M) en $N.m^{-2}$. Cet effort de contact se fait avec un coefficient d'adhérence μ . On notera que si le robot n'est pas équipé de semelles magnétiques ou adhésives, on a p(M) > 0. Ainsi, en notant b la largeur de la semelle suivant $\overrightarrow{x_0}$ et $\Sigma = [O_S; A_S] \cup [B_S; C_S]$, le modèle global d'action mécanique de contact du sol sur le pied peut être donné par le torseur :

$$\{T_{sol \rightarrow pied}\} = \begin{cases} R_{sol \rightarrow pied} = b. \int_{(M \in \Sigma)} \left[\ p(M). \ \overrightarrow{z_0} + t(M). \ \overrightarrow{y_0} \ \right]. dy \\ O_S \begin{cases} M_{Os}(\overrightarrow{sol \rightarrow pied}) = b. \int_{(M \in \Sigma)} O_{\overrightarrow{S}} \overrightarrow{M} \wedge \left[\ p(M). \ \overrightarrow{z_0} + t(M). \ \overrightarrow{y_0} \ \right]. dy \end{cases} \qquad \text{avec}: \\ t(M) = a.p(M) \\ où: a \in [-\mu; \mu]$$

Question 1:

Montrer que $\{T_{\text{sol} \to \text{pied}}\}$ est un glisseur. Dont l'axe passe par le point H_S tel que : $\overrightarrow{O_SH_S} = Y_{H_S}$. $\overrightarrow{y_0}$.

Ce point est fondamental en robotique humanoïde, il prend le nom de Zero Moment Point (ZMP) : de l'anglais « point de moment nul ».

Question 2:

Montrer que $H_S \in [O_S; C_S]$, c'est-à-dire qu'il est situé sous le pied du robot. On pourra noter Y_{C_S} l'ordonnée du point C : $\overrightarrow{O_SC_S} = Y_{C_S}$. $\overline{y_0}$

2. Établissement de la condition de non-basculement.

Considérons le robot en marche avec le torse ayant un mouvement de translation rectiligne vers l'avant (suivant $+ \overline{y_0}$). Le robot est toujours dans la phase d'appui d'un seul pied sur le sol, via une des deux jambes notées (2).

Données et paramètres:

Torse (1):

- masse m_1 , accélération de la pesanteur : $\overrightarrow{g} = -g$. $\overrightarrow{z_0}$ avec $g = 9.81 \text{ m.s}^{-2}$;
- centre de gravité : G, tel que $\overrightarrow{O_SG} = y_G(t)$. $\overrightarrow{y_0} + z_G$. $\overrightarrow{z_0}$; le torse est supposé en mouvement de translation rectiligne, de

direction
$$\overset{\rightarrow}{y_0}$$
 par rapport au sol, on a $\{v_{1/\text{sol}}\} = \left\{ \frac{\overset{\rightarrow}{0}}{\frac{d Y_G}{dt}}, \overset{\rightarrow}{y_0} \right\}$

masses et inerties négligeables dans cette phase.

N.B.: le pied d'appui est sans mouvement par rapport au sol.

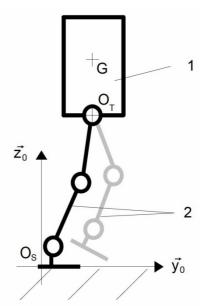


Figure 4: modélisation du robot en marche

L'action mécanique du sol sur le pied est modélisée par le glisseur : $\{T_{sol \to pied}\} = \begin{cases} R_{sol \to pied} \\ H_S \end{cases}$ • He est le ZMP point mis an évident $R_{sol \to pied}$

- H_S est le ZMP, point mis en évidence à la question 2 tel que : $\overrightarrow{O_SH_S} = Y_{H_S} \cdot \overline{y_0}$
- $R_{\text{sol} \rightarrow \text{pied}} = N_{\text{Sol} \rightarrow \text{pied}}$. $\overrightarrow{z_0} + T_{\text{Sol} \rightarrow \text{pied}}$. $\overrightarrow{y_0}$, avec à la limite du glissement $\left| T_{\text{Sol} \rightarrow \text{pied}} \right| = \mu$. $\left| N_{\text{Sol} \rightarrow \text{pied}} \right|$ où u est le facteur de frottement du contact sol/semelle.

Question 3:

Par le principe fondamental de la dynamique (TRD + TMD) au système {1+2}, montrer que :

 $Y_{HS} = Y_G - \frac{Z_G}{g} \cdot \frac{d^2 Y_G}{dt^2}$ La condition de stabilité (non basculement) s'écrit :

La condition de non glissement du pied sur le sol s'écrit : $\mu \ge \frac{1}{\sigma} \cdot \frac{d^2 Y_G}{dt^2}$

Conformément au résultat de la question 2, le calculateur du robot contrôle en permanence la position du point H_S (ZMP) : s'il est positionné à l'intérieur du segment [O_S;C_S], le robot ne bascule pas.

On appelle foulée, la longueur entre deux emplacements successifs d'appui du même pied. Lors du premier pas, le centre de gravité se déplace de sorte que $Y_G \in \left[-\frac{\text{foulée}}{4}; +\frac{\text{foulée}}{4} \right]$, car pour une accélération constante, les deux pas qui constituent une foulée sont de même longueur.

Le cahier des charges stipule qu'à partir de la station immobile, le robot doit atteindre la vitesse cible de 5 km.h⁻¹ en une seconde (accélération de 1,39 m.s⁻²), avec une accélération constante du centre de gravité. On rappelle que $Z_G = 105$ cm.

Question 4:

Sachant que la longueur de la semelle du robot $[O_S; C_S]$ est L = 300 mm, déterminez la longueur de la première foulée du robot qui garantit la condition de non-basculement. Est-ce compatible avec le cahier des charges ?

Question 5:

Dans le cas d'un sol relativement glissant, avec un facteur de frottement du contact sol/semelle $\mu=0,1 \ , \ quelle \ accélération \ maximale \left(\frac{d^2Y_G}{dt^2}\right)_{Max} \ le \ robot \ peut-il \ avoir \ ? \ Est-ce \ compatible \ avec \ le \ cahier \ des \ charges \ pour \ la \ phase \ de \ démarrage \ ?$

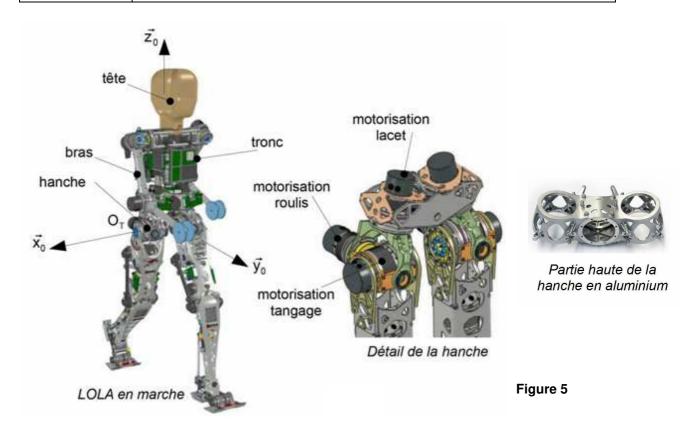
Partie 2 : Contrôle de la posture de LOLA

Pour assurer une marche rapide et stable de LOLA, la méthode choisie est le contrôle de la verticalité du tronc du robot (figure 7, page 6). Le haut du corps (tronc, bras, tête) sera maintenu vertical en réalisant un asservissement de position angulaire au niveau de l'articulation de la hanche.

L'action mécanique de redressement est développée par l'ensemble de motorisation de tangage autour de l'axe $(O_T, \overrightarrow{x_0})$.

Les performances à vérifier dans cette partie sont définies par les exigences suivantes :

Exigence 1.3 : le robot ne doit pas basculer lors de la marche				
Sous-exigence	Description			
Id=1.3.2	La posture du robot est adaptée à la position du ZMP			
Id=1.3.2.d	La performance dynamique de chaque axe permet de modifier la posture			



La chaîne structurelle permettant de modifier la posture du haut du corps autour de l'axe de tangage est représentée sur la figure 6. Elle est composée d'un moteur électrique (1,2) synchrone à aimants permanents piloté par un variateur électronique, d'un réducteur Harmonic-Drive© (3) de rapport de réduction 1/100, d'un codeur incrémental (5) ainsi que d'un codeur angulaire absolu (6+7).

Une centrale inertielle équipée d'un accéléromètre, d'un gyroscope et d'une unité de traitement permet d'obtenir en temps réel la valeur de l'angle d'inclinaison du haut du corps par rapport à la verticale.

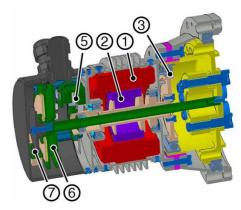


Figure 6

L'objectif de cette partie est de mettre en place un modèle du maintien vertical du tronc de LOLA et de déterminer une structure de commande permettant d'assurer les performances du cahier des charges de l'exigence 1.3.2.

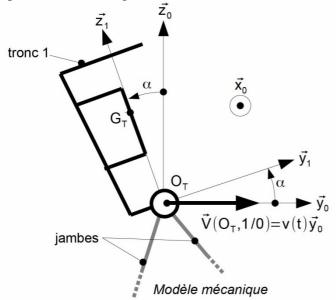
Les performances dynamiques de l'axe de tangage doivent vérifier les critères suivants:

Sous-exigence 1.3.2.d : la performance dynamique de chaque axe permet de modifier la posture			
Critère	Niveau	Flexibilité	
Marge de phase	$M\phi=50^{\circ}$	Mini	
Erreur statique	0°	$[-0.5^{\circ};+0.5^{\circ}]$	
Bande passante à 0 dB en boucle ouverte	$\omega_{\rm BP}$ =50 rad.s- ¹	Mini	
Temps de réponse à 5%	0,2 s	Maxi	
Dépassement	1°	Maxi	

1. Modèle de connaissance de la dynamique de tangage.

Le modèle mécanique utilisé pour mener notre étude est donné sur la figure 7. L'association des liaisons entre le tronc et les jambes au niveau de la hanche est équivalente, dans le plan sagittal $(O_T, \overrightarrow{y_0}, \overrightarrow{z_0})$, à une liaison pivot d'axe $(O_T, \overrightarrow{x_0})$.

Le tronc sera considéré comme un solide admettant le plan $(O_T, \overrightarrow{y_0}, \overrightarrow{z_0})$, comme plan de symétrie. Le cahier des charges stipule que LOLA doit pouvoir marcher à la vitesse de 5 km/h. Cette vitesse est atteinte en 1 s lors de la première foulée. La loi de commande en vitesse correspondante est représentée sur la figure 9.



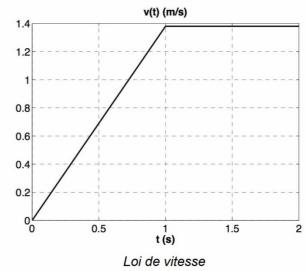


Figure 7

Le mouvement de marche est imposé et modélisé par le torseur cinématique en O_T du mouvement du tronc 1 par rapport au sol 0 :

$$\{\boldsymbol{v}_{1/0}\} = \begin{cases} \dot{\boldsymbol{\alpha}}. \overrightarrow{x_0} \\ v. \overrightarrow{y_0} \end{cases} \text{ avec } v = v(t)$$

L'axe de sortie du réducteur exerce un couple de redressement sur le tronc 1 modélisé par le torseur couple suivant :

$$\{\mathcal{F}_{\text{mot}\to 1}\} = \left\{ \begin{matrix} \overrightarrow{0} \\ \overrightarrow{C_{\text{R}}} \cdot \overrightarrow{x_0} \end{matrix} \right\}$$

L'action transmissible par la liaison pivot d'axe $(O_T, \overrightarrow{x_0})$ est notée :

$$\{\mathcal{F}_{\text{han}\to 1}\} = \begin{pmatrix} X_{\text{h1}} & 0 \\ Y_{\text{h1}} & M_{\text{h1}} \\ Z_{\text{h1}} & N_{\text{h1}} \end{pmatrix}_{B_0}$$

Les caractéristiques d'inertie du tronc 1 du robot LOLA sont :

• la matrice d'inertie en O_T :

$$I_{O_{T}}(1) = \begin{pmatrix} A_{1} & 0 & 0 \\ 0 & B_{1} & -D_{1} \\ 0 & -D_{1} & C_{1} \end{pmatrix} B_{1}$$

Où : A_1 , B_1 , et C_1 sont respectivement les moments d'inertie du tronc 1 par rapport aux axes $(O_T, \overrightarrow{x_1})$, $(O_T, \overrightarrow{y_1})$ et $(O_T, \overrightarrow{z})$,

- position du centre de gravité: $\overrightarrow{O_TG_T} = Z_G$. $\overline{Z_1}$
- masse: m₁
- Accélération de pesanteur : g = 9,81 m.s⁻²

Question 6:

En appliquant le théorème de la résultante dynamique au tronc 1, déterminer Y_{h1} la projection sur y_0 de la résultante de l'action de la hanche sur le tronc 1.

Question 7:

Déterminer l'expression de $I_{G_T}(1)$ la matrice d'inertie du tronc 1 en G_T dans la base B_1 . (Ou pour les étudiants 3/2 : Déterminer l'expression de $J_{(G_T,x_I)}(1)$ le moment d'inertie du tronc 1 par rapport à l'axe $(G_T, \overrightarrow{x_I})$)

Question 8:

En appliquant le théorème de l'énergie cinétique au tronc 1, déterminer l'équation différentielle reliant α et ses dérivées successives aux données du problème :

2. Modèle du contrôle actif de la position verticale.

Le contrôle de l'angle s'effectue par l'intermédiaire du moteur asservi en position, suivi du réducteur Harmonie-Drive $^{\circ}$ de rapport de réduction : r = 1/100

Le moment d'inertie de l'arbre moteur suivant son axe de rotation est noté J_m , le couple moteur exercé sur l'arbre d'entrée du réducteur est noté C_m .

Une étude dynamique a permis de montrer que : $C_R = \frac{C_m}{r} - \frac{J_m}{r^2}$. $\ddot{\alpha}$. Ainsi, En considérant l'angle α petit ($\cos \alpha \approx 1$ et $\sin \alpha \approx \alpha$) l'équation différentielle du mouvement devient alors:

$$J_{eq} . \ddot{\alpha}(t) = m_1.g.Z_G.\alpha(t) + m_1.Z_G.\dot{v}(t) + \frac{C_m(t)}{r}$$
 (1)

 J_{eq} est le moment d'inertie équivalent de l'ensemble du tronc ramené sur l'axe moteur.

On note l'accélération du robot : $\gamma(t) = \dot{v}(t)$.

Les conditions de Heaviside sont vérifiées.

Le schéma-bloc du contrôle de la position angulaire du tronc de LOLA est représenté sur l'annexe 2.

La consigne angulaire est nulle afin de garder le tronc du robot vertical : $\alpha_c(t)$ =0. Les transformées de Laplace des fonctions seront notées en majuscules et le paramètre de Laplace sera noté p.

Le comportement du moteur sera considéré comme celui d'un moteur à courant continu dont les équations de comportement sont les suivantes:

$$\mathbf{u}_{c}(t) = \mathbf{e}(t) + \mathbf{L} \cdot \frac{\mathbf{di}(t)}{\mathbf{dt}} + \mathbf{R} \cdot \mathbf{i}(t)$$
 $\mathbf{e}(t) = \mathbf{k}_{e} \cdot \mathbf{\omega}_{m}(t)$ et $\mathbf{C}_{m}(t) = \mathbf{k}_{c} \cdot \mathbf{i}(t)$

Question 9:

Donner les expressions des fonctions de transfert des blocs B_1 , B_2 , B_3 , B_4 , B_5 , B_6 et B_7 ainsi que celle de la fonction de transfert H_1 (p).

Afin d'analyser la stabilité de cet asservissement, nous cherchons à déterminer la fonction de transfert en boucle ouverte du système non-corrigé: $F(p) = \frac{\alpha(p)}{U_c(p)}$ en supposant la perturbation nulle.

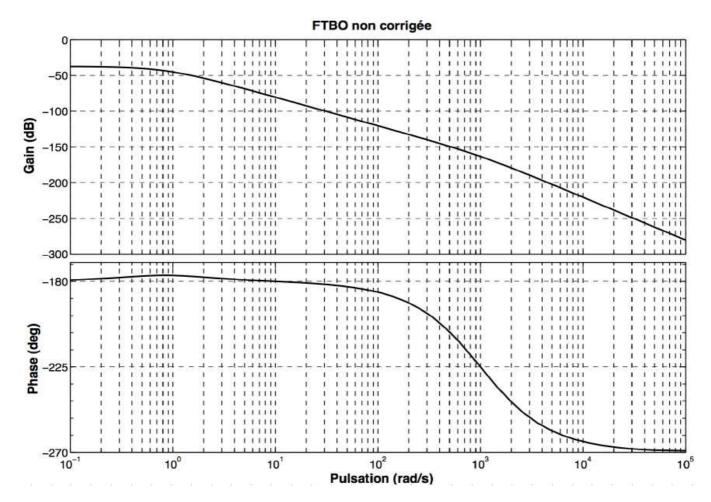
Question 10:

Déterminer, en fonction des coefficients B_i puis en fonction des constantes du système, l'expression de la fonction de transfert de la boucle dynamique : $H_{dyn}(p) = \frac{\alpha(p)}{C_m(p)}$.

Question 11:

Déterminer, en fonction des coefficients B_i , R et L puis en fonction des constantes du système, l'expression de la fonction de transfert en boucle ouverte non corrigée: $F(p) = \frac{\alpha(p)}{U_c(p)}$. Vous donnerez ces expressions sous leur forme canonique. Indiquer son ordre, sa classe et donner son gain statique K en fonction des données.

Une simulation numérique permet de tracer les diagrammes de Bode de cette FTBO. On les donne ci-dessous. Ils montrent que l'expression de F(p) est proche de : $\frac{K}{(1+\tau_1.p).(-1+\tau_1.p).(1+\tau_2.p)}$



Question 12 : En analysant les diagrammes de Bode ci-dessus, déterminer les valeurs de τ_1 , τ_2 et K.

Pour la suite de l'étude, nous simplifierons F(p) sous la forme suivante : F(p) = $\frac{K}{(1 + \tau_1.p).(-1 + \tau_1.p)}$

Question 13:

Justifier le choix de cette simplification.

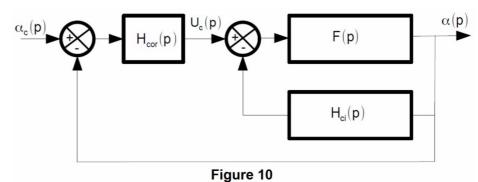
Question 14:

Justifier que la boucle ouverte (et donc la boucle fermée) n'est pas stable.

Afin de résoudre ce problème, il est décidé d'asservir la chaîne directe en position et en vitesse.

Pour cela, la centrale inertielle permet de mesurer l'angle de tangage $\alpha(t)$ ainsi que la vitesse angulaire $\frac{d\alpha(t)}{dt}$.

L'asservissement ainsi réalisé est présenté sous la forme du schéma-bloc de la figure 10.



 $U_c(p)$ est la tension de commande en sortie du correcteur. La fonction de transfert de la centrale inertielle sera prise égale à : $H_{ci}(p) = K_1(1+Tp)$ avec T = 1s.

Question 15:

- a) Déterminer en fonction de K, K₁, τ_1 , T l'expression de la nouvelle FTBO non corrigée : $\frac{\alpha(p)}{U_c(p)}$
- b) Puis sachant que cette fonction de transfert est stable à la condition que tous les coefficients du polynôme du dénominateur sont de même signe en déduire la condition sur K_1 pour que la fonction de transfert en boucle ouverte non-corrigée soit stable.

Question 16:

Déterminer K_1 pour que la FTBO non corrigée $\frac{\alpha(p)}{U_c(p)}$ ait un facteur d'amortissement ξ =1,7.

Vérifier que cette valeur est compatible avec les conditions obtenues précédemment. En déduire les valeurs de la pulsation propre ω_0 et du gain statique de la boucle ouverte K_{BO} .

Quelque soient les résultats trouvés précédemment, nous utiliserons les expressions suivantes pour

la suite de l'étude :
$$\frac{\alpha(p)}{U_c(p)} = \frac{K_{BO}}{1 + \frac{2.\xi}{\omega_0} \cdot p + \frac{p^2}{\omega_0^2}} \quad \text{avec } K_{BO} = 1, 1.10^{-3} \text{ V}^{-1}, \ \xi = 1, 7 \text{ et } \omega_0 = 3 \text{ rad.s}^{-1}.$$

Pour répondre au cahier des charges, il est décidé d'implanter un correcteur de fonction de transfert

suivante:
$$\mathbf{H}_{cor}(\mathbf{p}) = \mathbf{K}_{\mathbf{p}} \cdot \frac{1 + \mathbf{a} \cdot \mathbf{T}_{\mathbf{d} \cdot \mathbf{p}}}{1 + \mathbf{T}_{\mathbf{d} \cdot \mathbf{p}}}$$
 avec $\mathbf{a} > 1$.

Ouestion 17:

Nommer ce correcteur.

Les diagrammes de Bode de gain et de phase (pour K_p =1) de ce correcteur sont fournis en annexe 3. Afin d'assurer un gain significatif de phase, nous décidons de placer ω_c en ω_{BP} =50 rad.s⁻¹, définissant ainsi la bande passante.

Ouestion 18:

Déterminer la valeur du paramètre a pour que le correcteur permette d'assurer la marge de phase du cahier des charges. En déduire la valeur de T_d.

Question 19:

Déterminer le gain K_p pour que le critère de bande passante du cahier des charges soit bien vérifié.

La stabilité du tronc étant assurée, nous devons maintenant analyser les performances en précision et rapidité de l'asservissement de position angulaire. La consigne est nulle, ainsi seule la perturbation va écarter le tronc du robot de sa posture verticale. Cette perturbation provient du mouvement de marche souhaité c'est-à-dire de l'accélération subie. Avec les réglages du correcteur, une simulation numérique a permis de tracer la réponse temporelle du système pour une perturbation $\gamma(t)$ respectant la loi de vitesse représentée sur la figure 7 de la page 6. Avec cependant une accélération $\gamma(t)$ maintenue sur seulement 0,32 s. Cette réponse est tracée sur l'annexe 7.

Question 20:

Justifier l'allure de la réponse temporelle. Déterminer graphiquement sur le document réponse le temps de réponse à 5%, le dépassement maximal et l'erreur statique. Conclure sur la capacité du correcteur à vérifier l'ensemble des critères du cahier des charges.

Partie 3 : Alterner les phases d'appui sur les deux pied (marche du robot)

A l'instar de la marche humaine, les jambes du robot alternent les phases d'appui avec le sol avec les phases de balancement, où la jambe en rotation autour de la hanche prépare l'appui suivant. La figure ci-dessous décrit cette alternance.

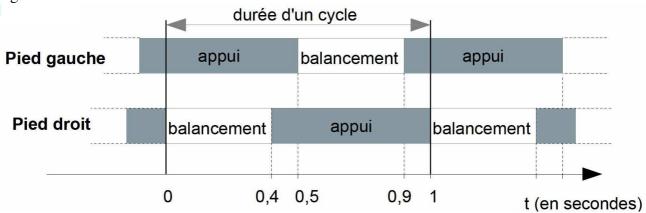


Figure 9 : chronogramme de la marche bipède en régime permanent

Extrait du cahier des charges à valider dans cette partie :

Exigence 1.1 : Le robot doit pouvoir atteindre les performances cibles				
Sous-exigence	Description			
Id=1.1.1	L'amplitude maximale de balancement d'une jambe est de 45°			
Id=1.1.2	Le robot peut se déplacer jusqu'à 5 km.h ⁻¹			
Id=1.1.4	La longueur d'une foulée est de 150 cm au maximum			
Id=1.1.5	La période d'une foulée ne peut être inférieure à 1 seconde			

L'objectif de cette partie est d'analyser les solutions techniques mises en œuvre pour obtenir l'alternance des phases d'appui du robot et de vérifier les performances de la marche.

Lorsque la jambe est tendue, la distance entre l'axe de tangage de la cheville et celui de tangage de la hanche est de 98 cm.

Question 21:

Le critère de vitesse de déplacement de 5 km.h⁻¹ est-il cohérent avec ceux de longueur de foulée et de temps de cycle ? Justifier.

Compte tenu des dimensions du robot, pour atteindre l'objectif de vitesse de déplacement de LOLA, la durée de la phase de balancement doit être inférieure à 0,4 secondes. C'est le moteur de tangage de la hanche qui assure ce mouvement.

Alors que traditionnellement, le moteur d'articulation de la cheville est placé directement sur l'axe de la liaison considérée, une avancée technologique sur le robot LOLA a consisté à implanter les moteurs d'orientation de la cheville le plus haut possible sur la jambe afin de réduire le moment d'inertie J_J de la jambe par rapport à l'axe $(O_H, \overrightarrow{x_0})$: voir annexe 5.

La solution retenue nécessite une transmission de puissance du moteur jusqu'à l'axe de la cheville. La rotation de tangage est obtenue par la chaîne décrite partiellement sur les annexes 5 et 6.

On donne aussi le débattement angulaire de rotation en tangage de la cheville sur l'annexe 5.

Depuis le moteur implanté sur la cuisse, la puissance est transmise par un système composé de poulies, courroies, et d'un renvoi d'angle à pignons coniques comme le montre l'annexe 6.

Ouestion 22:

Dénombrer et décrire les mobilités (internes et utiles) du modèle de mécanisme présenté en annexe 7. (Modélisation cinématique de la cheville uniquement) En déduire le degré d'hyperstatisme du mécanisme d'articulation de la cheville.

Ouestion 23:

On note d la distance ED : $\overrightarrow{DE} = d$. $\overrightarrow{y_0}$ et λ le paramètre lié à la liaison hélicoïdale entre la vis droite et le chariot droit dont le pas de vis est $P_V : \overline{EO} = \lambda . \overline{z_0}$.

- a) Réaliser l'analyse cinématique du cycle constitué du tibia, de la vis droite et du chariot droit. Et en déduire les degrés de liberté à ajouter à la liaison entre le chariot droit et le tibia pour rendre le cycle isostatique. Quel type de liaison obtient-on ainsi?
- b) Une modification du même type de la liaison entre le chariot gauche et le tibia permet-elle de rendre le mécanisme isostatique ? Justifiez votre réponse.

Ouestion 24:

Quels mouvements particuliers doit-on imposer simultanément aux « vis droite» et « vis gauche» pour obtenir une rotation uniquement en roulis de la cheville ? Pour une rotation uniquement en tangage?

Pour la suite, on ne s'intéresse qu'au mouvement de tangage. On simplifie donc la modélisation en ne considérant qu'un seul système vis écrou et une seule bielle. Voir schéma cinématique de l'annexe 5. On a alors les liaisons suivantes :

- \mathcal{F} L_{0.0/5}: Pivot d'axe (O, $\overrightarrow{z_0}$) \mathcal{F} L_{E,5/3}: Hélicoïdale d'axe (E, $\overline{z_0}$) et de pas P_V

Les paramètres et dimensions du mécanisme sont les suivantes :

Question 25:

- a) En écrivant la fermeture géométrique du mécanisme ainsi modélisé, montrez que l'on a l'équation du second degré : $x^2 + b.x + c = 0$ avec : $x = h \lambda$ et des coefficients b et c que vous exprimerez en fonction de r, ℓ , d' et α .
- b) En déduire la course ΔC du chariot permettant d'obtenir le débattement angulaire spécifié en annexe 5. Sachant que : h = 446 mm, r = 88 mm, ℓ = 340 mm et d' = 40 mm.

Les caractéristiques de la chaîne de transmission de puissance sont les suivantes :

Vitesse nominale en sortie du moto-réducteur = vitesse nominale de la poulie motrice	$N_n = 2200 \text{tr.min}^{-1}$
Diamètre de la poulie motrice	40 mm
Diamètre de la poulie réceptrice	40 mm
Nombre de dents de l'engrenage conique lié à la poulie réceptrice	22
Nombre de dents de l'engrenage conique lié à la vis	22
Pas de la vis à billes	P _v (à déterminer)

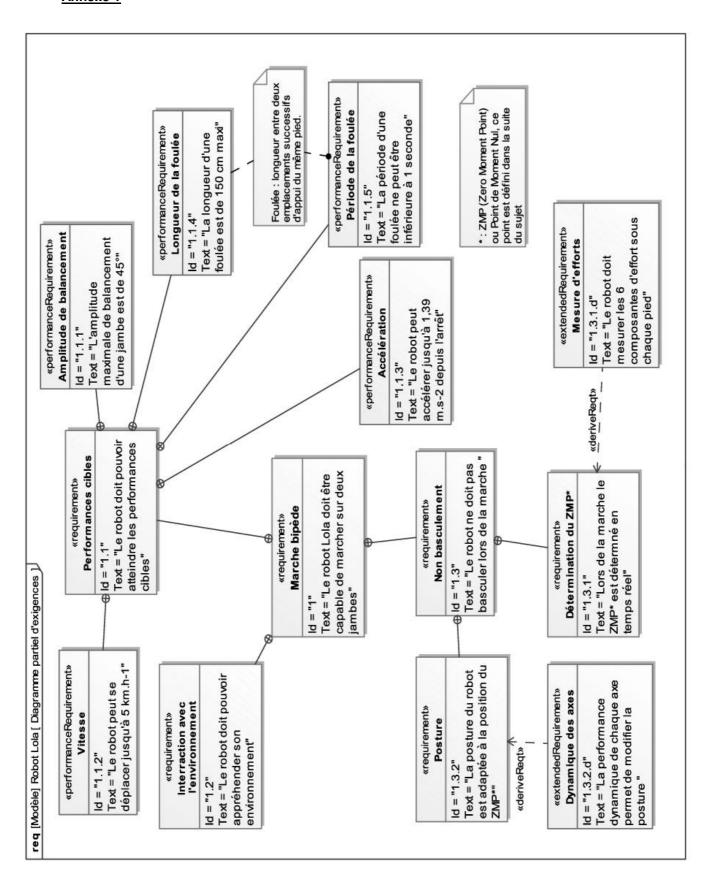
Le cahier des charges précise que ce débattement angulaire en tangage doit pouvoir être parcouru en moins de 0,8 s.

Question 26:

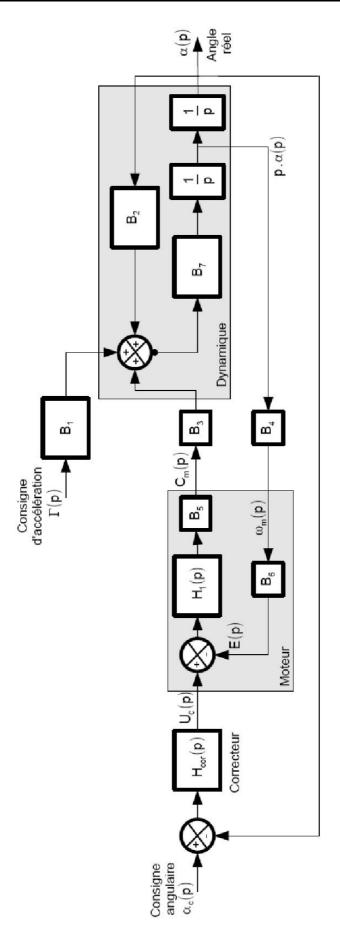
En supposant la vitesse de rotation du moteur constante, déterminer le pas P_v en mm de la vis à billes pour obtenir le temps d'inclinaison en tangage de la cheville spécifié par le cahier des charges.

Fin de l'énoncé.

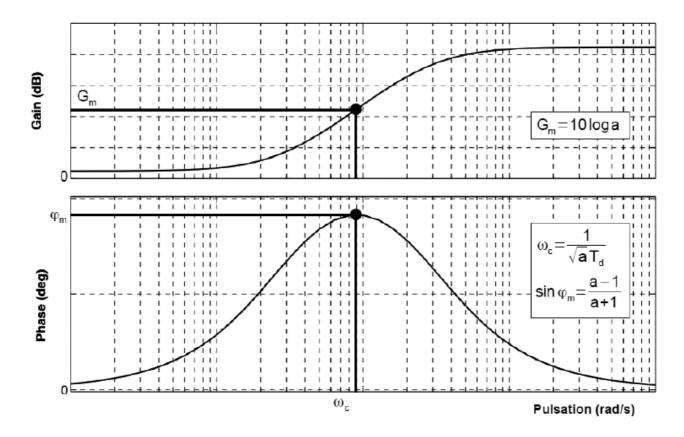
Annexe 1



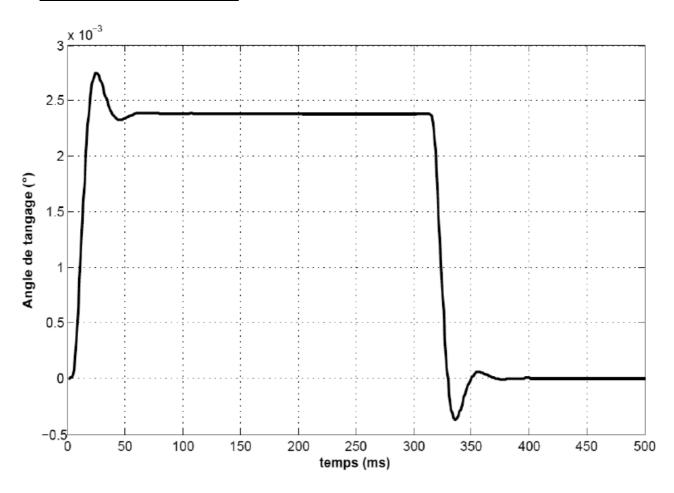
Annexe 2 : Schéma bloc de l'asservissement de position angulaire du tronc



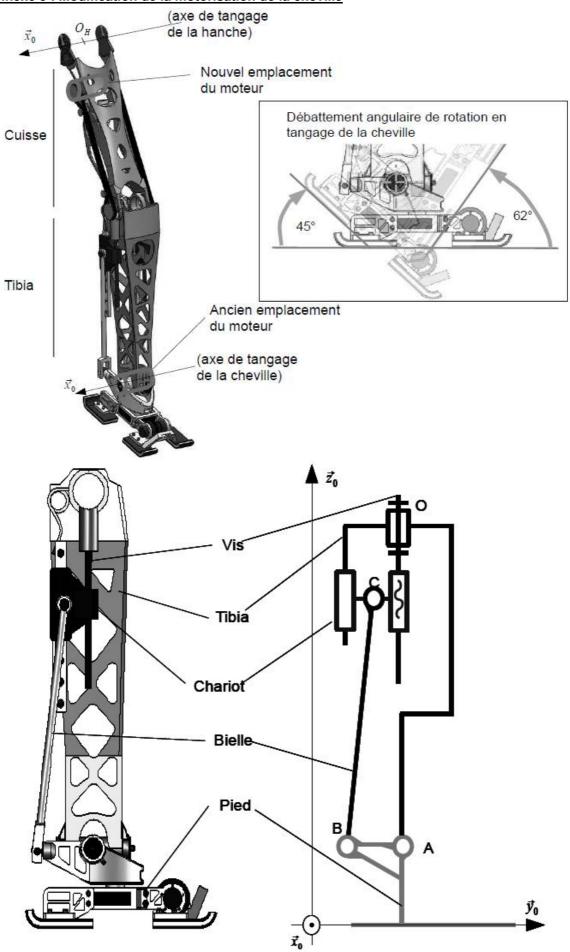
Annexe 3 : Diagrammes de Bode du correcteur pour K_P = 1



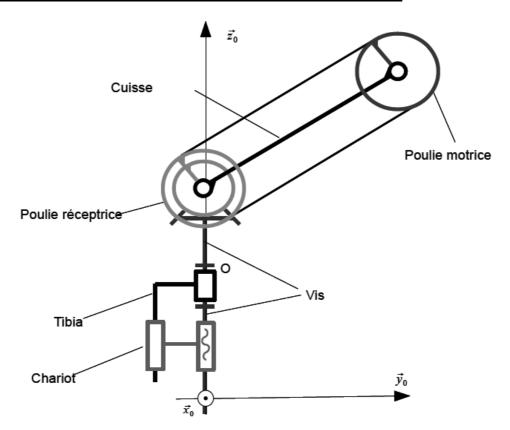
Annexe 4 : Réponse temporelle



Annexe 5: Modification de la motorisation de la cheville



Annexe 6 : Transmission de mouvement de l'articulation de la cheville



Annexe 7 : Modélisation cinématique de la cheville

