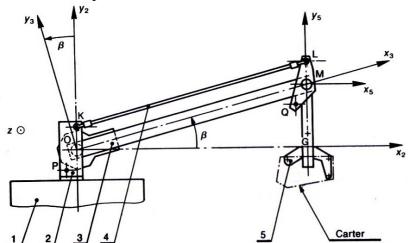
PSI – DM1

Bras manipulateur


23-09-2025

Mise en situation

Le système étudié est un bras manipulateur destiné à déplacer sur une chaine de moulage des carters en alliages léger de boites de vitesses automobiles.

Modélisation : Ce bras manipulateur est constitué de 4 solides :

- Le socle 1 avec la tourelle 2 qui dans notre étude sont tous les deux liés (fixes) au sol.
- \mathcal{F} Le bras 3 lié à la tourelle 2 par une liaison pivot d'axe $(0, \overline{z_2})$.
- La tringle 4 est liée à la tourelle 2 et au préhenseur 5 par deux liaisons rotule dont es centres sont respectivement le points K et L.

Objectif

L'objectif du problème est de déterminer la valeur maximale du couple moteur C_m exercé sur le bras 3, afin de dimensionner ce moteur.

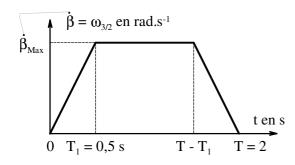
Dimensions et paramétrage

On associe à chaque solide i une base orthonormée directe $\mathcal{B}_i = (\overrightarrow{x_i}, \overrightarrow{y_i}, \overrightarrow{z_i})$.

On pose le paramètre angulaire : $\beta = (\overrightarrow{x_2}, \overrightarrow{x_3}) = (\overrightarrow{y_2}, \overrightarrow{y_3})$

On donne les dimensions suivantes : $\overrightarrow{OM} = \overrightarrow{KL} = \ell . \overrightarrow{x_3}$ $\overrightarrow{OK} = \overrightarrow{ML} = d. \overrightarrow{y_2}$

Le quadrilatère OMLK étant un parallélogramme déformable $\mathcal{B}_5 = \mathcal{B}_2$ et $\mathcal{B}_4 = \mathcal{B}_5$.


Le carter est fixé sur le préhenseur 5 de telle sorte que le centre de gravité de cet ensemble soit le point G avec : $\overrightarrow{MG} = -h$. $\overrightarrow{y_2}$

Hypothèses

- Toutes les liaisons sont parfaites
- Ton néglige le poids et l'inertie de la tringle 4.
- \mathcal{F} L'accélération gravitationnelle est définie par le vecteur $\overrightarrow{g} = -g$. $\overrightarrow{y_2}$.
- Le préhenseur 5 avec le carter ont une masse m₅.
- ☼ Le bras 3 est assimilé à une barre homogène de longueur ℓ dont la section est faible devant sa longueur.
- $^{\text{GP}}$ Le bras 3 a un centre de gravité G_3 tel que $\overrightarrow{OG_3} = \frac{\ell}{2}$. $\overrightarrow{\alpha_3}$
- Toutes les liaisons sont des liaisons parfaites
- ${}^{\text{T}}$ La liaison de centre O est motorisée. On a donc un couple $\overrightarrow{C_m} = C_m$. $\overrightarrow{z_2}$ qui s'exerce sur le bras 3.

Travail demandé

- 1- Réaliser un graphe de structure du mécanisme. Vous donnerez le type, le centre et l'orientation de chacune des liaisons et vous ajouter à ces liaisons les actions extérieures s'appliquant sur les solides.
- **2-** Isoler la tringle 4 et en déduire la direction de $\overrightarrow{F_{4\rightarrow 5}}$ la résultante de l'action mécanique de la tringle 4 sur le préhenseur 5.
- 3- On étudie la rotation du bras 3 par rapport à 2 d'une position horizontale à un angle β de 60°. Soit sur une course angulaire de $\Delta\beta = \frac{\pi}{3}$. Ce déplacement est un déplacement en trapèze des vitesses.

Le cahier des charges impose que le déplacement de 60° du bras 3 du manipulateur puisse se faire sur une durée maximale T=2 s.

On choisit de faire ce déplacemant avec les mêmes durées d'accélération et de décélération sur la moitié du temps de déplacement. Ces deux phases ont donc la même durée $T_1=0.5\ \mathrm{s}$

Déterminer β_{Max} la vitesse maximale du bras 3 par rapport au socle 2, et en déduire β l'accélération angulaire du bras sur la première phase.

- 4- Quel est le type de mouvement du préhenseur 5 avec le carter par rapport au socle 2 ?
- 5- En déduire, en fonction de ℓ , β et β , les expressions de $\overline{V_{G \in 5/2}}$ la vitesse puis $\overline{a_{G \in 5/2}}$ l'accélération du centre de gravité G du préhenseur 5 avec le carter par rapport à la tourelle 2.
- **6-** En isolant l'ensemble {Préhenseur 5 + Carter}, déterminer les composantes, dans la base \mathcal{B}_3 , des actions en M et L en fonction de d, h, ℓ , g, m_5 , β , β et β .

On utilisera les notations suivantes : $\overrightarrow{F_{4\rightarrow 5}} = X_{45}$. $\overrightarrow{x_3}$ et $\overrightarrow{F_{3\rightarrow 5}} = X_{35}$. $\overrightarrow{x_3} + Y_{35}$. $\overrightarrow{y_3}$.

Où : $\overrightarrow{F_{4\to 5}}$ et $\overrightarrow{F_{3\to 5}}$ sont les résultantes des actions de 4 et 3 sur 5

- 7- Déterminer, en fonction de ℓ et m_3 , l'expression de $I_3 = I_{OZ_3}(3)$ le moment d'inertie du bras 3 par rapport à l'axe $(O, \overrightarrow{z_3})$.
- **8-** En isolant le bras 3, déterminer l'expression, en fonction de m_5 , m_3 , ℓ , β et g, du couple moteur C_m . En déduire en fonction de m_5 , m_3 , ℓ et g, du couple moteur maximal.