Théorème de l'énergie cinétique : cas des mouvements simples

1-Théorème de l'énergie cinétique : Enoncé

1.1- Démonstration pour une masse ponctuelle

Soit une masse ponctuelle au point P de masse m en mouvement à la vitesse $V_{P \in m/Rg}$ par rapport à un repère galiléen.

Si cette masse ponctuelle m est soumise à une force \overrightarrow{F} alors celle-ci fera varier la vitesse $\overrightarrow{V_{P\in m/Rg}}$ conformément au PFD : $\overrightarrow{F}=m.a_{P\in m/Rg}=m\left(\frac{d\ V_{P\in m/Rg}}{dt}\right)_{Rg}$

Faisons le produit scalaire de cette égalité avec la vitesse $V_{P \in m/Rg}$. On a alors :

$$\overrightarrow{F} \cdot \overrightarrow{V_{P \in m/Rg}} = m \left(\frac{d \overrightarrow{V_{P \in m/Rg}}}{dt} \right)_{Rg} \cdot \overrightarrow{V_{P \in m/Rg}} = \frac{d \frac{1}{2} \cdot m \cdot \overrightarrow{V_{P \in m/Rg}}^2}{dt}$$

Le terme : $\frac{1}{2}$. m . $V_{P \in m/Rg}^{\longrightarrow 2}$ est homogène à une énergie. Cette énergie est due à la vitesse de la masse ponctuelle m dans le repère galiléen Rg. <u>Il s'agit donc de l'énergie cinétique de la masse m dans son mouvement par rapport au repère Rg.</u>

Le terme \overrightarrow{F} . $V_{P \in m/Rg}$ fait donc varier l'énergie cinétique. Il s'agit donc d'un échange d'énergie avec l'extérieur de la masse m. Il est homogène à une énergie par unité de temps, c'est-à-dire à une puissance. Il s'agit donc de la puissance de la force \overrightarrow{F} par rapport au repère galiléen \overrightarrow{Rg} .

1.2- Enoncé pour une masse ponctuelle

La puissance des forces extérieures par rapport à un repère galiléen s'appliquant sur une masse ponctuelle au point P est égale à la variation par rapport au temps de l'énergie cinétique par rapport à ce même repère galiléen.

$$\Sigma \overrightarrow{F_{Ext}} \cdot \overrightarrow{V_{P \in m/Rg}} = \frac{d \ E_c(m/Rg)}{dt} \qquad \text{où} : \qquad E_C(m/Rg) = \frac{1}{2} \ m \cdot \overrightarrow{V_{P \in m/Rg}}^2$$

1.3- Généralisation à un solide

Un solide S_i de masse m peut se décomposer en une infinité de petite masses ponctuelles dm situées en P pour lesquelles on $a: m = \iiint_S dm$. La somme de toutes les égalités liées au théorème de l'énergie cinétique appliqué à toutes les masses dm donne alors :

$$\iiint_{S_i} \overrightarrow{F_{Ext}} \cdot \overrightarrow{V_{P \in S/Rg}} + \iiint_{S_i} \overrightarrow{F_{Int}} \cdot \overrightarrow{V_{P \in S/Rg}} = \iiint_{S_i} \frac{d \ E_c(m/Rg)}{dt} = \frac{d \ \iiint_{S_i} E_C(dm/Rg)}{dt}$$

A partir du principe des actions mutuelles et de l'équiprojectivité des vitesses,

On montre pour un solide que :
$$\iiint_{S_i} \overrightarrow{F_{Int}} \cdot \overrightarrow{V_{P \in S/Rg}} = 0$$

$$\text{D'autre part}: \ \, \iiint_{S_i} \overrightarrow{F_{\text{Ext}}} \cdot \overrightarrow{V_{\text{PeS/Rg}}} = \Sigma \, P(\text{Ext} \rightarrow S_i/R_g) \qquad \text{et}: \qquad \iiint_{S_i} E_C(\text{dm/R_g}) = E_C(S_i/R_g)$$

On a donc pour un solide S_i:

$$\Sigma P(Ext \rightarrow S_i/R_g) = \frac{d E_C(S_i/Rg)}{dt}$$

1.4- Généralisation à un ensemble de solides

Pour un système S constitué d'un ensemble de solides indéformables $S: S = \sum_{i=1}^{n} S_i$.

L'énergie cinétique de ce système est la somme des énergies cinétiques de chacun des solides :

$$E_{C}(S/Rg) = \sum_{i=1}^{n} E_{C}(S_{i}/Rg)$$

Prenons l'exemple d'un système S constitué de deux solides S₁ et S₂ :

$$\sum_{i=1}^{2} \sum P(Ext_{Si} \rightarrow S_i/R_g) = \sum P(Ext_S \rightarrow S_1/R_g) + P(S_2 \rightarrow S_1/R_g) + \sum P(Ext_S \rightarrow S_2/R_g) + P(S_1 \rightarrow S_2/R_g)$$

$$\sum_{i=1}^{2} \sum P(Ext_{Si} \rightarrow S_i/R_g) = \sum P(Ext_S \rightarrow S/R_g) + P(S_2 \rightarrow S_1/R_g) + P(S_1 \rightarrow S_2/R_g)$$

Le terme $P(S_2 \rightarrow S_1/R_g) + P(S_1 \rightarrow S_2/R_g)$ est appelé la puissance des inter-efforts du système constitué des deux solides, ou puissance des actions intérieures du système. On la note : $P(Int_S \rightarrow S/R_g)$.

On obtient alors :
$$\sum_{i=1}^{2} \sum P(Ext_{Si} \rightarrow S_i/R_g) = \sum P(Ext_S \rightarrow S/R_g) + P(Int_S \rightarrow S/R_g)$$

On montre de la même manière en généralisant à un système S constitué de n solides S_i :

$$\sum_{i=1}^{n} \sum P(Ext_{Si} \rightarrow S_i/R_g) = \sum P(Ext_S \rightarrow S/R_g) + \sum P(Int_S \rightarrow S/R_g)$$

Donc pour un système S constitué d'un ensemble de solides si on note :

- 𝔻 Σ P(Ext→S,Rg) et Σ P(Int→S,Rg) les sommes des puissances des actions extérieures et intérieures au système S, par rapport au repère Galiléen R_g.
- E_C(S/Rg) l'énergie cinétique du système S par rapport au repère Rg.

Alors le théorème de l'énergie cinétique s'écrit :

$$\Sigma P(Ext \rightarrow S/R_g) + \Sigma P(Int \rightarrow S/R_g) = \frac{d E_C(S/R_g)}{dt}$$

2- Calcul de l'énergie cinétique

Soit un solide S décomposé en une infinité de petite masse ponctuelles dm situées en P. On a alors :

$$m = \iiint_S dm \qquad \text{et}: \qquad E_C(S/Rg) = \iiint_S E_C(dm/Rg) = \iiint_S \frac{1}{2} \, V_{P \in S/Rg}^{\longrightarrow 2} \, . \, dm$$

2.1- Cas d'un solide en translation

Pour un solide en translation quelque soit les points P et A on a : $V_{P \in S/Rg} = V_{A \in S/Rg}$

On en déduit :
$$E_C(S/Rg) = \iiint_S \frac{1}{2} V_{A \in S/Rg}^{\longrightarrow 2}$$
 . $dm = \frac{1}{2} V_{A \in S/Rg}^{\longrightarrow 2}$. $\iiint_S dm$

Donc:
$$\forall$$
 le point A : $E_C(S/Rg) = \frac{1}{2} m \cdot V_{A \in S/Rg}^{\longrightarrow 2}$

Cette relation est notamment valable avec le centre de gravité G du solide : $E_C(S/Rg) = \frac{1}{2} m \cdot V_{G \in S/Rg}^{2}$

2.2- Cas d'un solide en rotation autour d'un axe fixe dans la repère galiléen R_g

Soit un solide S en rotation d'axe Δ telle que la vitesse de rotation est ω .

Quelque soit le point P de S il existe un point P' défini comme le projeté orthogonal du point P sur l'axe Δ . Le segment $\overrightarrow{PP'}$ est alors le rayon de la trajectoire circulaire de P ($T_{P \in S/Rg}$) défini par la rotation.

Quelques soit le point P on a alors : $\overrightarrow{V_{P \in S/Rg}} = \overrightarrow{V_{P' \in S/Rg}} + \overrightarrow{PP'} \wedge \overrightarrow{\Omega(S/Rg)}$

Or le point P' étant sur l'axe Δ : $\overrightarrow{V_{P' \in S/Rg}} = \overrightarrow{0}$ donc : $\overrightarrow{V_{P \in S/Rg}} = \overrightarrow{PP'} \wedge \overrightarrow{\Omega(S/Rg)}$

donc: $\overrightarrow{V_{P \in S/Rg}}^2 = ||\overrightarrow{PP'}||^2 \cdot ||\overrightarrow{\Omega(S/Rg)}||^2$ $\Omega(S/Rg) \perp \overrightarrow{PP}$ D'autre part :

Par conséquent : $E_C(S/Rg) = \iiint_S \frac{1}{2} ||\overrightarrow{PP'}||^2 \cdot ||\Omega(S/Rg)||^2 dm$

Or : $\|\Omega(S/Rg)\| = \omega$ quelque soit le point P

Et: \overrightarrow{PP} est un rayon.

 $E_C(S/Rg) = \iiint_S \frac{1}{2} r^2 \cdot \omega^2 dm$ Donc si on note r ce rayon on a:

$$E_C(S/Rg) = \frac{1}{2} \cdot \left(\iiint_S r^2 \cdot dm \right) \cdot \omega^2$$

Donc si un solide S est en rotation d'axe Δ alors son énergie cinétique dans le repère Rg est :

$$E_{C}(S/Rg) = \frac{1}{2} \cdot I_{\Delta}(S) \cdot \omega^{2}$$

Où: \mathcal{F} I_{Δ} est le moment d'inertie de S par rapport à Δ

© ω est la vitesse de rotation de S par rapport à Rg

2.3- Cas de plusieurs solides

Si un système S est constitué de n solides S_i : $S = \sum_{i=1}^{n} S_i$ alors l'énergie cinétique du système par rapport au repère Rg est la somme des énergies cinétiques de chacun de ces solides par rapport à Rg.

$$\mathbf{E}_{\mathbf{C}}(\mathbf{S}/\mathbf{R}\mathbf{g}) = \sum_{i=1}^{n} \mathbf{E}_{\mathbf{C}}(\mathbf{S}_{i}/\mathbf{R}\mathbf{g})$$

3- Puissance d'une action mécanique

3.1- Action mécanique

Une action mécanique d'un corps S₁ sur un autre corps S₂ est en générale la somme sur une surface Σ d'une pression répartie $\overrightarrow{p(P)}$, ou sur un volume V d'une charge de densité $\overrightarrow{g(P)}$, variable ou constante en fonction du point P. L'action mécanique qui résulte de cette charge répartie peut être modélisée par le torseur dont les éléments de réduction en A sont pour :

Example 1. Le moment en A
$$\mathcal{M}_A(\overrightarrow{1} \rightarrow 2)$$
 tel que : $\mathcal{M}_A(\overrightarrow{1} \rightarrow 2) = \iint_{\Sigma} \overrightarrow{AP} \wedge \overrightarrow{p(P)} \cdot ds$ ou $=\iiint_{V} \overrightarrow{AP} \wedge \overrightarrow{g(P)} \cdot dv$

3.2- Puissance d'une action mécanique

3.2.1- Définition

La puissance d'une action mécanique sur d'un corps 1 sur un solide 2 par rapport au repère R_g est la somme des puissances des forces élémentaires créées par la charge répartie de densité $\overline{p(P)}$

On a donc :
$$P(1\rightarrow 2/R_g) = \iint_{\Sigma} \overrightarrow{p(P)} \cdot \overrightarrow{V_{P\in 2/R_g}} ds$$

3.2.2- Démonstration

Quelque soit les points A et P on a :
$$\overrightarrow{V_{P \in 2/Rg}} = \overrightarrow{V_{A \in 2/Rg}} + \overrightarrow{\Omega(2/R_g)} \wedge \overrightarrow{AP}$$

Donc : $P(1 \rightarrow 2/R_g) = \iint_{\Sigma} \overrightarrow{p(P)}. \left[\overrightarrow{V_{A \in 2/Rg}} + \overrightarrow{\Omega(2/R_g)} \wedge \overrightarrow{AP}\right]. ds$
 $P(1 \rightarrow 2/R_g) = \iint_{\Sigma} \overrightarrow{p(P)}. \overrightarrow{V_{A \in 2/Rg}}. ds + \iint_{\Sigma} \overrightarrow{p(P)}. \overrightarrow{\Omega(2/R_g)} \wedge \overrightarrow{AP}. ds$
 $P(1 \rightarrow 2/R_g) = \overrightarrow{V_{A \in 2/Rg}}. \iint_{\Sigma} \overrightarrow{p(P)}. ds + \iint_{\Sigma} \overrightarrow{\Omega(2/R_g)}. \overrightarrow{AP} \wedge \overrightarrow{p(P)}. ds$
 $P(1 \rightarrow 2/R_g) = \overrightarrow{V_{A \in 2/Rg}}. \iint_{\Sigma} \overrightarrow{p(P)}. ds + \overrightarrow{\Omega(2/R_g)}. \iint_{\Sigma} \overrightarrow{AP} \wedge \overrightarrow{p(P)}. ds$

Or: $\iint_{\Sigma} \overrightarrow{P(P)}. ds = \overrightarrow{R(1 \rightarrow 2)}$ est la résultante de l'action de 1 sur 2

$$\iint_{\Sigma} \overrightarrow{AP} \wedge \overrightarrow{p(P)}. ds = \cancel{\mathcal{M}_A(1 \rightarrow 2)}$$
 est le moment au point A de l'action de 1 sur 2

3.2.3- Conclusion

La puissance d'une action mécanique d'un corps 1 sur corps 2 par rapport au repère R_g est :

$$P(1\rightarrow 2/R_g) = \overrightarrow{V_{A\in 2/Rg}} \cdot R(\overrightarrow{1\rightarrow 2}) + \Omega(\overrightarrow{2/R_g}) \cdot \mathcal{M}_A(\overrightarrow{1\rightarrow 2})$$

La somme de ces deux produits scalaire est appelée :

Le comoment du torseur de l'action mécanique (torseur sthénique) de $1 \ sur \ 2$ par le torseur cinématique de 2 par rapport au repère R_g .

$$P(1\rightarrow 2/R_g) = \{T(1\rightarrow 2)\} \otimes \{\mathcal{V}(2/R_g)\}$$

<u>Remarque</u>: Pour calculer le comoment d'un torseur cinématique et d'un torseur sthénique, on fait la somme des produits scalaires entre les résultantes et moments. Cependant ATTENTION

Pour un comoment les torseurs doivent être exprimés au même point.

3.2.4- Puissance d'une force

Si l'action est une force
$$\overrightarrow{F_{1\rightarrow 2}}$$
 appliquée en un Point A: $P(1\rightarrow 2,R_g) = A \begin{bmatrix} \overrightarrow{F_{1\rightarrow 2}} \\ \overrightarrow{0} \end{bmatrix} \otimes A \begin{bmatrix} \overrightarrow{\Omega_{2/Rg}} \\ \overrightarrow{V_{A\in 2/Rg}} \end{bmatrix}$
Soit : $P(1\rightarrow 2/R_g) = \overrightarrow{F_{1\rightarrow 2}} \cdot \overrightarrow{V_{A\in 2/Rg}}$

Si l'action est un **couple de vecteur**
$$\overrightarrow{C_{1\rightarrow 2}}$$
: $P(1\rightarrow 2,R_g) = \begin{cases} \overrightarrow{0} \\ \overrightarrow{C_{1\rightarrow 2}} \end{cases} \otimes \begin{cases} \overrightarrow{\Omega_{2/Rg}} \\ \overrightarrow{V_{A\in 2/Rg}} \end{cases}$
Soit : $P(1\rightarrow 2/R_g) = \overrightarrow{C_{1\rightarrow 2}} \cdot \overrightarrow{\Omega_{2/Rg}}$

4- Travail et puissance des actions de liaison

4.1- Puissances des actions de liaisons intérieures

Soit un ensemble S constitué de deux solides 1 et 2. La puissance des actions intérieures à l'ensemble S est la somme de la puissance de l'action de 1 sur 2 par rapport au repère R_g et de celle de 2 sur 1 par rapport au repère R_g .

On a donc : $P(Int \rightarrow S/R_g) = P(1 \rightarrow 2, R_g) + P(2 \rightarrow 1, R_g)$

Soit: $P(Int \rightarrow S/R_g) = \{T(1 \rightarrow 2)\} \otimes \{\mathcal{V}(2/R_g)\} + \{T(2 \rightarrow 1)\} \otimes \{\mathcal{V}(1/R_g)\}$

 $P(Int \rightarrow S/R_g) = \{T(1 \rightarrow 2)\} \otimes \{\mathcal{V}(2/R_g)\} + \{T(1 \rightarrow 2)\} \otimes \{\mathcal{V}(R_g/1)\}$

 $P(Int \rightarrow S/R_g) = \{T(1 \rightarrow 2)\} \otimes \left[\{ \mathcal{V}(2/R_g) \} + \{ \mathcal{V}(R_g/1) \} \right]$

Soit:

Conclusions La puissance des efforts intérieurs est :

P

(3)

4.2- Puissances des actions de liaisons extérieures

Soit un ensemble S constitué de plusieurs solides dont le solide 1 et un solide 0 extérieur à l'ensemble S. Tel que ce solide 0 est en liaison avec le solide 1.

La puissance de l'action extérieure du solide 0 sur le solide 1 par rapport au repère R_g est :

Le premier comoment est nul si la liaison est parfaite et le deuxième comoment est nul si le solide extérieur 0 est fixe dans le repère R_g .

Conclusions

F

Et:

F