Réponses Fréquentielles des SLCI : Démonstrations

1- Principes du tracé des diagrammes de Bode

1.1- Calcul du gain dynamique et du déphase d'une FT

On a: $e(t) = E_0.\sin(\omega.t)$

et:

 $s(t) = S_0.\sin(\omega . t + \phi)$

On en déduit dans le domaine de Laplace : $E(p) = E_0 \frac{\omega}{p^2 + \omega^2}$ et : $S(p) = S_0 \frac{\omega}{p^2 + \omega^2}$. $e^{\frac{\phi}{\omega} \cdot p}$

 $H(p) = \frac{S(p)}{E(p)} = \frac{S_0}{F_0} e^{\frac{\varphi}{\omega} \cdot p}$ On en déduit donc la fonction de transfert :

En remplaçant la variable de Laplace par le complexe j. ω on obtient : $H(j.\omega) = \frac{S_0}{F_0} e^{j.\phi}$

La valeur complexe de la fonction H pour $p=j.\omega$ est le complexe :

 $H(j.\omega) = \frac{S_0}{F_0} (\cos \varphi + j.\sin \varphi)$

Cette valeur permet donc de déterminer à partir de la fonction de transfert le gain et le déphasage induits par le système en fonction de ω la pulsation de l'entrée :

Gain dynamique en dB : $G_{dB}(\omega) = 20.\log |H(j.\omega)|$

 $\varphi(\omega) = Arg(H(j.\omega))$ Déphasage :

1.2- Produit de deux fonctions de transfert

Soit la fonction de transfert H(p) définie par le produit : $H(p) = H_1(p) \times H_2(p)$ On a alors:

$$G_{dBH}(\omega) = 20.\log |H(j.\omega)| = 20 \cdot \log |H_1(j.\omega) \times H_2(j.\omega)| = 20 \cdot \log (|H_1(j.\omega)| \times |H_2(j.\omega)|)$$

$$G_{dBH}(\omega) = 20 \cdot \log |H_1(j.\omega)| + 20 \cdot \log |H_2(j.\omega)| = G_{dBH1}(\omega) + G_{dBH2}(\omega)$$

$$\phi_{H}(\omega) = \operatorname{Arg} (H(j.\omega)) = \operatorname{Arg} (H_{1}(j.\omega) \times H_{2}(j.\omega))$$

$$\phi_{H}(\omega) = \operatorname{Arg} (H_{1}(j.\omega)) + \operatorname{Arg} (H_{2}(j.\omega)) = \phi_{H1}(\omega) + \phi_{H2}(\omega)$$

2- Gain dynamique et déphasage d'une fonction de transfert du premier ordre

Expression du gain dynamique

$$\text{To n sait que}: \qquad G(\omega) = \left| \ H(j.\omega) \ \right| = \left| \ K \cdot \frac{1}{1 + j.\tau.\omega} \right| = \frac{K}{\left| \ 1 + j.\tau.\omega \right|} = \frac{K}{\sqrt{1 + \tau^2.\omega^2}}$$

D'où le gain en décibels : $G_{dB}(\omega) = 20 \cdot \log K - 10 \cdot \log (1 + \tau^2 \cdot \omega^2)$

Expression du déphasage

On sait que :
$$\phi(\omega) = \operatorname{Arg}\left(H(j.\omega)\right) = \operatorname{Arg}\left(\frac{K}{1+j.\tau.\omega}\right) = \operatorname{Arg}(K) - \operatorname{Arg}\left(1+j.\tau.\omega\right)$$
D'où le déphasage :
$$\phi(\omega) = -\arctan\left(\tau.\omega\right)$$

Asymptotes du diagramme de gain

 $\operatorname{Pour} \omega \to 0$ $G_{dB}(\omega) \rightarrow 20.\log K - 10.\log 1 = 20.\log K$

Au voisinage de 0 on a donc : Une asymptote horizontale d'ordonnée 20.log K

 $G_{dB}(\omega) \rightarrow 20.\log K - 10.\log \tau^2.\omega^2 = 20.\log K - 20.\log \tau. - 20.\log \omega$ $\operatorname{Pour} \omega \to \infty$

Au voisinage de ∞ on a donc : Une asymptote **☞** De pente : – 20dB par décade

Passant au point $\left(\frac{1}{\tau}, 20.\log K\right)$

Asymptotes du diagramme de phase

 $\operatorname{Pour} \omega \to 0$,

$$\tau.\omega \rightarrow 0$$

Soit:

$$\varphi(\omega) = -\arctan(\tau.\omega) \rightarrow 0^{\circ}$$

On a donc:

Une asymptote horizontale d'ordonnée 0°

 $^{\mathcal{P}}$ Pour $\omega \to \infty$,

$$\tau.\omega \to \infty$$

$$\varphi(\omega) = -\arctan(\tau.\omega) \rightarrow -90^{\circ}$$

On a donc:

Une asymptote horizontale d'ordonnée – 90°

Valeurs particulières en 1/τ

Pour
$$\omega = \frac{1}{\tau}$$

Pour
$$\omega = \frac{1}{\tau}$$
 on a: $G_{dB}\left(\frac{1}{\tau}\right) = 20 \cdot \log K - 10 \cdot \log 2$ Soit: $G_{dB}\left(\frac{1}{\tau}\right) = 20 \cdot \log K - 3 dB$
Et: $\varphi\left(\frac{1}{\tau}\right) = -\arctan(1) = -45^{\circ}$

$$G_{dB}\left(\frac{1}{\tau}\right) = 20.\log K - 3 dB$$

$$\varphi\left(\frac{1}{\tau}\right) = -\arctan\left(1\right) = -45^\circ$$

3- Gain dynamique et déphasage d'une fonction de transfert de rang 1

Une fonction de transfert de rang un est de la forme :

$$H(p) = K.(1 + \tau.p)$$

Expression du gain dynamique

$$G(\omega) = |H(j.\omega)| = |K.(1+j.\tau.\omega)| = K.|1+j.\tau.\omega| = K\sqrt{1+\tau^2.\omega^2}$$

D'où le gain en décibels :

$$G_{dB}(\omega) = 20 \cdot \log K + 10 \cdot \log (1 + \tau^2 \cdot \omega^2)$$

Expression du déphasage

$$\varphi(\omega) = \operatorname{Arg}(H(j.\omega)) = \operatorname{Arg}(K.(1+j.\tau.\omega)) = \operatorname{Arg}(1+j.\tau.\omega)$$

On a donc: $\tan \varphi(\omega) = \tau.\omega$

D'où le déphasage :
$$\varphi(\omega) = + \arctan(\tau \cdot \omega)$$

Asymptotes du diagramme de gain

$$\operatorname{Pour} \omega \to 0$$

$$G_{dB}(\omega) \rightarrow 20 \cdot \log K + 10 \cdot \log 1 = 20 \cdot \log K$$

Au voisinage de 0 on a donc : Une asymptote horizontale d'ordonnée 20 . log K

 $^{\mathcal{F}}$ Pour $\omega \rightarrow \infty$

$$G_{dB}(\omega) \rightarrow 20$$
 . $\log K + 10$. $\log \tau^2 \cdot \omega^2 = 20$. $\log K + 20$. $\log \tau + 20 \cdot \log \omega$

Au voisinage de ∞ on a donc : Une asymptote

Passant au point $(1/\tau, 20.\log K)$

Asymptotes du diagramme de phase

$$\operatorname{Pour} \omega \to 0$$
,

$$\tau.\omega \rightarrow 0$$

$$\varphi(\omega) = + \arctan(\tau.\omega) \rightarrow 0^{\circ}$$

On a donc:

Une asymptote horizontale d'ordonnée 0°

 $^{\mathfrak{P}}$ Pour $\omega \to \infty$,

$$\tau.\omega \to \infty$$

$$\varphi(\omega) = + \arctan(\tau.\omega) \rightarrow + 90^{\circ}$$

On a donc:

Une asymptote horizontale d'ordonnée + 90°

Valeurs particulières en 1/τ

Pour
$$\omega = \frac{1}{5}$$

Pour
$$\omega = \frac{1}{\tau}$$
 on a: $G_{dB}(\frac{1}{\tau}) = 20 \cdot \log K + 10 \cdot \log 2$ Soit: $G_{dB}(\frac{1}{\tau}) = 20 \cdot \log K + 3 \cdot dB$

$$G_{dB}\left(\frac{1}{\tau}\right) = 20.\log K + 3 dB$$

$$\varphi\left(\frac{1}{\tau}\right) = + \arctan(1) = +45$$

4- Gain dynamique et déphasage d'une fonction de transfert du second ordre

Expression du gain dynamique

$$G(\omega) = \left| H(j.\omega) \right| = \left| \frac{K}{1 + 2.\xi \cdot \frac{\omega}{\omega_0} \cdot j - \frac{\omega^2}{\omega_0^2}} \right| = \frac{K}{\left| 1 - \frac{\omega^2}{\omega_0^2} + 2.\xi \cdot \frac{\omega}{\omega_0} \cdot j \right|}$$

Soit en posant : $\mathbf{u} = \frac{\mathbf{\omega}}{\mathbf{\omega_0}}$ On a : $G(\omega) = \frac{K}{\sqrt{(1 - u^2)^2 + 4 \xi^2 u^2}}$

D'où le gain en décibels :

 $G_{dB}(\omega) = 20 \cdot \log K - 10 \cdot \log ((1 - u^2)^2 + 4.\xi^2.u^2)$

Expression du déphasage

The original of the same of t

Soit en posant : $\mathbf{u} = \boldsymbol{\omega}/\boldsymbol{\omega}_0$ $\phi(\boldsymbol{\omega}) = \operatorname{Arg}(K) - \operatorname{Arg}\left((1 - \mathbf{u}^2) + 2.\xi.\mathbf{u}.\mathbf{j}\right)$ Soit : $\phi(\boldsymbol{\omega}) = -\arctan\left(\frac{2.\xi.\mathbf{u}}{1 - \mathbf{u}^2}\right)$ pour $\mathbf{u} < 1$ ou : $\phi(\boldsymbol{\omega}) = -180 - \arctan\left(\frac{2.\xi.\mathbf{u}}{1 - \mathbf{u}^2}\right)$ pour $\mathbf{u} > 1$

Asymptotes du diagramme de gain

 $\operatorname{Pour} \omega \to 0$ $u \to 0$

 $G_{dB}(\omega) \to 20.\log K - 10.\log 1 = 20.\log K$

Au voisinage de 0 on a donc : Une asymptote horizontale d'ordonnée 20 . log K

 $\operatorname{Pour} \omega \to \infty$ $u \rightarrow \infty$ $G_{dB}(\omega) \rightarrow 20.\log K - 10.\log u^4 = 20.\log K + 40.\log \omega_0 - 40.\log \omega$

Au voisinage de ∞ on a donc :

Une asymptote ☞ De pente : – 40dB par décade

Passant au point (ω_0 , 20.log K)

Asymptotes du diagramme de phase

Pour $\omega \to 0$, $u \to 0$ $\frac{2.\xi \cdot u}{1 - u^2} \to 0$ Soit: $\varphi(\omega) = -\arctan\left(\frac{2.\xi \cdot u}{1 - u^2}\right) \to 0^{\circ}$

On a donc:

Une asymptote horizontale d'ordonnée 0°

 $\text{Pour }\omega\to\infty,\ \ u\to\infty\qquad\frac{2.\xi.u}{1-u^2}=\frac{2.\xi}{1/u-u}\to0\qquad\text{Soit :}\quad \phi(\omega)=-180^\circ-\arctan\left(\frac{2.\xi.u}{1-u^2}\right)\to-180^\circ$

On a donc:

Une asymptote horizontale d'ordonnée – 180°

Valeurs particulières en ω₀

Pour $\omega = \omega_0$ on a u=1 $G_{dB}(\omega_0) = 20$. log K-10 . log $4.\xi^2$

Soit : $G_{dB}(\omega_0) = 20.\log K - 20.\log (2.\xi)$ Remarque : pour $\xi = 0.5$ on a $G_{dB}(\omega_0) = 20.\log K$

Pour: $\omega \to \omega_0^-$ on a $u \to 1^ \frac{2.\xi \cdot u}{1-u^2} \to +\infty$ Soit: $\varphi(\omega_0) \to -\arctan(+\infty) = -90^{\circ +}$

Pour: $\omega \to \omega_0^+$ on a $u \to 1^+$ $\frac{2.\xi \cdot u}{1-u^2} \to -\infty$ Soit: $\varphi(\omega_0) \to -180^\circ - \arctan(-\infty) = -90^\circ$

Position du gain par rapport aux asymptotes

On a: $A(u) = (1 - u^2)^2 + 4.\xi^2.u^2 = 1 + (4.\xi^2 - 2).u^2 + u^4$ Si $\xi > 0,707$ alors: $(4.\xi^2 - 2) > 0 \Rightarrow A(u) > 1 \Rightarrow G_{dB}(\omega) < 20.\log K$ Et: $\Rightarrow A(u) > u^4 \Rightarrow G_{dB}(\omega) < 20.\log K - 40.\log u$

Donc pour $\xi > 0,707$ la courbe du gain est en dessous des asymptotes

Si $\xi < 0.5$ alors: $(4.\xi^2 - 2) < -1$ pour $\omega < \omega_0$: $u < 1 \Rightarrow A(u) < 1 \Rightarrow G_{dB}(\omega) > 20.\log K$

Et pour $\omega > \omega_0 : u > 1 \implies A(u) < u^4 \implies G_{dB}(\omega) > 20.\log K - 40.\log u$

Donc pour $\xi < 0.5$ la courbe du gain est <u>au dessus</u> des asymptotes

Si $0.5 < \xi < 0.707$ alors : $4.\xi^2 - 2 < 0$ Donc :

Pour $\omega \to 0$: $u \to 0$ on a: $A(u) < 1 \Rightarrow G_{dB}(\omega) > 20.\log K$

Pour $\omega \to \infty$: $u \to \infty$ on a: $A(u) \le u^4 \Rightarrow G_{dB}(\omega) \ge 20.\log K - 40.\log u$

Donc pour $0.5 < \xi < 0.707$ la courbe du gain est <u>au dessus</u> des asymptotes <u>sauf au voisinage de ω_0 .</u>

Résonnance pour $\xi < 0.707$

 $G_{dB}(u) = 20 \cdot \log K - 10 \cdot \log ((1 - u^2)^2 + 4.\xi^2.u^2)$ On a:

 $\frac{d \ G_{dB}(u)}{du} = -\frac{10}{\ln 10} \cdot \frac{2.(1-u^2).(-2.u) + 8.\xi^2.u}{(1-u^2)^2 + 4 \ \xi^2 \ u^2} = \frac{10}{\ln 10} \cdot 4.u. \frac{1-u^2 - 2.\xi^2}{1 + (4.\xi^2 - 2).u^2 + u^4}$ Donc:

 $\begin{array}{ll} \text{Par cons\'equent}: \ \frac{d \ G_{dB}(u)}{du} = 0 & \iff 1 - u^2 - 2.\xi^2 = 0 \\ \text{La courbe de gain pr\'esente donc un maximum \`a la pulsation}: & \iff u = \sqrt{1 - 2.\xi^2} \\ \text{$\omega_r = \omega_0 . \sqrt{1 - 2.\xi^2}$} \end{array}$

 $\text{Ce maximum est de:} \quad G_{dB}(\omega_0) = 20 \; . \; log \; K - 10 \; . \; log \; \big(\left(\; 1 - 1 + 2.\xi^2 \; \right)^2 + 4.\xi^2. (1 - 2.\xi^2) \; \big)$

 $G_{dB}(\omega_0) = 20 \cdot \log K - 10 \cdot \log (4.\xi^4 + 4.\xi^2 - 8.\xi^4)$

 $G_{dB}(\omega_0) = 20 \; . \; log \; K - 10 \; . \; log \; \big(\; 4.\xi^2 - \; 4.\xi^4 \; \big) = 20 \; . \; log \; K - 10 \; . \; log \; \big(\; 4.\xi^2 \; . (1 - \; \xi^2) \; \big)$

Donc pour $\xi < 0.707$ il y a une fréquence de résonance : $\omega_r = \omega_0 \cdot \sqrt{1 - 2.\xi^2}$

 $Q_{rdB} = G_{db}(\omega_r) - G_{dB}(0) = -20 \cdot \log(2.\xi \cdot \sqrt{1-\xi^2})$ Avec un facteur de résonnance de :

5- Gain dynamique et déphasage d'une fonction du 1^{ier} ordre généralisé

Un premier ordre généralisé H(p) peut s'écrire comme le produit de deux fonctions $H_1(p)$ et $H_2(p)$ où H₁(p) est un premier ordre simple de gain K et H₂(p) est une fonction de rang 1 et de gain 1 :

 $\mathbf{H}_1(\mathbf{p}) = \frac{\mathbf{K}}{1 + \tau \cdot \mathbf{p}}$ et $\mathbf{H}_2(\mathbf{p}) = 1 + \mathbf{c} \cdot \tau \cdot \mathbf{p}$ D'où les expressions du gain dynamique et de la phase :

 $G_{db}(\omega) = 20.\log K - 10.\log(1 + \tau^2 \cdot \omega^2) + 10.\log(1 + c^2 \cdot \tau^2 \cdot \omega^2)$ et: $\varphi(\omega) = \arctan(c.\tau.\omega) - \arctan(\tau.\omega)$

Valeurs caractéristiques du diagramme de phase

On a:
$$\frac{d \phi(\omega)}{d\omega} = \frac{c.\tau}{1 + c^2.\tau^2.\omega^2} - \frac{\tau}{1 + \tau^2.\omega^2} = \frac{\tau.(c + c.\tau^2.\omega^2 - 1 - c^2.\tau^2.\omega^2)}{(1 + c^2.\tau^2.\omega^2).(1 + \tau^2.\omega^2)}$$

Donc:
$$\frac{d \phi(\omega)}{d\omega} = 0 \iff c + c.\tau^2.\omega^2 - 1 - c^2.\tau^2.\omega^2 = 0 \iff (c.\tau^2.\omega^2 - 1).(1 - c) = 0 \iff c.\tau^2.\omega^2 = 1$$

Le maximum du déphasage est donc obtenu pour une pulsation :

$$\text{Ce maximum est donc de:} \qquad \phi(\omega_M) = \arctan\bigg(c.\tau.\frac{1}{\tau.\sqrt{c}}\bigg) - \arctan\bigg(\tau.\frac{1}{\tau.\sqrt{c}}\bigg) = \arctan\sqrt{c} - \arctan\frac{1}{\sqrt{c}}$$

On a donc :
$$\tan \phi(\omega_M) = \tan \left(\arctan \sqrt{c} - \arctan \frac{1}{\sqrt{c}}\right) = \frac{\sqrt{c} - 1/\sqrt{c}}{1 + \sqrt{c} \cdot 1/\sqrt{c}} = \frac{c - 1}{2.\sqrt{c}} = \tan \phi(\omega_M)$$

$$\begin{aligned} \text{Soit} : & \frac{\sin^2 \phi_M}{1 - \sin^2 \phi_M} = \frac{(c-1)^2}{4.c} & \Leftrightarrow & 4.c.\sin^2 \phi(\omega_M) = (c-1)^2 - (c^2 - 2.c + 1).\sin^2 \phi(\omega_M) \\ & \Leftrightarrow & (c^2 + 2.c + 1).\sin^2 \phi(\omega_M) = (c-1)^2 \\ & \Leftrightarrow & (c+1)^2.\sin^2 \phi(\omega_M) = (c-1)^2 & \Leftrightarrow & \sin \phi(\omega_M) = \frac{c-1}{c+1} \end{aligned}$$

Valeurs caractéristiques du diagramme de gain

On sait que :
$$G_{db}(\omega) = 20.\log K - 10.\log(1 + \tau^2.\omega^2) + 10.\log(1 + c^2.\tau^2.\omega^2)$$
 Donc :

Pour:
$$\omega \to \infty$$
 $G_{db}(\omega) \to 20.\log K - 10.\log(\tau^2.\omega^2) + 10.\log(c^2.\tau^2.\omega^2) = 20.\log K + 10.\log c^2$

Soit: $G_{db}(\omega) \rightarrow 20.\log K + 20.\log c$

A la pulsation :
$$\omega_{M} = \frac{1}{\tau \cdot \sqrt{c}}$$
 on a : $G_{db}(\omega) = 20.\log K - 10.\log(1 + 1/c) + 10.\log(1 + c)$

$$G_{db}(\omega) = 20.\log K + 10.\log \frac{1+c}{1+1/c}$$
 $G_{db}(\omega_M) = 20.\log K + 10.\log c$