
Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

Programmation dynamique et memoisation.docx page 1/6

Programmation dynamique et mémoïsation

Principe de la mémoïsation

Problématique

Certains algorithmes ont parfois des complexités exponentielles. Lorsque que le paramètre en entrée

de cet algorithme est relativement faible, le temps d’exécution est acceptable. Cependant dès que ce

paramètre augmente, la complexité augmentant de manière exponentielle, le temps d’exécution de

l’algorithme devient très rapidement inacceptable, même avec des machines performantes.

Il faut donc optimiser l’algorithme pour ne plus avoir une complexité exponentielle.

La mémoïsation est une manière d’optimisation des algorithmes

Principe

Le terme « mémoïsation » est en fait un jargon pour parler de mémorisation.

Dans certains cas si la complexité est exponentielle c’est que pour déterminer un résultat il est

nécessaire d’effectuer (autant de fois que le paramètre d’entrée) la détermination de plusieurs résultats

intermédiaires. Or ces résultats intermédiaires peuvent être déterminés plusieurs fois de manière

redondante. Le principe de la mémoïsation est d’enregistrer ces résultats intermédiaires dans un registre

(liste, tableau ou dictionnaire) de manière à ne pas avoir à déterminer plusieurs fois un même résultat

intermédiaire.

Exemple de la suite de Fibonacci

La suite de Fibonnacci est une suite récurrente définie par ses deux premiers termes : f0 = 0 et f1 = 1

et la relation de récurrence : fn = fn-1 + fn-2.

Pour les premier termes de cette fonction on a : f2 = f1 + f0 = 1 + 0 = 1 ; f3 = f2 + f1 = 1 + 1 = 2 ;

f4 = f3 + f2 = 2 + 1 = 3 ; f5 = f4 + f3 = 3 + 2 = 5 ; etc….

Codons une fonction qui prend en argument un entier n et qui retourne le n
ième

 terme de la suite de

Fibonacci. Etant donné la récurrence un codage récursif nous vient naturellement à l’esprit :

def Fibo_rec_naif(n) :

 if n == 0:

 return 0

 if n==1 :

 return 1

 return Fibo_rec_naif(n-1) + Fibo_rec_naif(n-2)

Voila un code simple mais qui s’avère très couteux en temps. En effet l’appel de la fonction pour

déterminer le 50
ième

 terme de la suite est d’une telle complexité qu’il est inenvisageable même avec la

plus puissante des machines dont on peut disposer.

Regardons les appels

récursifs pour obtenir

Fibo_naif(5) :

Cet arbre nous amène à la

conclusion suivante :

f(5)

f(4) f(3)

f(2) f(1)f(2)

f(0)f(1)

f(3)

f(1)f(2) f(1) f(0)

f(0)f(1)

La complexité est en Ο(2
n-1

)

Dans ce cas : f(0) est appelé 3 fois, f(1) 5fois, f(2) 3fois, f(3) 2 fois, f(4) une fois

Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

Programmation dynamique et memoisation.docx page 2/6

L’idée pour optimiser un tel algorithme est donc de mémoriser les termes de cette suite de

Fibonacci pour ne pas calculer deux fois un même terme. En mémorisant dans un dictionnaire, on peut

alors écrire soit un algorithme récursif soit un algorithme itératif.

Le code itératif, parcours descendant (des termes initiaux vers la solution) est :

def Fibo_ite(n) :

 DicoF = {0:0 , 1:1} # Les 2 premiers termes sont mémorisés

 For i in range(2,n+1) : # boucle itérative pour i de 2 à n (inclus)

 DicoF[i] = DicoF[i-1] + DicoF[i-2] # On calcule le i
ième

 terme

 return DicoF[n] # On retourne le n
ième

 terme

Le code récursif, parcours ascendant (de la solution vers les termes initiaux) est :

def Fibo_rec_memo(n) : # Fonction non récursive

 DicoF = {0:0 , 1:1} # Les 2 premiers termes sont mémorisés

 def Fibo_rec(n) : # Fonction récursive interne

 if n in DicoF : # Si le n
ième

 terme a déjà été calculé

 return DicoF[n] # On retourne sa valeur mémorisée

 else : # Sinon on calcule cette valeur et on la

 DicoF[n] = Fibo_rec(n-1) + Fibo_rec(n-2) # mémorise

 return DicoF[n] # Puis on la retourne

 return Fibo_rec(n) # On retourne la valeur calculée par

 # la fonction récursive interne

Programmation dynamique - Principe

Principe de la programmation dynamique

Pour certains problèmes où l’on cherche une solution optimale, on est parfois tenté d’essayer toutes

les solutions possibles pour retenir la solution optimale. Cette solution (parfois appelée « force brute »)

est cependant souvent trop couteuse. En effet, si à chaque étape de la résolution du problème on a k

calculs à faire et que l’on a n étapes chacune faisant appel au k étapes précédentes alors la complexité sera

en O(k
n
). D’où la complexité exponentielle trop couteuse.

La programmation dynamique réduit cette complexité en divisant le problème en sous problèmes

dont de complexité est linéaire en O(k). Quitte à multiplier n fois les sous problèmes jusqu’à n’avoir que

des sous problèmes de complexité linéaire. La complexité totale sera donc en O(n.k) soit O(n)

La programmation dynamique permet donc de « diviser pour mieux régner ».

Pour réduire la complexité, il faut donc trouver la solution pour diviser le problème en un nombre

restreint de sous problèmes (par exemple k sous problèmes) et trouver la relation de récurrence permettant

d’arriver à la solution du problème à partir des k solutions des sous problèmes. En divisant n fois les sous

problèmes mais en ne retenant que la solution optimale parmi les k sous problèmes

Chaque algorithme de programmation dynamique repose sur une équation qui lui est
propre et qu’en général on nomme équation de Bellman de l’algorithme. (Du nom de

l’inventeur de la programmation dynamique dans les années 1950 : Richard Bellman).

Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

Programmation dynamique et memoisation.docx page 3/6

Exemple 1 : La machine à états

Supposons une machine qui évolue d’un état initial à un état final. Cette machine peut être dans

différents états (ici 2) aux différents instants ti pour i allant de 1 à n. Chaque passage d’un état à un autre

(état 1 ou 2 à l’instant ti à l’état 1 ou 2 à l’instant ti+1) se fait avec un coût de transition défini (C’est

l’entier noté sur les arêtes entre les états 1 ou 2 de l’instant ti et les états 1 ou 2 de l’instant ti+1. On en a

ici 2
2
 = 4 transitions possibles (avec un coût défini) entre deux instants consécutifs.

1

2

Etat
initial

1

2

1

2

1

2

1

2

1

2

t1 t2 ti tntn-1.....

5

5

7 5

1

2

2

1

1

1 1

1

3

3

8 4

9

8

0 2

1

5

3

1

1

2

.....

ou
Etat
final

ou

On cherche la succession d’états qui permet d’aller de l’état initial à l’état final avec le cout total

(somme des couts de passage entre les différents états) le plus faible.

 Combien de successions d’états différentes sont possibles pour passer d’un état initial à un état final ?

On a 2
n
 successions d’états possibles

 Combien a-t-on d’additions et de comparaisons à faire pour les 2
n
 successions d’état possibles ?

On a donc (n−1)×2
n
 additions (et 2

n−1 comparaisons) à faire.

Un tel algorithme n’est pas envisageable. Par exemple pour 49 instants (2
49

 = 5,63.10
14

) avec un

calcul du cout d’une seule succession d’états (n−1 additions) se faisant en 10−6
 s (1 µs) le temps

d’exécution sera d’environ 18 ans. Il faut donc un algorithme moins complexe.

Programmation dynamique de cette machine à états

Dans ce cas, le principe est que : Le cout minimal pour arriver à l’instant t1+1 dans l’état 1 : Cmin e1

ti+1

ou dans l’état 2 : Cmin e2

ti+1
 est pour ces deux cas possibles de l’instant ti+1 : le minimum de la somme du

coût minimal pour arriver à l’instant ti dans l’état k : Cminek

ti
 et du coût de la transition entre l’état k et

l’état 1 ou 2 : CTminek→e1

ti→ti+1
 ou CTminek→e2

ti→ti+1
. On a donc l’équation de Bellman de cet algorithme :

Pour j = 1 ou 2 : Cmin
ti+1

ej
 = mini

pour k = 1 ou 2









Cmin
ti

ek
 + CT

ti→ti+1

ek→ej

Donc pour chaque sous problème (coût minimal pour arriver à l’instant ti autre que l’instant t0 qui

sont nuls) on a donc deux coûts minimums à déterminer par deux additions (et une comparaison). Soit

pour chacun des n−1 sous problèmes on a 2×2 = 4 additions à effectuer et deux comparaisons.

On est passé d’une complexité O(2
n
) à une complexité O(n).

Dans le cas ci-dessus (7 instants différents) on passe de 6×2
7
 = 768 additions à faire à 4×6 = 24

additions à faire. De la sorte la résolution du problème manuellement est possible.

5

5

7 5

2

2

1

1

1

1 1

1

3

3

8 4

9

8

0 2

1

5

3

1

Etat
initial

ou
Etat
final

ou

Cout minimal = 7 Succession des états pour ce cout minimal : 1,2,2,2,2,1,2

 0

 0

1 ,1

2 ,2 2

4 ,2 ,2 5

,2 5 ,2 6 ,2

5 ,2 6 7

11

,2

,2 6

,1

,1

Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

Programmation dynamique et memoisation.docx page 4/6

Exemple 2 : La pyramide de nombres

Présentation du problème

On a la pyramide de nombres ci-contre. On parcourt cette

pyramide de son sommet à sa base en additionnant les nombres par

lesquels on passe. Chaque déplacement est une descente d’un étage en

allant vers un nombre en-dessous soit juste à gauche soit juste à droite.

L’objectif est de trouver le chemin du sommet à la base

maximisant la somme des 6 nombres et de déterminer cette somme.

 3

 7 4

 2 4 6

 5 8 9 3

 1 5 2 6 1

4 2 8 3 2 9

Résolution naïve du problème :

Combien-a-t-on de chemins possibles pour aller du sommet à la base ?

On a : 2
n−1

 chemins possibles où n est le nombre d’étage de la pyramide.

Ici n = 6 étages donc on a 2
5
 = 32 chemins possibles.

Algorithme glouton :

Le nombre de chemins et donc le nombre de sommes à faire étant trop important nous allons utiliser

un algorithme glouton dont le principe est de partir du sommet pour descendre à la base du sommet en se

dirigeant toujours vers le plus grand nombre situé en dessous (soit juste à gauche soit juste à droite).

Déterminer la somme que l’on obtient avec un tel algorithme.

Σ = 3 + 7 + 4 + 9 + 6 + 3 = 32
Algorithme de programmation dynamique :

La somme trouvée par l’algorithme glouton n’est pas la solution optimale. Nous n’allons donc pas

nous en satisfaire. Et nous allons déterminer un algorithme de programmation dynamique permettant

d’arriver à la solution optimale.

Il est évident que la somme maximale permettant d’arriver au sommet en partant de la base est la

même que la somme maximale permettant d’arriver à un des nombres de la base en partant du sommet.

Nous allons réaliser une pyramide de nombre Σmax de même dimension que la pyramide P

ci-dessus. On note pour ces deux pyramides P et Σmax :

 P
 j
 i le j

ième
 nombre (en partant de la gauche) du i

ième
 étage de la pyramide P.

 Σ j
 i le j

ième
 nombre (en partant de la gauche) du i

ième
 étage de la pyramide Σmax.

Les nombres Σ j
 i de cette nouvelle pyramide correspondant à la somme maximale permettant

d’arriver au nombre P
 j
 i de la pyramide P en partant d’un des nombres de la base de la pyramide P.

Donner l’équations de Bellman permettant de construire la pyramide Σmax .

Pour i = 0 : Σ j
 i = P

 j
 i Pour i > 0 : Σ j

 i = P
 j
 i + max 



Σ j

 i−1 , Σ j+1
 i−1

Construire manuellement ci-dessous la pyramide Σmax .

 35

 32 29

 23 25 25

 18 21 19 13

 5 13 10 9 10

4 2 8 3 2 9

Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

Programmation dynamique et memoisation.docx page 5/6

Retrouver le chemin (du sommet à la base) permettant d’obtenir la somme maximale.

[Gauche , Droite , Gauche , Gauche , Droite]

Exemple 3 : Distance de Lenvenshtein ou distance d’édition

Définition et intérêt de la distance de Levenshtein

On appelle distance de Levenshtein entre deux chaines de caractères « mot1 » et « mot2 » le coût

minimal pour transformer « mot1 » et « mot2 » en effectuant les seules opérations élémentaires (au

niveau d'un caractère) suivantes :  Substitution d’un caractère

  Insertion (ajout) d’un caractère

  Suppression d’un caractère

Une telle distance permet d’estimer la proximité d’un mot d’un autre mot. Elle peut notamment

être utile dans un algorithme de correction orthographique automatique.

Algorithme naïf

On note respectivement :  L1 et L2 les longueurs des « mot1 » et « mot2 ».

 « mot−1 » et « mot−2 » les « mot1 » et « mot2 » amputés de leur première lettre
En notant DLev(mot1,mot2) la distance de Levenshtein entre les deux chaines de caractères

« mot1 » et « mot2 » on montre alors que :

a- Si un des deux mots à une longueur nulle alors la distance de Lenvenshtein est égale à la

longueur de l’autre mot : Si min(L1,L2) = 0 alors Dlev(mot1,mot2) = max(L1,L2)

b- Si les deux premières lettres des « mot1 » et « mot2 » sont identiques alors

 Dlev(mot1,mot2) = Dlev(mot1−1,mot2−1)

c- Si les deux premières lettres des « mot1 » et « mot2 » sont différentes alors il y a trois

possibilités pour passer du mot 1 au mot 2 :

 On modifie la première lettre de « mot1 » ou de « mot2 » pour se ramener au cas b et

rechercher la distance de Lenvenshtein entre 2 mots qui ont une même première lettre.

 On retire la première lettre de « mot1 » pour rechercher la distance de Levenshtein entre

« mot1−1 » et « mot2 »

 On retire la première lettre de « mot2 » pour rechercher la distance de Levenshtein entre

« mot1 » et « mot2−1 »

 On retient le cas optimal : celui qui donne la distance de Lenvenshtein la plus courte. D’où on a :

Dlev(mot1,mot2) = 1 + min (Dlev(mot1−1,mot2−1) , Dlev(mot1,mot2−1) , Dlev(mot1−1,mot2))

Ecrire en code Python une fonction récursive « Dlev_n(mot1,mot2) » qui prend en argument les

chaines de caractères « mot1 » et « mot2 » et qui retourne la distance de lenvenshtein. Utiliser pour cela

les indication ci-dessus en sachant de « mot−1 » s’obtient par slicing en codant : mot[1:]

def Dlev_n(mot1,mot2) :

 if min(len(mot1),len(mot2)) == 0 :

 return max(len(mot1),len(mot2))

 elif mot1[0] == mot2[0] :

 return Dlev_n(mot1[1:], mot2[1:])

 else :

 return 1 + min(Dlev_n(mot1[1:], mot2[1:]) , Dlev_n(mot1,

 mot2[1:]) , Dlev_n(mot1[1:], mot2)

Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

Programmation dynamique et memoisation.docx page 6/6

Quelle est la complexité d'un tel algorithme dans le pire des cas ? Cas où les deux mots ne partagent

aucun de leurs caractères. Conclure.

La complexité est en 3
min(L1,L2)

 . Pas vraiment convenable.

Algorithme avec mémoïsation

Exemple avec Dlev(‘niche’,’chien’)

Nous allons mémoïser la distance de Lenvenshtein entre les mots ‘niche’ et ‘chien’ amputés à

chaque fois d’une lettre supplémentaire jusqu’à ce qu’ils n’aient plus de lettre. Et nous allons mémoriser

ces distances de Levenshtein dans un tableau Numpy de len(‘chien’)+1 lignes et len(‘niche’)+1 colonnes.

On rappelle les relations de Bellman de cet algorithme :

Si min(len(mot1),len(mot2)) = 0 alors Dlev(mot1,mot2) = max(len(mot1),len(mot2))

Sinon si mot1[0] = mot2[0] alors Dlev(mot1,mot2) = Dlev(mot1[1:],mot2[1:])

Sinon Dlev(mot1,mot2) = 1 + Dmini

 Avec : Dmini = min(Dlev(mot1−1,mot2−1) , Dlev(mot1,mot2−1) , Dlev(mot1−1,mot2))

Compléter le tableau de mémoïsation ci-dessous pour déterminer Dlev(‘niche’,’chien’)

 ‘ ‘ ‘ n ’ ‘ . . . en ’ ‘ . . ien ‘ ‘ . hien ’ ‘ chien ’

‘ ‘ 0 1 2 3 4 5

‘ e ‘ 1 1 1 2 3 4

‘ . . . he ‘ 2 2 2 2 2 3

‘ . . che ‘ 3 3 3 3 3 2

‘ . iche ‘ 4 4 4 3 4 3

‘ niche ‘ 5 4 5 4 4 4

Ecrire le code correspondant :

def Dlev(mot1,mot2) :

 L1,L2=len(mot1),len(mot2)

 matrix=np.zeros((L1+1,L2+1))

 for i1 in range(L1+1):

 for i2 in range(L2+1):

 if min(i1,i2))==0:

 Lmax=max(len(mot1[L1-i1:]),len(mot2[L2-i2:]))

 matrix[i1,i2]=Lmax

 elif mot1[L1-i1:][0]==mot2[L2-i2:][0]:

 matrix[i1,i2]= matrix[i1-1,i2-1]

 else:

 Dmini=min(matrix[i1-1,i2],matrix[i1,i2-1],

 matrix[i1-1,i2-1])

 matrix[i1,i2] = 1 + Dmini

 return matrix[L1,L2]

