Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

Programmation dynamique et mémoisation

Principe de la mémoisation
Problématique

Certains algorithmes ont parfois des complexités exponentielles. Lorsque que le parametre en entrée
de cet algorithme est relativement faible, le temps d’exécution est acceptable. Cependant des que ce
parametre augmente, la complexité augmentant de maniere exponentielle, le temps d’exécution de
I’algorithme devient trés rapidement inacceptable, méme avec des machines performantes.

I1 faut donc optimiser 1’algorithme pour ne plus avoir une complexité exponentielle.

La mémoisation est une maniere d’optimisation des algorithmes

Principe

Le terme « mémoisation » est en fait un jargon pour parler de mémorisation.

Dans certains cas si la complexité est exponentielle c’est que pour déterminer un résultat il est
nécessaire d’effectuer (autant de fois que le parametre d’entrée) la détermination de plusieurs résultats
intermédiaires. Or ces résultats intermédiaires peuvent étre déterminés plusieurs fois de maniere
redondante. Le principe de la mémoisation est d’enregistrer ces résultats intermédiaires dans un registre

(liste, tableau ou dictionnaire) de maniere a ne pas avoir a déterminer plusieurs fois un méme résultat
intermédiaire.

Exemple de la suite de Fibonacci

La suite de Fibonnacci est une suite récurrente définie par ses deux premiers termes : fo=0etf; =1
et la relation de récurrence : £, =f,.1 + fna.

Pour les premier termes de cette fonctionona: f, =f; +fp=1+0=1;f =L +f1=1+1=2;
f1=f3+6H=2+1=3;fs=f,+f3=3+2=5etc....

Codons une fonction qui prend en argument un entier n et qui retourne le n~ " terme de la suite de
Fibonacci. Etant donné la récurrence un codage récursif nous vient naturellement a I’esprit :

ieme

def Fibo_rec_naif(n) :
if n==0:
return (
if n==1:
return 1
return Fibo_rec_naif(n-1) + Fibo_rec_naif(n-2)

Voila un code simple mais qui s’avere trés couteux en temps. En effet I’appel de la fonction pour
déterminer le 50 terme de la suite est d’une telle complexité qu’il est inenvisageable méme avec la
plus puissante des machines dont on peut disposer.

Regardons les appels f(S)\
récursifs pour obtenir - f(4) — f(3)
Fibo_naif(5) : O T~ £2)4 ™Nf(1)
Cet arbre nous amene a la f(2) \f(l) f(l)/ \f(O) f(l)/ \f(O)

conclusion suivante : f(l)’ \f(O)

La complexité est en O(2"")

Dans ce cas : f(0) est appelé 3 fois, f(1) Sfois, f(2) 3fois, f(3) 2 fois, f(4) une fois

Programmation dynamique et memoisation.docx page 1/6

Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

L’idée pour optimiser un tel algorithme est donc de mémoriser les termes de cette suite de
Fibonacci pour ne pas calculer deux fois un méme terme. En mémorisant dans un dictionnaire, on peut
alors écrire soit un algorithme récursif soit un algorithme itératif.

Le code itératif, parcours descendant (des termes initiaux vers la solution) est :

def Fibo_ite(n) :

DicoF = {0:0, 1:1} # Les 2 premiers termes sont mémorisés

For 1 in range(2,n+1) : # boucle itérative pour i de 2 a n (inclus)
DicoF[i] = DicoF[i-1] + DicoF[i-2] # On calcule le i*™ terme

return DicoF[n] # On retourne le n™ terme

Le code récursif, parcours ascendant (de la solution vers les termes initiaux) est :

def Fibo_rec_memo(n) :

DicoF = {0:0, 1:1} # Les 2 premiers termes sont mémorisés
def Fibo_rec(n) : # Fonction récursive interne
if n in DicoF : # Si le " terme a déja été calculé

return DicoF[n] # On retourne sa valeur mémorisée
else : # Sinon on calcule cette valeur et on la
DicoF[n] = Fibo_rec(n-1) + Fibo_rec(n-2) # mémorise
return DicoF[n] # Puis on la retourne
return Fibo_rec(n) # On retourne la valeur calculée par
la fonction récursive interne

Programmation dynamique - Principe

Principe de la programmation dynamique

Pour certains problemes ol 1’on cherche une solution optimale, on est parfois tenté d’essayer toutes
les solutions possibles pour retenir la solution optimale. Cette solution (parfois appelée « force brute »)
est cependant souvent trop couteuse. En effet, si a chaque étape de la résolution du probleme on a k
calculs a faire et que 1’on a n étapes chacune faisant appel au k étapes précédentes alors la complexité sera
en O(k"). D’ou la complexité exponentielle trop couteuse.

La programmation dynamique réduit cette complexité en divisant le probléme en sous problemes
dont de complexité est linéaire en O(k). Quitte a multiplier n fois les sous problemes jusqu’a n’avoir que
des sous problemes de complexité linéaire. La complexité totale sera donc en O(n.k) soit O(n)

La programmation dynamique permet donc de « diviser pour mieux régner ».

Pour réduire la complexité, il faut donc trouver la solution pour diviser le probleme en un nombre
restreint de sous problemes (par exemple k sous problemes) et trouver la relation de récurrence permettant
d’arriver a la solution du probleme a partir des k solutions des sous problemes. En divisant n fois les sous
problémes mais en ne retenant que la solution optimale parmi les k sous problemes
Chaque algorithme de programmation dynamique repose sur une équation qui lui est
propre et qu’en général on nomme équation de Bellman de I’algorithme. (Du nom de

I’inventeur de la programmation dynamique dans les années 1950 : Richard Bellman).

Programmation dynamique et memoisation.docx page 2/6

Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

Exemple 1 : La machine a états

Supposons une machine qui évolue d’un état initial a un état final. Cette machine peut étre dans
différents états (ici 2) aux différents instants t; pour i allant de 1 a n. Chaque passage d’un état a un autre
(état 1 ou 2 a l'instant t; a I’état 1 ou 2 a I’instant t;,;) se fait avec un coflit de transition défini (C’est
I’entier not€ sur les arétes entre les états 1 ou 2 de I’instant t; et les états 1 ou 2 de 'instant t;,;. On en a
ici 2% = 4 transitions possibles (avec un coiit défini) entre deux instants consécutifs.

t, ot t o t

@5
Etat <
L ou
initial

On cherche la succession d’états qui permet d’aller de 1’état initial a 1’état final avec le cout total
(somme des couts de passage entre les différents états) le plus faible.

i

—_ ~
—
(=] =)
—
— (%)
oo —
[as] x W
=}
‘\C/
=
gr
=8

< Combien de successions d’états différentes sont possibles pour passer d’un état initial a un état final ?

On a 2" successions d’états possibles

% Combien a-t-on d’additions et de comparaisons 2 faire pour les 2" successions d’état possibles ?

On a donc (n—1)x2" additions (et 2"-1 comparaisons) a faire.

Un tel algorithme n’est pas envisageable. Par exemple pour 49 instants 2% = 5,63.10") avec un
calcul du cout d’une seule succession d’états (n—1 additions) se faisant en 107 s (1 Ks) le temps
d’exécution sera d’environ 18 ans. Il faut donc un algorithme moins complexe.

Programmation dvnamique de cette machine a états

Dans ce cas, le principe est que : Le cout minimal pour arriver a I’instant t;,; dans I’état 1 : Cpin ;1

tiv1

ou dans 1’état 2 : Chin e; est pour ces deux cas possibles de I’instant t;;; : le minimum de la somme du
.. . < qs- . 4 R .. .
colt minimal pour arriver a I’instant t; dans 1’état k : Cminek et du cofit de la transition entre 1’état k et

ti - tiy ti - tiy) .
Iétat 1 ou 2 : CTmme ‘o CTmme : - On a donc I’équation de Bellman de cet algorithme :
. o t o e o t t - t
Pourj=1ou2: Cmin*'= mini (len T
€; pour k=1ou?2 (91 €k — €

Donc pour chaque sous probléme (colit minimal pour arriver a I’instant t; autre que 1’instant ty qui
sont nuls) on a donc deux cofits minimums a déterminer par deux additions (et une comparaison). Soit
pour chacun des n—1 sous problemes on a 2x2 = 4 additions a effectuer et deux comparaisons.

On est passé d’une complexité O(2") a une complexité O(n).

Dans le cas ci-dessus (7 instants différents) on passe de 6x2” = 768 additions 2 faire 4 4x6 = 24
additions a faire. De la sorte la résolution du probleme manuellement est possible.

= §§§§§§

Cout minimal = Succession des états pour ce cout minimal : 1 2 2 2 2 1 2

Programmation dynamique et memoisation.docx page 3/6

Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

Exemple 2 : La pyramide de nombres

Présentation du probleme

On a la pyramide de nombres ci-contre. On parcourt cette 3
pyramide de son sommet a sa base en additionnant les nombres par 7 4
lesquels on passe. Chaque déplacement est une descente d’un étage en 2 4 6
allant vers un nombre en-dessous soit juste a gauche soit juste a droite. 5 8 9 3
L’objectif est de trouver le chemin du sommet a la base 1 5 2 6 1
maximisant la somme des 6 nombres et de déterminer cette somme. 4 2 8 3 2 9

Résolution naive du probléme :

Combien-a-t-on de chemins possibles pour aller du sommet a la base ?
—1 ° ° N Ve °
On a : 2" chemins possibles oul n est le nombre d’étage de la pyramide.
Ici n = 6 étages donc on a 2’ = 32 chemins possibles.

Algorithme glouton :

Le nombre de chemins et donc le nombre de sommes a faire étant trop important nous allons utiliser
un algorithme glouton dont le principe est de partir du sommet pour descendre a la base du sommet en se
dirigeant toujours vers le plus grand nombre situé en dessous (soit juste a gauche soit juste a droite).
Déterminer la somme que 1’on obtient avec un tel algorithme.

2=3+7+4+9+6+3=32

Algorithme de programmation dynamique :

La somme trouvée par I’algorithme glouton n’est pas la solution optimale. Nous n’allons donc pas
nous en satisfaire. Et nous allons déterminer un algorithme de programmation dynamique permettant
d’arriver a la solution optimale.

Il est évident que la somme maximale permettant d’arriver au sommet en partant de la base est la
méme que la somme maximale permettant d’arriver a un des nombres de la base en partant du sommet.

Nous allons réaliser une pyramide de nombre 2., de méme dimension que la pyramide P
ci-dessus. On note pour ces deux pyramides P et 2, :

.iéme ¢

& P{ le jiéIne nombre (en partant de la gauche) dui” étage de la pyramide P.

-ieme ¢

& ZJ; le jiéme nombre (en partant de la gauche) dui™ étage de la pyramide 2,,x.
Les nombres Z{ de cette nouvelle pyramide correspondant a la somme maximale permettant
d’arriver au nombre P1{ de la pyramide P en partant d’un des nombres de la base de la pyramide P.

Donner I’équations de Bellman permettant de construire la pyramide 2,y .

Pouri=0: ZJ;=P§ Pouri>0: Z‘ii=PJi.+maX (Z*ii_l,zgf})
Construire manuellement ci-dessous la pyramide 2,y .
35
32 29

23 25 25
18 21 19 13
5 13 10 9 10
4 2 8 3 2 9

Programmation dynamique et memoisation.docx page 4/6

Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

Retrouver le chemin (du sommet a la base) permettant d’obtenir la somme maximale.
[Gauche , Droite , Gauche , Gauche , Droite]

Exemple 3 : Distance de Lenvenshtein ou distance d’édition

Définition et intérét de la distance de Levenshtein

On appelle distance de Levenshtein entre deux chaines de caracteéres « motl » et « mot2 » le cofit
minimal pour transformer « motl » et « mot2 » en effectuant les seules opérations élémentaires (au
niveau d'un caractére) suivantes : = Substitution d’un caractere

=> Insertion (ajout) d’un caractere
= Suppression d’un caractere

Une telle distance permet d’estimer la proximité d’un mot d’un autre mot. Elle peut notamment
étre utile dans un algorithme de correction orthographique automatique.

Algorithme naif

On note respectivement : < L1 et L2 les longueurs des « motl » et « mot2 ».
* «mot—1 » et « mot—2 » les « motl » et « mot2 » amputés de leur premiere lettre

En notant DLev(motl,mot2) la distance de Levenshtein entre les deux chaines de caracteres
«motl » et « mot2 » on montre alors que :
a- Si un des deux mots a une longueur nulle alors la distance de Lenvenshtein est égale a la
longueur de I’autre mot : Si min(L1,L2) = 0 alors Dlev(mot1,mot2) = max(L1,L.2)
b- Si les deux premieres lettres des «motl » et «mot2» sont identiques alors
Dlev(motl,mot2) = Dlev(mot1—1,mot2-1)
c- Si les deux premiceres lettres des «motl » et « mot2 » sont différentes alors il y a trois
possibilités pour passer du mot 1 au mot 2 :
< On modifie la premiere lettre de « motl » ou de « mot2 » pour se ramener au cas b et
rechercher la distance de Lenvenshtein entre 2 mots qui ont une méme premiere lettre.
" On retire la premiere lettre de « motl » pour rechercher la distance de Levenshtein entre
«motl—1 » et « mot2 »
& On retire la premiere lettre de « mot2 » pour rechercher la distance de Levenshtein entre
«motl » et « mot2—1 »
On retient le cas optimal : celui qui donne la distance de Lenvenshtein la plus courte. D’otion a :
Dlev(motl,mot2) = 1 + min (Dlev(motl—1,mot2—1) , Dlev(motl,mot2—1) , Dlev(motl—1,mot2))
Ecrire en code Python une fonction récursive « Dlev_n(motl,mot2) » qui prend en argument les
chaines de caracteres « motl » et « mot2 » et qui retourne la distance de lenvenshtein. Utiliser pour cela
les indication ci-dessus en sachant de « mot—1 » s’obtient par slicing en codant : mot[1:]

def Dlev_n(motl,mot2) :
if min(len(motl),len(mot2)) ==
return max(len(motl),len(mot2))
elif mot1[0] == mot2[0] :
return Dlev_n(mot1[1:], mot2[1:])
else :

return 1 + min(Dlev_n(motl1[1:], mot2[1:]) , Dlev_n(motl,
mot2[1:]) , Dlev_n(motl1[1:], mot2)

Programmation dynamique et memoisation.docx page 5/6

Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

Quelle est la complexité d'un tel algorithme dans le pire des cas ? Cas ou les deux mots ne partagent
aucun de leurs caracteres. Conclure.

o in(L1,L2 :
La complexité est en 3™""'? Pas vraiment convenable.

Algorithme avec mémoisation

Exemple avec Dlev(‘niche’,’chien’)

Nous allons mémoiser la distance de Lenvenshtein entre les mots ‘niche’ et ‘chien’ amputés a
chaque fois d’une lettre supplémentaire jusqu’a ce qu’ils n’aient plus de lettre. Et nous allons mémoriser
ces distances de Levenshtein dans un tableau Numpy de len(‘chien’)+1 lignes et len(‘niche’)+1 colonnes.

On rappelle les relations de Bellman de cet algorithme :

Si min(len(motl),len(mot2)) =0 alors Dlev(motl,mot2) = max(len(motl),len(mot2))
Sinonsi motl[0] = mot2[0] alors Dlev(motl,mot2) = Dlev(mot1[1:],mot2[1:])
Sinon Dlev(motl,mot2) = 1 + Dmini

Avec : Dmini = min(Dlev(motl—1,mot2—-1) , Dlev(motl,mot2—1) , Dlev(motl-1,mot2))
Compléter le tableau de mémoisation ci-dessous pour déterminer Dlev(‘niche’,’chien’)

.. ¢ ‘....n’ ‘...en’ ‘..ien‘ ‘. hien”’ ‘ chien’
o ‘ 0 1 2 3 4 5
‘et 1 1 1 2 3 4
‘... he: 2 2 2 2 2 3
‘..che 3 3 3 3 3 2
‘.iche 4 4 4 3 4 3
“ niche ¢ 5 4 5 4 4 4

Ecrire le code correspondant :

def Dlev(motl,mot2) :
L1,L.2=len(motl),len(mot2)
matrix=np.zeros((L1+1,L2+1))
for il in range(L.1+1):
for i2 in range(L.2+1):
if min(il,i2))==0:
Lmax=max(len(motl1[L1-il1:]),len(mot2[L2-i2:]))
matrix[il,i2]=Lmax
elif mot1[L1-i1:][0]==mot2[L2-i2:][0]:
matrix[il,i2]= matrix[il-1,i2-1]
else:
Dmini=min(matrix[il-1,i2],matrix[il,i2-1],
matrix[il-1,i2-1])
matrix[il,i2] = 1 + Dmini
return matrix[L1,L.2]

Programmation dynamique et memoisation.docx page 6/6

