
Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

Floyd-Warshall.docx page 1/2

Algorithme du plus court chemin de Floyd-Warshall

Description du problème

On a un graphe pondéré, de N sommets, dont les arêtes sont les couts (distances) qui permettent

d’aller d’un sommet S1 à un autre sommet S2. Ce cout peut être noté : CS1→S2 . On peut avoir un graphe

non orienté : CS1→S2 = CS2→S1 ou non orienté : CS1→S2 ≠ CS2→S1

Ce graphe peut par exemple être décrit par un dictionnaire de dictionnaires dont les clés (S1) sont

les sommets du graphe et les valeurs, des dictionnaires dont les clés (S2) sont les sommets voisins du

sommet S1 et les valeurs le cout pour aller du sommet S1 au sommet S2 : CS1→S2 .

Exemple on a le graphe ci-dessous :

A B

C D

1

3

3

2

4

2

1

5

6

Ce graphe peut alors est décrit par le dictionnaire :

Graphe = {'A': {'B': 1, 'C': 5, 'D': 6},

'B': {'A': 3, 'C': 2, 'D': 4},

'C': {'A': 3, 'D':1},

'D': {'C': 2} }

Objectif du problème

L’objectif est de déterminer le plus faible coût (la plus petite distance) permettant de passer d’un

sommet de départ SD à un sommet d’arrivée SA . Soit en passant directement du sommet SD au sommet

SA ; Soit en passant par un répertoire Rk de nk sommets intermédiaires, cette liste pouvant être tous les

sommets restant (sans SD et SA) ou une partie uniquement des sommets du graphe.

Il s’agit également de déterminer la liste Li de ces sommets intermédiaires menant du sommet SD au

sommet SA avec le plus faible cout (la plus petite distance).

En conclusion on peut dire qu’il s’agit de déterminer :

Le plus court chemin, et sa longueur, du sommet SDep au sommet SArr.
Remarque :

Si certains couts sont négatifs et que ces couts négatifs forment de cycles, alors il n’y a pas de

solutions car en parcourant ces cycles à l’infini on peut arriver à une longueur du chemin égale à − ∞.

Pour éviter cela nous interdirons de passer 2 fois par un même sommet. Donc la longueur ni de la

liste Li des sommets permettant d’aller d’un sommet SDep à un sommet SArr est limitée à N−2 : ni ≤ N−2.

Algorithme naïf

Une solution peut-être de calculer le cout de tous les chemins possibles pour aller du sommet SDep

au sommet SArr. Or le nombre de chemins reliant deux sommets donnés d’un graphe complet à N

sommets est de : Σ
k=0

N−2

(N−2)!

(N−2−k)!
 Ce qui implique une complexité trop importante pour résoudre le

problème avec un grand nombre de sommets.

Cette complexité étant liée à la taille des différents répertoires R de sommets intermédiaires qui

peuvent être utilisés pour aller de SDep à SArr. Et donc à la taille N du graphe puisque que les répertoires

intermédiaires R peuvent avoir une taille pouvant aller jusqu’à N−2 sommets.

Algorithme de programmation dynamique

L'idée est de se dire que pour aller d’un sommet SDep à un sommet SArr en passant par les sommets

d’un répertoire R de nR sommets, on va rechercher les plus courts chemins allant des N sommets SDep aux

N sommets Si du graphe en passant par les sommets d’un répertoire (R−Si) de nR−1 sommets.

Informatique Tronc Commun CPGE PSI - Saint Stanislas - Nantes

Floyd-Warshall.docx page 2/2

Puis on retiendra à chaque fois la longueur minimale de ces chemins + la longueur minimale

permettant d’aller des sommets Si au sommet SArr. On commence avec un répertoire R vide puis on ajoute

un à un au répertoire R les N sommets intermédiaires Si du graphe. En calculant à chaque fois toutes les

longueurs minimales des chemins entre les différents sommets du graphe en passant par les sommets du

répertoire R des sommets intermédiaires.

On a N fois N
2
 longueurs minimales à calculer (car on doit faire tous les couples (SDep,SArr) du

graphe). La complexité d’un tel algorithme est en N
3
 au lieu d’être de l’ordre de N! .

Donc si on note (Lmin)
R
SDep→SArr

 la longueur minimale du sommet SDep au sommet SArr en passant par

les sommets du répertoire R des sommets intermédiaires, alors on a :

∀ les sommets SDep, SArr et Si du graphe : (Lmin)
R+Si

SDep→SArr
 = min ()(Lmin)

R
SDep→SArr

 , (Lmin)
R
SDep→Si

 + (Lmin)
R
Si→SArr

Pour obtenir la longueur minimale du sommet SDep au sommet SArr il suffit alors de retenir la

longueur (Lmin)
RT

SDep→SArr
 où RT est un répertoire incluant tous les sommets du graphe.

Pour obtenir le chemin il faut en plus de calculer la longueur minimale (Lmin)
R+Si

SDep→SArr
 retenir le

sommet suivant le sommet Sa (noté (Ssuiv)
R+Si

SDep→SArr
) pour obtenir le chemin de longueur minimale.

 Si : (Lmin)
R
SDep→SArr

 ≤ (Lmin)
R
SDep→Si

 + (Lmin)
R
Si→SArr

 alors : (Ssuiv)
R+Si

SDep→SArr
 = (Ssuiv)

R
SDep→SArr

 Sinon : (Lmin)
R
SDep→Si

 + (Lmin)
R
Si→SArr

 < (Lmin)
R
SDep→SArr

 alors : (Ssuiv)
R+Si

Sa→Sb
 = (Ssuiv)

R
SDep→Si

Pour obtenir le chemin minimal permettant d’obtenir la longueur minimale du sommet SDep au

sommet SArr il suffit alors de faire la liste des sommets suivants jusqu’à arriver au sommet SArr.

Exemple on a le graphe ci-dessous :

A B

C D

1

3

3

2

4

2

1

5

6

R = ∅ A B C D

A 0 A 1 B 5 C 6 D

B 3 A 0 B 2 C 4 D

C 3 A ∞ B 0 C 1 D

D ∞ A ∞ B 2 C 0 D

(A) A B C D (A,B) A B C D

A 0 A 1 B 5 C 6 D A 0 A 1 B 3 B 5 B

B 3 A 0 B 2 C 4 D B 3 A 0 B 2 C 4 D

C 3 A 4 A 0 C 1 D C 3 A 4 A 0 C 1 D

D ∞ A ∞ B 2 C 0 D D ∞ A ∞ B 2 C 0 D

(A,B,C) A B C D (A,B,C,D) A B C D

A 0 A 1 B 3 B 4 B A 0 A 1 B 3 B 4 B

B 3 A 0 B 2 C 3 C B 3 A 0 B 2 C 3 C

C 3 A 4 A 0 C 1 D C 3 A 4 A 0 C 1 D

D 5 C 6 C 2 C 0 D D 5 C 6 C 2 C 0 D

Exemples de résultats :

Longueur minimale et chemin du sommet A au sommet D : 4 [A, B, C, D]

Longueur minimale et chemin du sommet C au sommet B : 4 [C, A, B]

