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PSI 2023-2024 DS N°3 : Cellule d’assemblage Falcon Corrigé 

Partie 1 : Choix du robot 

2- Etude de la liaison plateforme (1) / Sol (0) 

Question 1 Graphe de structure 

0 1

LA

LB

LC  

Question 2 Caractéristiques des liaisons 

LA : Rotule de centre A 

LB : Ponctuelle ou sphère-plan de normale (B,
  →
yP ) 

LC : Linéaire annulaire ou sphère cylindre d’axe (C,
  →
zP ) 

Question 3 

Raisonnement avec les torseurs cinématiques 

On note respectivement : {VA}, {VB}, {VC}, les torseurs cinématiques des liaisons de centre A, B et 

C. Ainsi que {VEq} le torseur cinématique de la liaison équivalente à ces trois liaisons. On a la forme de 

ces torseurs dans la base (
→
xP ,

→
yP ,

→
zP ) : {VA} = 

A





ωx  0

ωy  0

ωz  0

 {VB} = 

B





ωx  Vx

B

ωy  0

ωz  Vz
B

 {VC} = 

C





ωx  0

ωy  0

ωz  Vz
C

 

Sachant que : 
→
AC = L.

→
zP  On en déduit :  {VA} = 

C





ωx  L.ωy

ωy − L.ωx

ωz  0

 = 

C





ωx  0

ωy  0

ωz  Vz
C

 

Les liaisons de centre A et C étant en parallèle : {VA} = {VC} = {VEq}  on a : ωx = ωy = Vz
C
 = 0 

D’autre part : 
→
AB = l.

→
xP  + 

L

2
.

→
zP   Donc : {VA} = 

B





0  0

0  l.ωz

 ωz  0

 = 

B





0  Vx

B

0  0

ωz  Vz
B

 

Les liaisons de centre A et B étant en parallèle : {VA} = {VB} = {VEq}  on a : ωz = Vx
B
 = Vz

B
 = 0 

D’où la liaison équivalente : {VEq} = 

B





0  0

0  0

0  0
 qui est donc une liaison encastrement. 

Raisonnement avec les torseurs sthéniques 

On note respectivement : {TA}, {TB}, {TC}, les torseurs sthéniques des liaisons de centre A, B et C. 

Ainsi que {TEq} le torseur sthéniques de la liaison équivalente à ces trois liaisons. On a la forme de ces 

torseurs dans la base (
→
xP ,

→
yP ,

→
zP ) : {TA} = 

A





XA  0

YA  0

ZA  0
 {TB} = 

B





0  0

YB  0

0  0
 {TC} = 

C





XC  0

YC  0

0  0
 

Sachant que : 
→
AC = L.

→
zP  et : 

→
AB = l.

→
xP  + 

L

2
.

→
zP  on en déduit : 

 {TB} = 

A





0 − (L/2).YB

YB  0

0 l.YB

 et : {TC} = 

A





XC − L.YC

YC  L.XC

0  0
 

Les liaisons de centre A, B et C étant en parallèle : {TEq}  = {TA} + {TB} + {TC} 

D’où la liaison équivalente : {TEq} = 

A





XA + XC  − (L/2).YB − L.YC

YA + YB + YC  L.XC

ZA  l.YB

 

qui est donc une liaison encastrement. 
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3- Choix du robot 

Question 4 

 

Les distances L1 et L2 (Voir les 

données complémentaires de l’annexe 

5) permettent de positionner le robot. 

 

Les dimensions des enveloppes de 

travail (Voir la documentation ABB 

de l’annexe 5) montrent que : 

 

Seul le robot IRB 7600-150/3.50 

(le plus grand) permet de couvrir 

l’ensemble de la zone à couturer. 

 

O1

O2

433

405

1699

Enveloppe
de travail

3500

 

Partie 2 : Etude de l’assemblage 

2- Données 

Question 5 

L’effort de perçage peut être déterminé par le modèle : F = K’.KC.R.f Le tableau de l’annexe 6 

permet alors de calculer l’effort pour les 4 cas correspondant aux 4 essais : 

Cas 1 : F = 0,5 × 750 × 
5

2
 × 0,16 = 150 N Cas 2 : F = 0,5 × 750 × 

6

2
 × 0,20 = 225 N 

Cas 3 : F = 0,4 × 1 750 × 
5

2
 × 0,24 = 420 N Cas 4 : F = 0,5 × 1 750 × 

5

2
 × 0,20 = 656,25 N 

Question 6 

Le cas le plus défavorable (Donnant l’effort le plus important) est donc le cas 4. 

Cependant pour le couple moteur, cet effort s’opposant au poids du robot le plus défavorable 

(Donnant l’effort le plus faible) sera le cas 1 

3- Validation des caractéristiques du robot 

Question 7  Graphe de structure 

0 1
Pivot d'axe

(O1,y1)
2 3 4 E1

Pivot d'axe

(O2,z1)

Pivot d'axe

(O3,z1)

Pivot d'axe

(O4,x4)

Pivot d'axe

(O5,z5)

Couple C12

Poids P1 Poids P2 Poids P34

Poids PE1

Effort de

perçage :

− F.x5

Effort presseur

− P.x5Couple C23 Couple C34

Couple C45

 

Question 8 

On voit immédiatement qu’il faut pour déterminer C12 isoler l’ensemble Σ = {2, 3, 4, E1}. 
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Question 9 

On isole Σ = {2, 3, 4, E1} les actions mécaniques extérieures s’appliquant sur ce système sont : 

 Action due à la liaison pivot d’axe (O2,
→
z1 ) dont le moment en O2 projeté sur 

→
z1  est nul. 

 Couple moteur appliquée sur 1 de vecteur 
→
C12 = C12.

→
z1  

 Poids de 2 : Force 
→
P2  = − M2.g.

→
y1  appliquée sur 2 en G2. 

 Poids de 3-4 : Force 
→
P34  = − M34.g.

→
y1  appliquée sur {3-4} en G3. 

 Poids de E1 : Force 
→
PE1 = − ME1.g.

→
y1  appliquée sur E1 en G5. 

 Effort de perçage du tronçon sur E1 : Force 
→
F  = − F.

→
x5  appliquée sur E1 en P. 

 Effort presseur du tronçon sur E1 : Force 
→
P  = − P.

→
x5  appliquée sur E1 en P. 

Question 10 

L’action due à la liaison pivot d’axe (O2,
→
z1 ) ayant un moment en O2 projeté sur 

→
z1  nul , on 

applique un Théorème du Moment Dynamique (ou statique) en O2 projeté sur l’axe 
  →
z1 . 

Question 11 

L’application du Théorème du Moment Dynamique (ou statique) en O2 projeté sur l’axe 
→
z1  donne : 

0 + 
→
C12.

→
z1  + 

→
O2G2∧

→
P2 .

→
z1  + 

→
O2G3∧

→
P34 .

→
z1  + 

→
O2G5∧

→
PE1.

→
z1  + 

→
O2P∧

→
F .

→
z1  + 

→
O2P∧

→
P .

→
z1  = 0 

Calculons chacun des ces moments d’action mécanique : (Sachant que θ13 ≈ 0) 
 

→
C12.

→
z1  = C12.

→
z1 .

→
z1  = C12 

 
→

O2G2∧
→
P2 .

→
z1  = (L3x/2).

→
x2 ∧ ( )− M2.g.

→
y1 .

→
z1  = 









(L3x/2).cos θ12

(L3x/2).sin θ12

0 B1

∧  








0

− M2.g

0 B1

.








0

0

1 B1

 

→
O2G2∧

→
P2 .

→
z1  = − M2.g.

L3x

2
.cos θ12 

 
→

O2G3∧
→
P34 .

→
z1  = [ ]L3x.

→
x2 + (L4x/3).

→
x3  + L4y.

→
y3  ∧ ( )− M34.g.

→
y1 .

→
z1  

→
O2G2∧

→
P2 .

→
z1  = 









L3x.cos θ12 + L4x/3

L3x.sin θ12 + L4y

0 B1

∧  








0

− M34.g

0 B1

.








0

0

1 B1

= − M34.g.






L3x.cos θ12 + 

L4x

3
 

 
→

O2G5∧
→
PE1.

→
z1  = [ ]L3x.

→
x2 + (L4x + L5x).

→
x3  + L4y.

→
y3  + L5G.

→
x5  ∧ ( )− ME1.g.

→
y1 .

→
z1  

→
O2G5∧

→
PE1.

→
z1  = 









L3x.cos θ12 + L4x + L5x

L3x.sin θ12 + L4y − L5G

0 B1

∧  








0

− ME1.g

0 B1

.








0

0

1 B1

 

→
O2G5∧

→
PE1.

→
z1  = − ME1.g.[ ]L3x.cos θ12 + L4x + L5x  

 
→

O2P∧ ( )
→
F  + 

→
P .

→
z1  = [ ]L3x.

→
x2 + (L4x + L5x).

→
x3  + L4y.

→
y3  + L5P.

→
x5  ∧  ( )− (F + P).

→
x5 .

→
z1  

→
O2P∧ ( )

→
F  + 

→
P .

→
z1  = 









L3x.cos θ12 + L4x + L5x

L3x.sin θ12 + L4y − L5P

0 B1

∧  








0

F + P

0 B1

.








0

0

1 B1

 

 
→

O2P∧ ( )
→
F  + 

→
P .

→
z1  = (F + P). [ ]L3x.cos θ12 + L4x + L5x  

On obtient donc (Sachant que θ15 = − 90°) : 

C12 − M2.g.
L3x

2
.cos θ12 − M34.g.







L3x.cos θ12 + 

L4x

3
 − [ ]ME1.g − F − P .[ ]L3x.cos θ12 + L4x + L5x   = 0 

C12 = M2.g.
L3x

2
.cos θ12 + M34.g.







L3x.cos θ12 + 

L4x

3
 + [ ]ME1.g − F − P .[ ]L3x.cos θ12 + L4x + L5x  

Application numérique : C12 = 8 427 N.m (cas 1) C12 = 7 137 N.m (cas 4) 

Question 12 

Le choix du robot est conforme à ce qui est nécessaire car C12 < 9 000 N.m 
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Partie 3 : Etude de la sélection des fixations 

2.3- Détermination de l’inertie équivalente 

Question 13 

L’ensemble des pièces en mouvement est Σ = {Rotor moteur + Réducteur + Poulies + Chariot} , on 

en déduit que l’énergie cinétique de ce système dans son mouvement par rapport au bâti 0 est : 

EC(Σ/0) = 
1

2
.Jm.ωm

2
 + 

1

2
.JRed.ωm

2
 + 

1

2
.JPM.ωr

2
 + 

1

2
.JPR.ωr

2
 + 

1

2
.M.V

2
 

où V est la vitesse de translation du chariot. On a donc : V= RP.ωr . D’autre part ayant un rapport du 

réducteur  λ =
ωr

ωm

  on a :  ωr = λ.ωm et V = RP.λ.ωm . On en déduit l’expression de l’énergie cinétique : 

EC(Σ/0) = 
1

2
.Jm.ωm

2
 + 

1

2
.JRed.ωm

2
 + 

1

2
.JPM.λ2

.ωm
2
 + 

1

2
.JPR.λ2

.ωm
2
 + 

1

2
.M.RP

2
.λ2

.ωm
2
 

S’écrivant encore : EC(Σ/0) = 
1

2
 . [Jm + JRed + JPM.λ2

 + JPR.λ2
 + M.RP

2
.λ2

].ωm
2
 

D’où le moment d’inertie équivalent : Jeq. = Jm + JRed + λ2
.(JPM + JPR + M.RP

2
) 

Question 14 

Application numérique : Jeq = 6,85.10−3
 kg.m

2
 

2.4- Modèle de connaissance du moteur à courant continu 

Question 15 

On passe les équations de fonctionnement dans le domaine de Laplace : 

u(t) = e(t) + R.i(t) + L.
d i(t)

dt
 

e(t) = KE.ωm(t) 

cm(t) = KC.i(t) 

Jeq..
d ωm(t)

dt
 + f.ωm(t) = cm(t) − cR(t) 

U(p) = E(p) + (R + L.p).I(p) 

E(p) = KE.Ωm(p) 

Cm(p) = KC.I(p) 

(F + Jeq..p).Ωm(p) = Cm(p) − Cr(p) 

I(p)

U(p) − E(p)
 = 

1

R + L.p
 

E(p)

Ωm(p)
 = ΚΕ 

Cm(p)

I(p)
 = ΚΧ 

Ωm(p)

Cm(p) − Cr(p)
 = 

1

f + Jeq..p
 

 

 

On en déduit le schéma bloc du moteur : 

 

 

Question 16 

On en déduit de ce schéma bloc, pour une perturbation nulle (Cr(p) = 0) : 

HM(p) = 
Ωm(p)

U(p)
 = 

KC

(R + L.p).(f + Jeq..p)

1 + 
KC.KE

(R + L.p).(f + Jeq..p)

 = 
KC

KC.KE + R.f + (R.Jeq + L.f).p + L.Jeq.p
2 

Soit sous forme canonique : HM(p) = 

KC

KC.KE + R.f

1 + 
R.Jeq + L.f

KC.KE + R.f
 .p + 

L.Jeq

KC.KE + R.f
 .p

2
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Question 17 

A partir des valeurs numérique de l’annexe 7 pour Jeq = 7.10
−3

 kg.m
2
 on en déduit : 

HM(p) = 
0,766

1 + 1,24.10−2
.p +3,71.10−5

.p
2 Fonction de transfert du second ordre : 

De gain KM = 0,766 rad.s
−1

.V
−1

 De pulsation propre : ω0 = 
1

3,71.10
−5

 = 164 rad.s
−1

 

De facteur d’amortissement : ξ = 
ω0

2
.1,24.10

−2
 = 1,02 

Le facteur d’amortissement étant supérieur à 1 cette fonction de transfert peu s’écrire : 

HM(p) = 
KM

(1 + TM.p).(1 + TE.p)
 avec : TM.TE = 3,71.10

−5
 s

2
 et : TM + TE = 1,24.10

−2
 s 

On en déduit : TM = 7,4.10−3
 s et : TE = 5,1.10−3

 s D’autre part : KM = 0,766 rad.s−1
.V−1 

2.5- Modèle de connaissance de l’asservissement en position 

Question 18 

De la description de l’asservissement on en déduit son schéma bloc : 

 

Question 19 

Pour un asservissement avec un fonctionnement normal on doit avoir : KG = 
Kcap

λ.RP
 = 0,556 V.m−1

 

Question 20 

Du schéma bloc de la figure 15 on en déduit la FTBO non corrigée (pour C(p) = 1) : 

HBONC(p) = 
K1.K2

p.(1 + TM.p).(1 + TE.p)
 

2.6- Etude des performances avec un correcteur proportionnel 

Question 21 

Si C(p) = KP alors la FTBO corrigée s’écrit : HBO(p) = 
K1.K2.KP

p.(1 + TM.p).(1 + TE.p)
 

D’où la FTBF corrigée avec ce correcteur : HBF(p) = 
HBO(p)

1+ HBO(p)
 = 

K1.K2.KP

p.(1 + TM.p).(1 + TE.p)

 1 + 
K1.K2.KP

p.(1 + TM.p).(1 + TE.p)

 

Soit après calcul : HBF(p) = 
1

1 + 
1

K1.K2.KP
.p + 

TM + TE

K1.K2.KP
 .p

2
 + 

TM.TE

K1.K2.KP
 .p

3
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Question 22 

La FTBO non corrigé s’écrit : HBONC(p) = 
3,84.10

−3

p
 . 

1

1 + 7,4.10
−3 . 

1

1 + 5,1.10
−3 

D’où le diagramme de gain avec des asymptotes de pentes de −20 dB/dec, − 40 dB/dec et 

− 60 dB/dec 

Et le diagramme de phase avec des asymptotes d’ordonnées − 90°, − 180° et − 270°. 

Les pulsations de coupure étant à 
1

7,4.10
−3 = 135 rad.s

−1
 et 

1

5,1.10
−3 = 196 rad.s

−1
. 

 

Question 23 

Avec un correcteur proportionnel, la courbe de phase n’est pas modifiée et la courbe de gain est 

translatée verticalement de 20.log Kp . 

Or pour avoir une marge de phase de Mϕ = 50° il faut que la phase de la boucle ouverte corrigée 

soit de 50 − 180 = − 130° lorsque le gain de la FTBO corrigée est de 0 dB. 

Une lecture sur le diagramme de phase de la FTBO non corrigée nous montre que cela est obtenu à 

une pulsation d’environ 60 rad.s
−1

 (58,5 rad.s
−1

 par le calcul). Or par lecture sur le diagramme de gain, on 

voit qu’à cette pulsation le gain de la FTBO non corrigée est d’environ − 85 dB (−84,8 dB par le calcul). 

Pour obtenir une marge de phase de 50°, il faut donc translater la courbe de gain de + 84,8 dB. 

Soit : 20.log KP = + 84,8 dB ⇔ KP = 10
84,8/20

 = 17 400 (S.U) 

Question 24 

Une lecture sur le diagramme de phase de la FTBO non corrigée nous montre que la phase est de 

− 180° à la pulsation d’environ 160 rad.s
−1

 (162,8 rad.s
−1

 par le calcul). Or par lecture sur le diagramme 

de gain, on voit qu’à cette pulsation le gain de la FTBO non corrigée est d’environ − 100 dB (− 98,7 dB 

par le calcul). 

Or en utilisant le gain ci-dessus, la courbe de gain sera translaté de + 84,8 dB. Donc avec ce 

correcteur à cette pulsation de ω−180° = 162,8 rad.s
−1

 le gain de la FTBO corrigée sera de : 

− 98,7 + 84,8 = − 13,9 dB. On en déduit avec ce correcteur une marge de gain de : 

MG = + 13,9 dB > 10 dB . Donc le critère de marge de gain sera vérifié. 
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D’autre part comme vu à la question précédente la pulsation de coupure à 0 dB dela FTBO sera 

avec ce correcteur de : 

ω0dB = 58,5 rad.s−1
 > 20 rad.s−1

 . Donc le critère de pulsation de coupure sera respecté. 

Question 25 

La réponse temporelle nous montre que suivant la valeur de la perturbation, le temps de réponse est 

d’environ : t5% = 0,09 s < 0,3 s. Donc le critère de rapidité est respecté. 

En revanche cette même réponse temporelle nous montre une erreur statique d’environ ± 1 mm 

suivant la valeur de la perturbation. Donc εS ≠ 0 Donc le critère de précision n’est pas respecté. 

 

Question 26 

A la question 21 on a vu que le gain statique de la FTBF (sans perturbation est de 1). Donc l’erreur 

statique sans perturbation est bien nul. Si cette erreur est non nulle, cela est du à la perturbation. 

Cela est confirmé par le faite que la FTBO a bien un intégrateur (erreur statique due à la consigne 

nulle) mais placé après la perturbation (donc erreur statique due à la perturbation non nulle) 

2.6- Etude des performances avec un correcteur à double étage 

Question 27 

La phase de la FTBO non corrigée varie de −90° à −270° lorsque ω varie de 0 à +∞. Si on ajoute 

juste le correcteur intégral C1(p) alors cette phase variera de −180° à −360°. Si on utilise pour le second 

étage C2(p) un gain pur (C2(p) = C
te

) la phase ne sera pas modifiée et donc sera inférieure à −180° 

quelque soit la pulsation ω. Le système sera donc forcément instable 

Question 28 

Une lecture sur le diagramme de phase de la FTBO non corrigée nous montre qu’à la pulsation de 

ω0dB = 20 rad.s
−1

 la phase de cette FTBO est d’environ − 105° (Par le calcul : ϕBONC(ω0dB) = − 104°) et le 

gain d’environ − 75 dB (par le calcul : GdBBONC(ω0dB) = − 74,5 dB) 

Donc pour avoir une marge de phase de Mϕ = 50° à ω0dB = 20 rad.s
−1

 il faut que : 

GdBBNONC(ω0dB) + GdBC1(ω0dB) + GdBC2(ω0dB) = 0 et : Mϕ = 180° + ϕBONC(ω0dB) + ϕC1(ω0dB) + ϕC2(ω0dB) 
On en déduit qu’il faut que : 

GdBC2(ω0dB) = − GdBBNONC(ω0dB) − GdBC1(ω0dB) = 74,5 + 20.log 20 GdBC2(ω0dB) = 100,5 dB 

ϕC2(ω0dB) = Mϕ − 180° − ϕBONC(ω0dB) − ϕC1(ω0dB) = 50° − 180° + 104 + 90° ϕC2(ω0dB) = 64 ° 
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Question 29 

Si on choisi les constantes c et τ telles que la phase est maximale à ω0dB = 20 rad.s
−1

 alors la phase  

à cette pulsation sera de : ϕM = arcsin 






c −1

c + 1
. Or pour obtenir la marge de phase de Mϕ = 50° il faut que 

la phase de C2(p) soit de 64°. On en déduit alors que : c= 
1 + sin 64°

1 − sin 64°
 = 18,8 

D’autre part la pulsation où la phase est maximale est de ωM = 
1

τ. c
 donc pour obtenir cette phase 

maximale à ω0dB = 20 rad.s
−1

 il faut que : τ = 
1

ω0dB. c
 = 

1

20. 18,8
 Soit : τ = 1,15.10−2

 s 

Question 29 

Pour obtenir une marge de phase à ω0dB = 20 rad.s
−1

 , il faut que que GdBC2(ω0dB) = 100,5 dB Or à 

cette pulsation où la phase est maximale on a : GdBC2(ω0dB) = 20.log K + 10.loc c 

Il faut donc : K = 10

100,5 − 10.loc 18,8

20
 = 24 400 s−1

 

Question 30 

La réponse temporelle nous montre une erreur statique nulle quelque soit la valeur de la 

perturbation. Donc εS = 0 Donc le critère de précision est respecté. 

En revanche cette réponse temporelle nous montre que quelque soit la valeur de la perturbation, le 

temps de réponse est d’environ : t5% ≈ 0,4 s > 0,3 s. Donc le critère de rapidité n’est pas respecté. 

 

2.6- Etude des performances avec un correcteur Proportionnel intégral (PI) 

Question 31 

Etant donné la fonction de transfert de ce correcteur : C(p) = 
KCor.(1 + τ.p)

p
 

Le gain dynamique du correcteur est de : GdBC(ω) = 20.log K − 20.log ω + 10.log (1 +(τ.ω)
2
) 

La phase de ce correcteur est de : ϕC(ω) = − 90° + arctan(τ.ω) 
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Question 32 

Comme pour la question 28 on a pour la FTBO non corrigée à ω0dB = 20 rad.s
−1

 , un gain 

dynamique de GdBBONC(ω0dB) = − 74,5 dB et une phase de ϕBONC(ω0dB) = − 104° 
Or pour avoir une marge de phase de Mϕ = 50° à ω0dB = 20 rad.s

−1
 il faut que : 

 GdBBNONC(ω0dB) + GdBC(ω0dB) = 0 et : Mϕ = 180° + ϕBONC(ω0dB) + ϕC(ω0dB) 
On en déduit qu’il faut que : GdBC(ω0dB) = − GdBBNONC(ω0dB)  GdBC(ω0dB) = 74,5 dB 

et : ϕC(ω0dB) = Mϕ − 180° − ϕBONC(ω0dB) = 50° −180° + 104° ϕC(ω0dB) =  − 26° 

Question 33 

Ayant : GdBC(ω) = 20.log K − 20.log ω +10.log (1 +(τ.ω)
2
) et : ϕC(ω) = − 90° + arctan(τ.ω) 

Il faut que : τ = 
tan(ϕC(ω0dB) +90°)

ω  = 
tan(90° − 26°)

20
 Soit : τ = 0,10 s 

Il faut aussi que : 20.log K − 20.log ω0dB + 10.log (1 +(τ.ω0dB)
2
) = GdBC(ω0dB) 

Soit : K = 10

GdBC(ω0dB) + 20.log ω0dB − 10.log (1 +(τ.ω0dB)
2
)

 2
 

 K = 10

74,5 + 20.log 20 − 10.log (1 +(0,1 × 20)
2
)

 2
 

Soit finalement : K = 47 500 s−1 

Question 34 

La réponse temporelle nous montre une erreur statique nulle quelque soit la valeur de la 

perturbation. Donc εS = 0 Donc le critère de précision est respecté. 

Cette même réponse temporelle nous montre que quelque soit la valeur de la perturbation, le temps 

de réponse est d’environ : t5% ≈ 0,3 s ≤ 0,3 s. Donc le critère de rapidité est respecté. 

 

Question 35 

La FTBO corrigé s’écrit : HBO(p) = 
3,84.10

−3
 × 47 500

p
2  . 

1

1 + 7,4.10
−3 . 

1

1 + 5,1.10
−3 . (1 + 0,1.p) 

D’où le diagramme de gain avec des asymptotes de pentes de : − 40 dB/dec, −20 dB/dec, 

− 40 dB/dec et − 60 dB/dec 

Et le diagramme de phase avec des asymptotes d’ordonnées −180°, − 90°, − 180° et − 270°. 
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Les pulsations de coupure étant à 
1

0,1
 = 10 rads.s

−1
, 

1

7,4.10
−3 = 135 rad.s

−1
 et 

1

5,1.10
−3 = 196 rad.s

−1
. 

 

 
 
 


