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PRESENTATION DU ROBOT HUMANOIDE LOLA  
 

 

 

Le développement de robots à forme 

humaine est en croissance constante 

depuis quelques dizaines d'années. 

 

En robotique, il est difficile d'affirmer 

que tous les robots remplaçant l'homme 

dans ses tâches doivent être de forme 

humaine. Les véhicules autonomes, par 

exemple, ne sont pas anthropomorphes. 

 

Les tâches auxquelles sont destinées les 

robots définissent leur forme idéale. Si 

nous souhaitons un jour que les robots 

remplacent l'homme dans ses tâches 

ennuyeuses, ils devront s'intégrer au 

mieux à notre société, à notre 

environnement et donc à notre 

ergonomie. 
 

 

Figure 1 : le robot humanoïde LOLA et sa structure 
cinématique (sans la tête) 

 

Les dimensions d'une maison et la hauteur des meubles sont adaptées à notre forme humaine. 

L'avantage des robots humanoïdes devient alors économique : il n'est pas indispensable de  

modifier l'environnement quotidien pour les utiliser. 

Le robot humanoïde LOLA (figure 1), développé par l'Université de Munich, est un robot de forme 

humaine conçu pour un mode de marche rapide. LOLA possède une structure à 25 degrés de liberté 

lui permettant une flexibilité accrue. Chaque jambe possède 7 degrés de liberté, le haut du corps 8 et 

la tête 3. 

Le robot est équipé d'une caméra stéréoscopique haute définition afin de percevoir son 

environnement, d'une centrale inertielle équipée de 3 gyroscopes et de 3 accéléromètres. Chaque 

articulation possède un codeur angulaire absolu et chaque pied est muni d'un capteur d'effort 6 axes 

permettant d'obtenir l'effort de contact avec le sol. Les caractéristiques techniques de LOLA sont 

données dans le tableau suivant: 

 

Caractéristiques Valeurs 

Hauteur 180 cm 

Masse 55 kg 

Nombre de degrés de liberté 25 

Vitesse de marche 5 km/h maxi 

Hauteur du centre de gravité 105cm 

 

Le diagramme partiel des exigences est donné en annexe 1. 

 

L'objectif de l'étude proposée est de justifier le respect du cahier des charges. Elle se décomposera 

en 3 parties : l'étude de la stabilité du robot bipède, Etude de l'articulation de la cheville et l'étude 

des performances de l'asservissement angulaire du tronc. 
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 Partie 1 : Stabilité du robot 

 

Par définition, le robot humanoïde bipède s'appuie sur ses 

deux jambes. Comme tout système de solides en équilibre 

statique, LOLA est à l'équilibre si la projection de son 

centre de gravité sur le sol est contenu dans le polygone de 

sustentation qui est tracé en noir autour de ses deux pieds 

sur la figure 2. Lorsque le robot marche, il y a une phase où 

il n'est en appui que sur un seul pied. Dans ce cas, le 

polygone de sustentation est réduit à un seul pied. 
 

Figure 2 : polygone de 
sustentation sur deux pieds 

L'objectif de cette partie est de trouver à quelle condition le maintien du contact sur le sol est 

possible lorsque le robot marche et si l'accélération est compatible avec le cahier des charges, dont 

un extrait est donné ci-après. 

Exigence 1.3 : Le robot ne doit pas basculer lors de la marche  

Description : La position du ZMP* reste dans le polygone de sustentation 

* : défini dans la suite 

Exigence 1.1 : Le robot doit pouvoir atteindre les performances cibles  

Sous-exigence Description 

Id=1.1.4 La longueur d'une foulée est de 150 cm au maximum 

Id=1.1.3 Le robot peut accélérer jusqu'à 1,39 m.s
-2

 

1. Modélisation de l'effort de contact entre le sol et le robot.  

Sous la semelle du robot, la pression de contact avec le sol est supposée répartie de manière 

uniforme transversalement (suivant la direction 
→
x0 ). Le problème se ramène donc à une répartition 

linéique de pression sur les deux segments de contact [OS;AS] et [BS;CS]. Voir figure 3 ci-dessous. 

 

Figure 3 : modélisation du contact entre le pied et le sol 

En chaque point M (d'ordonnée y : 
→

OM = y.
→
y0 ) de ces segments, la densité d'efforts de contact est 

p(M).
→
z0 , avec p(M) en N.m

-2
. Cet effort de contact se fait avec un coefficient d’adhérence µ. 

On notera que si le robot n'est pas équipé de semelles magnétiques ou adhésives, on a p(M) > 0. 

Ainsi, en notant b la largeur de la semelle suivant 
→
x0   et Σ=[OS;AS]∪ [BS;CS], le modèle global 

d'action mécanique de contact du sol sur le pied peut être donné par le torseur : 

{Tsol→pied} =  

OS







→
Rsol→pied = b.

(M∈Σ)

  [ ]p(M).
→
z0  + t(M).

→
y0 .dy

 
→

MOs(sol→pied) = b.
(M∈Σ)

  
→

OSM ∧  [ ]p(M).
→
z0  + t(M).

→
y0 .dy

 

avec : 

t(M) = a.p(M) 

où : a∈ [−µ ; µ] 
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En robotique humanoïde, le point appelé Zero Moment Point (ZMP) : de l'anglais « point de 

moment nul ». Ce point que l’on notera ici HS est l’intersection de l’axe du glisseur de l’action du 

sol sur le pied : { }piedsolT →  avec le plan de contact entre le sol et le pied. 

Question 1 :  

Montrer que ce point HS existe bien (Et donc que { }piedsolT →   est bien un glisseur) et qu’il est situé 

sous le pied du robot. C'est-à-dire que : tel que tel que : HS∈ [OS; CS] . On pourra noter YHS
 et YCS

 

les positions respectives des points HS et CS par rapport à OS : 
→

OSHS = YHS
.

→
y0  et 

→
OSCS = YCS

.
→
y0 . 

2. Établissement de la condition de non-basculement.  

Considérons le robot en marche avec le torse ayant un 

mouvement de translation rectiligne vers l'avant (suivant +
→
y0 ). 

Le robot est toujours dans la phase d'appui d'un seul pied sur le 

sol, via une des deux jambes notées (2).  

Données et paramètres:  

Torse (1) :  

•  masse m1, accélération de la pesanteur : 
→
g  = − g.

→
z0  avec 

g = 9,81 m.s
-2

 ;  

•  centre de gravité : G, tel que 
→

OSG = yG(t).
→
y0  + zG.

→
z0  ;  

le torse est supposé en mouvement de translation rectiligne, de 

direction 0
y
→

 par rapport au sol, on a {V1/sol} = 









→
0

d YG

dt
.

→
y0

  

Jambes avec les pieds (2) :  
masses et inerties négligeables dans cette phase.  

N.B. : le pied d'appui est sans mouvement par rapport au sol. Figure 4 : modélisation du 
robot en marche 

 

L'action mécanique du sol sur le pied est modélisée par le glisseur : {Tsol→pied} = 

HS







→
Rsol→pied

 
→
0

 

•  HS est le ZMP, point mis en évidence à la question 2 tel que : 
→

OSHS = YHS
.

→
y0   

•  
→

Rsol→pied = NSol→pied.
→
z0  + TSol→pied.

→
y0 , avec à la limite du glissement TSol→pied  = µ. NSol→pied

où µ est le facteur de frottement du contact sol/semelle.  

Question 2:  
Par le principe fondamental de la dynamique au système {1+2}, montrer que la condition de 

stabilité (non basculement) s'écrit : YHS = YG − 
ZG

g
. 

d
2
YG

dt
2  . 

Question 3:  

Montrer également que la condition de non glissement du pied sur le sol s'écrit : µ ≥ 
1

g
 . 

d
2
YG

dt
2  

 

Conformément au résultat de la question 2, le calculateur du robot contrôle en permanence la 

position du point HS (ZMP) : s'il est positionné à l'intérieur du segment [OS;CS] , le robot ne bascule 

pas.  

On appelle foulée, la longueur entre deux emplacements successifs d'appui du même pied. Lors du 

premier pas, le centre de gravité se déplace de sorte que 




 +−∈
4

foulée
;

4

foulée
YG , car pour une 

accélération constante, les deux pas qui constituent une foulée sont de même longueur.  



Page 5/12 

Le cahier des charges stipule qu'à partir de la station immobile, le robot doit atteindre la vitesse 

cible de 5 km.h
-1

 en une seconde (accélération de 1,39 m.s
−2

), avec une accélération constante du 

centre de gravité. On rappelle que ZG = 105 cm.  

Question 4:  
Sachant que la longueur de la semelle du robot [OS; CS] est L = 300 mm, déterminez la longueur de 

la première foulée du robot qui garantit la condition de non-basculement. Est-ce compatible avec le 

cahier des charges ?  

Question 5:  
Dans le cas d'un sol relativement glissant, avec un facteur de frottement du contact sol/semelle 

µ = 0,1 , quelle accélération maximale 






d

2
YG

dt
2

Max
 le robot peut-il avoir ? Est-ce compatible avec le 

cahier des charges pour la phase de démarrage ?  

 Partie 2 : Contrôle de la posture de LOLA  

Pour assurer une marche rapide et stable de LOLA, la méthode choisie est le contrôle de la 

verticalité du tronc du robot (figure 5). Le haut du corps (tronc, bras, tête) sera maintenu vertical en 

réalisant un asservissement de position angulaire au niveau de l'articulation de la hanche.  

 

L'action mécanique de redressement est développée par l'ensemble de motorisation de tangage 

autour de l'axe (OT ,
→
x0 ). 

Les performances à vérifier dans cette partie sont définies par les exigences suivantes :  

Exigence 1.3 : le robot ne doit pas basculer lors de la marche  

Sous-exigence Description 

Id=1.3.2 La posture du robot est adaptée à la position du ZMP 

Id=1.3.2.d La performance dynamique de chaque axe permet de modifier la posture 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 5 
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La chaîne structurelle permettant de modifier la posture du haut du 

corps autour de l'axe de tangage est représentée sur la figure 6. 

Elle est composée d'un moteur électrique (1,2) synchrone à 

aimants permanents piloté par un variateur électronique, d'un 

réducteur Harmonic-Drive© (3) de rapport de réduction 1/100, 

d'un codeur incrémental (5) ainsi que d'un codeur angulaire absolu 

(6+7).  

Une centrale inertielle équipée d'un accéléromètre, d'un gyroscope 

et d'une unité de traitement permet d'obtenir en temps réel la 

valeur de l'angle d'inclinaison du haut du corps par rapport à la 

verticale.  

 
 

Figure 6 
 

L'objectif de cette partie est de mettre en place un modèle du maintien vertical du tronc de LOLA et 

de déterminer une structure de commande permettant d'assurer les performances du cahier des 

charges de l'exigence 1.3.2. 

 

Les performances dynamiques de l'axe de tangage doivent vérifier les critères suivants: 

Sous-exigence 1.3.2.d : la performance dynamique de chaque axe permet de modifier la posture 

Critère Niveau Flexibilité 

Marge de phase Mϕ=50° Mini 

Erreur statique 0° [-0.5°;+ 0.5°] 

Bande passante à 0 dB en boucle ouverte ωBP=50 rad.s-
1
 Mini 

Temps de réponse à 5% 0,2 s Maxi 

Dépassement 1° Maxi 

1. Modèle de connaissance de la dynamique de tangage.  

Le modèle mécanique utilisé pour mener notre étude est donné sur la figure 7. L'association des 

liaisons entre le tronc et les jambes au niveau de la hanche est équivalente, dans le plan sagittal 

(OT,
→
y0 ,

→
z0 ), à une liaison pivot d'axe (OT,

→
x0 ). 

Le tronc sera considéré comme un solide admettant le plan (OT,
→
y0 ,

→
z0 ),  comme plan de symétrie. 

Le cahier des charges stipule que LOLA doit pouvoir marcher à la vitesse de 5 km/h. Cette vitesse 

est atteinte en 1 s lors de la première foulée. La loi de commande en vitesse correspondante est 

représentée sur la figure 9.  

 
 

 
 

Figure 7  
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Le mouvement de marche est imposé et 

modélisé par le torseur cinématique en OT du 

mouvement du tronc 1 par rapport au sol 0 :  

{V1/0} = 
OT








•α.
→
x0

 

v.
→
y0

 avec v = v(t) 

L'axe de sortie du réducteur exerce un couple de 

rsur le tronc 1 modélisé par le torseur : 

 {Tmot→1} = 








→
0

 

CR.
→
x0

 

L’action transmissible par la liaison pivot d’axe 

(OT,
→
x0 ) est notée : 

{Than→1} = 
OT






Xh1  0

Yh1  Mh1

Zh1  Nh1 B0

 

Les caractéristiques d'inertie du tronc 1 du robot 

LOLA sont : 

•  la matrice d'inertie en OT : 

IOT
(1) = 









A1  0  0

0  B1  − D1

0  − D1  C1 B1

 

Où : A1, B1, et C1 sont respectivement les 

moments d’inertie du tronc 1 par rapport aux 

axes (OT,
→
x1 ), (OT,

→
y1 ) et (OT,

→
z ) : 

A1 = J(OT,x1)(1) , B1 = J(OT,y1) (1), et C1 = J(OT,z1) (1) 

•  position du centre de gravité: 
→

OTGT = ZG.
→
z1   

•  masse: m1  

•  Accélération de pesanteur : g = 9,81 m.s
-2

  

Question 6 :  
En appliquant le théorème de la résultante dynamique au tronc 1, déterminer Yh1 la projection sur 
→
y0  de la résultante de l’action de la hanche sur le tronc 1. 

Question 7 :  
Déterminer en fonction de m1, A1 et ZG l’expression de  J(GT,x1)(1) le moment d’inertie du tronc 1 par 

rapport à l’axe (GT,
→
x1 ) 

Question 8 :  

En appliquant le théorème de l’énergie cinétique, déterminer l’équation différentielle reliant α et ses 

dérivées successives aux données du problème. On admet l’expression de l’énergie cinétique du 

tronc dans son mouvement par rapport au sol :  EC(1/0) = 
1

2
 . m1 . 

→
VGT∈ 1/0

2

 + 
1

2
 . J(GT,x1)(1).

•
α2  

2. Modèle du contrôle actif de la position verticale. 

Le contrôle de l'angle s'effectue par l'intermédiaire du moteur asservi en position, suivi du réducteur 

Harmonie-Drive
©

 de rapport de réduction : r = 1/100 

Le moment d'inertie de l'arbre moteur suivant son axe de rotation est noté Jm, le couple moteur 

exercé sur l'arbre d'entrée du réducteur est noté Cm. 

Une étude dynamique a permis de montrer que : CR = 
Cm

r
 − 

Jm

r
2  . 

••
α. Ainsi, En considérant l’angle α 

petit (cos α ≈1 et sin α ≈ α) l'équation différentielle du mouvement devient alors: 

Jeq .
• •
α(t) = m1.g.ZG.α(t) + m1.ZG.

•
v(t) + 

Cm(t)

r
 (1) 

Jeq est le moment d'inertie équivalent de l'ensemble du tronc ramené sur l'axe moteur.  

On note l’accélération du robot : γ(t) = 
•
v(t). 

Les conditions de Heaviside sont vérifiées. 

Le schéma-bloc du contrôle de la position angulaire du tronc de LOLA est représenté sur l'annexe 2. 

La consigne angulaire est nulle afin de garder le tronc du robot vertical : αc(t)=0. Les transformées 

de Laplace des fonctions seront notées en majuscules et le paramètre de Laplace sera noté p. 

Le comportement du moteur sera considéré comme celui d'un moteur à courant continu dont les 

équations de comportement sont les suivantes: 

 uc(t) = e(t) + L.
di(t)

dt
 + R.i(t) e(t) = ke.ωm(t) et Cm(t) = kc.i(t) 
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Question 9 :  
Donner les expressions des fonctions de transfert des blocs B1 , B2, B3, B4, B5, B6 et B7 ainsi que 

celle de la fonction de transfert H1 (p) .  

 

Afin d'analyser la stabilité de cet asservissement, nous cherchons à déterminer la fonction de 

transfert en boucle ouverte du système non-corrigé: F(p) = 
α(p)

Uc(p)
 en supposant la perturbation nulle.  

Question 10 : 
Déterminer, en fonction des coefficients Bi puis en fonction des constantes du système, l'expression 

de la fonction de transfert de la boucle dynamique : Hdyn(p) = 
α(p)

Cm(p)
 . 

Question 11 : 
Déterminer, en fonction des coefficients Bi, R et L puis en fonction des constantes du système, 

l'expression de la fonction de transfert en boucle ouverte non corrigée: F(p) = 
α(p)

Uc(p)
 . Vous 

donnerez ces expressions sous leur forme canonique. Indiquer son ordre, sa classe et donner son 

gain statique K en fonction des données. 

 

 

Une simulation numérique permet de tracer les diagrammes de Bode de cette FTBO. On les donne 

ci-dessous. Ils montrent que l’expression de F(p) est proche de : 
K

(1 + τ1.p).(−1 + τ1.p). (1 + τ2.p)
 

 

Question 12 :  

En analysant les diagrammes de Bode ci-dessus, déterminer les valeurs de τ1 , τ2 et K. 
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Pour la suite de l'étude, nous simplifierons F(p) sous la forme suivante : F(p) = 
K

(1 + τ1.p).(−1 + τ1.p)
  

Question 13 :  
Justifier le choix de cette simplification.  

Question 14 :  
Justifier que la boucle ouverte (et donc la boucle fermée) n'est pas stable. 

 

Afin de résoudre ce problème, il est décidé d'asservir la chaîne directe en position et en vitesse. 

Pour cela, la centrale 

inertielle permet de 

mesurer l'angle de 

tangage α(t) ainsi que la 

vitesse angulaire 
dt

)t(dα
. 

L'asservissement ainsi 

réalisé est présenté sous 

la forme du schéma-bloc 

de la figure 10.  
Uc(p) est la tension de commande en sortie du correcteur. La fonction de transfert de la centrale 

inertielle sera prise égale à : )Tp1(K)p(H 1ci +=  avec T = 1s. 

Question 15 :  

a) Déterminer en fonction de K, K1, τ1, T l'expression de la nouvelle FTBO non corrigée : 
α(p)

Uc(p)
. 

b) Puis sachant que cette fonction de transfert est stable à la condition que tous les coefficients du 

polynôme du dénominateur sont de même signe en déduire la condition sur K1 pour que la 

fonction de transfert en boucle ouverte non-corrigée soit stable. 

Question 16 :  

Déterminer K1 pour que la FTBO non corrigée 
α(p)

Uc(p)
 ait un facteur d'amortissement ξ=1,7.  

Vérifier que cette valeur est compatible avec les conditions obtenues précédemment. En déduire les 

valeurs de la pulsation propre ω0 et du gain statique de la boucle ouverte KBO.  

 

 

Quelque soient les résultats trouvés précédemment, nous utiliserons les expressions suivantes pour 

la suite de l'étude : 
α(p)

Uc(p)
 = 

KBO

1 + 
2.ξ
ω0

 .p + 
p

2

ω0
2

  avec KBO=1,1.10
-3

 V
-1

, ξ=1,7 et ω0 =3rad.s-
1
 . 

Pour répondre au cahier des charges, il est décidé d'implanter un correcteur de fonction de transfert 

suivante : Hcor(p) = Kp . 
1 + a.Td.p

1 + Td.p
   avec a > 1 . 

 

Question 17 :  
Nommer ce correcteur.  

 

Les diagrammes de Bode de gain et de phase (pour Kp =1 ) de ce correcteur sont fournis en 

annexe 3. Afin d'assurer un gain significatif de phase, nous décidons de placer ωc en ωBP=50 rad.s
-1

, 

définissant ainsi la bande passante.  
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Question 18 :  
Déterminer la valeur du paramètre a pour que le correcteur permette d'assurer la marge de phase du 

cahier des charges. En déduire la valeur de Td.  

Question 19 :  
Déterminer le gain Kp pour que le critère de bande passante du cahier des charges soit bien vérifié.  

 

La stabilité du tronc étant assurée, nous devons maintenant analyser les performances en précision 

et rapidité de l'asservissement de position angulaire. La consigne est nulle, ainsi seule la 

perturbation va écarter le tronc du robot de sa posture verticale. Cette perturbation provient du 

mouvement de marche souhaité c'est-à-dire de l'accélération subie. Avec les réglages du correcteur, 

une simulation numérique a permis de tracer la réponse temporelle du système pour une 

perturbation γ(t) respectant la loi de vitesse représentée sur la figure 7 de la page 6. Avec cependant 

une accélération γ(t) maintenue sur seulement 0,32 s. Cette réponse est tracée sur l'annexe 7.  

Question 20 :  
Justifier l'allure de la réponse temporelle. Déterminer graphiquement sur le document réponse le 

temps  de réponse à 5%, le dépassement maximal et l'erreur statique. Conclure sur la capacité du 

correcteur à vérifier l'ensemble des critères du cahier des charges.  

 

 Partie 3 : Alterner les phases d’appui sur les deux pied (marche du robot) 

 A l'instar de la marche humaine, les jambes du robot alternent les phases d'appui avec le sol avec 

les phases de balancement, où la jambe en rotation autour de la hanche prépare l'appui suivant. La 

figure ci-dessous décrit cette alternance.   

 
Figure 9 : chronogramme de la marche bipède en régime permanent  

 

Extrait du cahier des charges à valider dans cette partie : 

 

Exigence 1.1 : Le robot doit pouvoir atteindre les performances cibles 

Sous-exigence Description 

Id=1.1.1 L'amplitude maximale de balancement d'une jambe est de 45° 

Id=1.1.2 Le robot peut se déplacer jusqu'à 5 km.h
-1

 

Id=1.1.4 La longueur d'une foulée est de 150 cm au maximum 

Id=1.1.5 La période d'une foulée ne peut être inférieure à 1 seconde 

L'objectif de cette partie est d'analyser les solutions techniques mises en œuvre pour obtenir 

l'alternance des phases d'appui du robot et de vérifier les performances de la marche.  

Lorsque la jambe est tendue, la distance entre l'axe de tangage de la cheville et celui de tangage de 

la hanche est de 98 cm.  
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Question 21 :  
Le critère de vitesse de déplacement de 5 km.h

-1
 est-il cohérent avec ceux de longueur de foulée et 

de temps de cycle ? Justifier.  

 

Compte tenu des dimensions du robot, pour atteindre l'objectif de vitesse de déplacement de LOLA, 

la durée de la phase de balancement doit être inférieure à 0,4 secondes. C'est le moteur de tangage 

de la hanche qui assure ce mouvement. 

Alors que traditionnellement, le moteur d'articulation de la cheville est placé directement sur l'axe 

de la liaison considérée, une avancée technologique sur le robot LOLA a consisté à implanter les 

moteurs d'orientation de la cheville le plus haut possible sur la jambe afin de réduire le moment 

d'inertie JJ de la jambe par rapport à l'axe (OH,
→
x0 ) : voir annexe 5.  

La solution retenue nécessite une transmission de puissance du moteur jusqu'à l'axe de la cheville. 

La rotation de tangage est obtenue par la chaîne décrite partiellement sur les annexes 5 et 6. 

On donne aussi le débattement angulaire de rotation en tangage de la cheville sur l'annexe 5. 

Depuis le moteur implanté sur la cuisse, la puissance est transmise par un système composé de 

poulies, courroies, et d'un renvoi d'angle à pignons coniques comme le montre l'annexe 6. 

Question 22 :  
Quels mouvements particuliers doit-on imposer simultanément aux « vis droite» et « vis gauche» 

pour obtenir une rotation uniquement en roulis de la cheville ? Pour une rotation uniquement en 

tangage ?  

 

Pour la suite, on ne s'intéresse qu'au mouvement de tangage. On simplifie donc la modélisation en 

ne considérant qu'un seul système vis écrou et une seule bielle. Voir schéma cinématique de 

l'annexe 5. On a alors les liaisons suivantes : 

 LO,0/5 : Pivot d'axe (O,
→
z0 ) 

 LE,5/3 : Hélicoïdale d'axe (E,
→
z0 ) et de pas PV 

 LD,3/0 : Glissière d'axe (D,
→
z0 ) 

 LC,3/4 : Pivot d'axe (C,
→
x0 ) = (C,

→
x4 ) 

 LB,4/1 : Pivot d'axe (B,
→
x0 ) 

 LA,1/0 : Pivot d'axe (A,
→
x0 ) = (A,

→
x1 ) 

Les paramètres et dimensions du mécanisme sont les suivantes : 

 
→
AO = h.

→
z0   

→
BA = r.

→
y1   

→
BC = l.

→
z4   

→
CO = d'.

→
y0  + λ.

→
z0  

 
→
EO = λ.

→
z0   α = (

→
y0 ,

→
y1 ) = (

→
z0 ,

→
z1 )  β = (

→
y0 ,

→
y4 ) = (

→
z0 ,

→
z4 ) 

Question 23:  
En écrivant la fermeture géométrique du mécanisme ainsi modélisé, montrez que l'on a l'équation 

du second degré : x
2
 + b.x + c = 0 avec : x = h − λ et des coefficients b et c que vous 

exprimerez en fonction de r, l, d' et α. 

Question 24:  

En déduire la course ∆C du chariot permettant d'obtenir le débattement angulaire spécifié en 

annexe 5. Sachant que : h = 446 mm, r = 88 mm, l =340 mm et d' = 40 mm. 
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Les caractéristiques de la chaîne de transmission de puissance sont les suivantes :  

Vitesse nominale en sortie du moto-réducteur = vitesse nominale de la poulie motrice  Nn=2200tr.min
-1

  

Diamètre de la poulie motrice  40 mm  

Diamètre de la poulie réceptrice  40 mm  

Nombre de dents de l'engrenage conique lié à la poulie réceptrice  22  

Nombre de dents de l'engrenage conique lié à la vis  22  

Pas de la vis à billes  Pv (à déterminer) 

Le cahier des charges précise que ce débattement angulaire en tangage doit pouvoir être parcouru en 

moins de 0,8 s.  

Question 25 :  
En supposant la vitesse de rotation du moteur constante, déterminer le pas Pv en mm de la vis à 

billes pour obtenir le temps d'inclinaison en tangage de la cheville spécifié par le cahier des charges.  

 

 

 

 

Fin de l'énoncé. 
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 Documents annexes 

 

Annexe 1 
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Annexe 2 : Modification de la motorisation de la cheville 
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Annexe 3 : Transmission de mouvement de l'articulation de la cheville 

 

Annexe 4 : Modélisation cinématique de la cheville 
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Annexe 5 : Schéma bloc de l'asservissement de position angulaire du tronc 
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Annexe 6 : Diagrammes de Bode du correcteur pour KP = 1 

 

 
 

Annexe 7 : Réponse temporelle 

 

 


