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CCMP - PSI - 2015  Robot humanoïde Lola Corrigé 

Partie 1 : Stabilité du robot 

Question 1 

Si le point HS où le moment de l’action du sol sur le pied existe alors on a : 
→

MHs(sol→pied) = 
→
0 = 

→
MOs(sol→pied) + 

→
HSOS ∧  

→
Rsol→pied 

→
0 = b.

(M∈Σ)

  
→

OSM ∧  [ ]p(M).
→
z0  + t(M).

→
y0 .dy − YHS

.
→
y0  ∧  b.

(M∈Σ)

  [ ]p(M).
→
z0  + t(M).

→
y0 .dy 

→
0 = 

(M∈Σ)

  y.
→
y0  ∧  [ ]p(M).

→
z0  + t(M).

→
y0 .dy − YHS

.
(M∈Σ)

  
→
y0  ∧  [ ]p(M).

→
z0  + t(M).

→
y0 .dy 

→
0 = 

(M∈Σ)

  y.p(M).
→
x0 .dy − YHS

.
(M∈Σ)

  p(M).
→
x0 .dy = [ ]

(M∈Σ)

  y.p(M).dy − YHS
.

(M∈Σ)

  p(M).dy .
→
x0  

Or ∀  M ∈  Σ , p(M) > 0 Donc : 
(M∈Σ)

  p(M).dy > 0 Donc le poitn HS existe bien et on a : 

YHS
 = 


(M∈ Σ)

  y.p(M).dy


(M∈ Σ)

  p(M).dy
 

Donc le torseur de l’action du sol sur le pied 

est bien un glisseur d’axe passant par HS tel que : 
  →

OSHS = YHS
 .

  →
y0  

D’autre part, ∀  M ∈  Σ on a : y < YCS
 et p(M) > 0 On en déduit que : 

 
(M∈Σ)

  y.p(M).dy < YCS
 . 

(M∈Σ)

  p(M).dy Soit : YHS
 =  


(M∈Σ)

  y.p(M).dy


(M∈Σ)

  p(M).dy
 < YCS

 

Donc ayant : YHS
 < YCS

 on a : M ∈  [OS,CS] 

Question 2 

Les actions mécaniques extérieures s’appliquant sur le système {1 + 2} sont : 

 Le poids : Une force de résultante : 
→
P  = − m1.g.

→
z0  appliquée en G 

 L’action du sol sur le pied : Une force de résultante 
→

Rsol→pied appliquée en HS 

On note 
→
aG∈ 1/Sol le vecteur accélération du centre d’inertie G de l’ensemble {1 + 2}. L’application 

du théorème de la résultante dynamique s’écrit donc : 

m1. 
→
aG∈ 1/Sol = 

→
P  + 

→
Rsol→pied ⇔ m1. 

d2YG

dt2 .
→
y0  = − m1.g.

→
z0  + NSol→pied.

→
z0  + TSol→pied.

→
y0  (a) 

D’autre part le non basculement du robot se traduit par le fait que le torse reste en mouvement de 
translation par rapport au sol. Donc cela se traduit par le fait que le moment dynamique au centre d’inertie 
G de l’ensemble {1 + 2} dans son mouvement par rapport au sol est nul. Soit, par application du théorème 
du moment dynamique au cente d’inertie G de {1 + 2} : 

→
0 = 

→
GG ∧  

→
P  + 

→
GHS ∧  

→
Rsol→pied = 

→
0 + [

→
GOS ∧  

→
OSHS] ∧  

→
Rsol→pied 

[− yG(t).
→
y0  + zG.

→
z0  + YHS

.
→
y0 ] ∧  [NSol→pied.

→
z0  + TSol→pied.

→
y0  ] = 

→
0 (b) 

On obtient donc :  Par projection de (a) sur 
→
y0  : TSol→pied = m1. 

d2YG

dt2  

  Par projection de (a) sur 
→
z0  : NSol→pied − m1.g = 0 

  Par projection de (b) sur 
→
x0  : (YHS

 − yG(t)). NSol→pied + zG. TSol→pied = 0 

De ces trois équations on en déduit que la condition de non basculement s’écrit : 

YHS
 = YG − 

ZG

g
. 

d
2
YG

dt
2  
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Question 3 

D’autre part la condition de non glissement du pied sur le sol s’écrit : |TSol→pied| ≤ µ.|NSol→pied| 

Soit d'après les deux première équations précédentes : m1. 
d2YG

dt2  ≤ µ.m1.g 

D’où la condition de non glissement du pied sur le sol : µ ≥ 
1

g
 . 

d
2
YG

dt
2  

Question 4 

La condition de non basculement s'écrit : YHS
 = YG − 

ZG

g
. 

d2YG

dt2  Or : − 
foulée

4
 ≤ YG ≤ 

foulée
4

 

D’où la condition de non basculement s’écrit : − 
foulée

4
 − 

ZG

g
. 

d2YG

dt2  ≤ YHS
 ≤ 

foulée
4

 − 
ZG

g
. 

d2YG

dt2  

Sachant que : 0 ≤ YHS
 ≤ L , le non basculement induit que :  

 − 
foulée

4
 − 

ZG

g
. 

d2YG

dt2  ≤ 0  (toujours vérifié) 

 Et : L ≤ 
foulée

4
 − 

ZG

g
. 

d2YG

dt2  ⇔ foulée ≥ 4 . 






L + 

ZG

g
. 

d2YG

dt2  

Or  4 . 






L + 

ZG

g
. 

d2YG

dt2  = 4 × 






300 + 

1 050
9,81

 × 1,39  = 1 790 mm 

Donc la condition de non basculement s’écrit : foulée ≥ 1,79 m 

Or le cahier des charges impose une foulée maximale de 1,5 mm. 

Donc la condition de non basculement n’est pas compatible avec le cahier des charges qui 

exige une accélération de 1,39 m.s−2
 et une foulée inférieure à 1,5 mm 

Question 5 

La condition de non glissement s'écrit : µ ≥ 
1
g

 . 
d2YG

dt2  

 ⇔ 
d

2
YG

dt
2  ≤ µ.g = 0,1 × 9,81 = 0,981 m.s−2

 

Cela n’est pas compatible avec le cahier des charges qui exige une accélération de 1,39 m.s−2
. 

Partie 2 : Stabilité du robot 

Question 6 

Calculons la résultante dynamique du tronc dans son mouvement par rapport à 0 

Par la relation de Varignon sur les vecteur vitesse on a : 
→
VGT∈ 1/0 = 

→
VOT∈ 1/0 + 

→
GTOT ∧  

→
Ω1/0 

Du torseur cinématique du mouvement de 1 par rapport à 0 : {V1/0} = 
OT








•α.
→
x0

 
v.

→
y0

 

On en déduit : 
→
VGT∈ 1/0 = v.

→
y0  − ZG.

→
z1  ∧  

•
α.

→
x0  avec : 

→
x0  = 

→
x1  

Soit : 
→
VGT∈ 1/0 = v.

→
y0  − ZG.

•
α.

→
y1  

Par dérivation vectorielle on en déduit le vecteur accélération du centre d’inertie du tronc ; 

→
aGT∈ 1/0 = 







d 

→
VGT∈ 1/0

dt B0
 = 

•
v.

→
y0  − ZG.

••
α.

→
y1  − 

•
α.

→
x0  ∧  ZG.

•
α.

→
y1  avec : 

→
x0  = 

→
x1  

D’où la résultante dynamique du tronc dans son mouvement par rapport à 0 : 

 
→

RD(1/0) = m1.
     →
aGT∈ 1/0 = m1.(

•
v.

  →
y0  − ZG.

• •
α.

  →
y1  − ZG.

•
α2

.
  →
z1 ) 
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Les actions extérieures s'appliquant sur le tronc sont : 

 Le poids du tronc modélisé par le torseur : {Tpes→1} = 
GT






− m1.g.

→
z0

 
→
0

 

 L’action de la hanche sur le tronc de torseur : {Than→1} = 
OT






Xh1  0

Yh1  Mh1

Zh1  Nh1 B0

 

 Le couple de redressement de torseur : {Tmot→1} = 








→
0
 

CR.
→
x0

 

Donc le théorème de la résultante dynamique appliquée au tronc en projection sur 
→
y0  donne : 

 
→

RD(1/0).
→
y0  = Yh1 ⇔ m1.(

•
v.

→
y0  − ZG.

••
α.

→
y1  − ZG.

•
α2.

→
z1 ).

→
y0  = Yh1 

Sachant que : : 
→
y1 .

→
y0  = cos α et : 

→
z1 .

→
y0  = cos 







π

2
 + α  = sin α . On obtient : 

Yh1 = m1.
•

v − m1.ZG.
• •
α.cos α + m1.ZG.

•
α2

.sin α 

Question 7 

D’après le théorème de Huygens on a : J(OT,x1)(1) = J(GT,x1)(1) + m1. 
→

OTGT
2
 

Or : J(OT,x1)(1) = A1 et : 
→

OTGT = ZG.
→
z1  Donc : A1 = J(GT,x1)(1) + m1.ZG

2  

Soit finalement : J(GT,x1)(1) = A1 − m1.ZG
2
 

Question 8 

Calculons l’énergie cinétique du tronc dans son mouvement par rapport à 0 

GT étant le centre d’inertie de : EC(1/0) = 
1
2

 . m1 . 
→

VGT∈ 1/0

2

 + 
1
2

 . J(GT,x1)(1).
•

α2  Soit : 

EC(1/0) = 
1
2

 m1 . ( )v.
→
y0  − ZG.

•
α.

→
y1

2 + 
1
2

 . (A1 − m1.ZG
2).

•
α2 

EC(1/0) = 
1
2

 . m1 . (v
2 + ZG.

•
α2 − 2.v.ZG.

•
α.cos α) + 

1
2

 . (A1 − m1.ZG
2).

•
α2 

Soit après simplification : EC(1/0) = 
1

2
 . m1.(v

2
 − 2.v.ZG.

•
α.cos α) + A1.

•
α2  

Les puissances des actions extérieures (voir inventaire ci-dessus) s’appliquant sur ce tronc 1 sont : 

 P(pes→1/0) = 
GT






− m1.g.

→
z0

 
→
0

 ⊗  
GT








→
Ω1/0

 
→
VGT∈ 1/0

 = − m1.g.
→
z0  . ( )v.

→
y0  − ZG.

•
α.

→
y1  

 P(pes→1/0) = m1.g.ZG.
•

α.cos






π

2
 − α  P(pes→1/0) = m1.g.ZG.

•
α.sin α 

 P(han→1/0) = 
OT






Xh1  0

Yh1  Mh1

Zh1  Nh1 B0

 ⊗  
OT








•
α  0
0  v
0  0 B0

 P(han→1/0) = Yh1.v 

 P(mot→1/0) = 
GT








→
0
 

CR.
→
x0

 ⊗  
GT








→
Ω1/0

 
→
VGT∈ 1/0

 = CR.
→
x0  . 

•
α.

→
x0  P(mot→1/0) = CR.

•
α 

Le tronc 1 étant un solide, la somme des puissances des actions intérieures est nulle 
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D’où la somme des puissances des actions extérieures et intérieures appliquées à ce tronc dans son 
mouvement par rapport au sol 0 est : 

Σ P(Ext→1/0) + Σ P(Int→1/0) = m1.g.ZG.
•

α.sin α + Yh1.v + CR.
•

α 

De l’expression de Yh1 obtenue à la question 6 on obtient : 

Σ P(Ext→1/0) + Σ P(Int→1/0) = CR.
•

α + m1.(v.
•

v − ZG.
• •
α.v.cos α − ZG.

•
α2

.v.sin α + g.ZG.
•

α.sin α) 

L’application du théorème de l’énergie cinétique nous donne alors : 

d EC(1/0)
dt

 = Σ P(Ext→1/0) + Σ P(Int→1/0) 

d 





1

2
 . m1.(v

2 − 2.ZG.
•

α.v.cos α) + A1.
•

α2

dt
 = CR.

•
α + m1.(v.

•
v − ZG.

••
α.v.cos α − ZG.

•
α2.v.sin α + g.ZG.

•
α.sin α) 

m1.(v.
•
v − ZG.

••
α.v.cos α − ZG.

•
α.

•
v.cos α + ZG.

•
α2.v.sin α ) + A1.

•
α.

••
α = 

CR.
•

α + m1.(v.
•
v − ZG.

••
α.v.cos α + ZG.

•
α2.v.sin α + g.ZG.

•
α.sin α) 

Soit après simplification : A1.
• •
α = CR + m1.g.ZG.sin α + m1.ZG.

•
v.cos α 

Question 9 

Remarque : Avec l’équation précédente linéarisée (cos α ≈ 1 et sin α ≈α) et sachant que l’on a  : 

CR = 
Cm

r
 − 

Jm

r2  . 
••
α . On retrouve l’équation différentielle donnée dans l’énoncé : 

Jeq .
••
α(t) = m1.g.ZG.α(t) + m1.ZG.

•
v(t) + 

Cm(t)
r

 

Avec Jeq = A1 + 
Jm

r2  Et : 
•
v(t) = γ(t) 

Les conditions d’Heaviside étant vérifiées cette équation dans le domaine de Laplace donne : 

α(p) = 
1

Jeq.p
2. 





m1.g.ZG.α(p) + m1.ZG.Γ(p) + 

1

r
.Cm(p)  

D’autre part les autres équations différentielles passées dans le domaine de Laplace donnent : 

I(p) = 
1

R + L.p
 (UC(p) − E(p)) et : Cm(p) = kc.I(p)  Cm(p) = kc . 

1

R + L.p
 (UC(p) − E(p)) 

 E(p) = ke.Ωm(p) Et enfin : r = 

•
α(t)

ωm(t)
 Donc : ωm(p) = 

1

r
.p.α(p) 

Or d'après le schéma bloc : α(p) = 
B7

p
2 . [ ]B2.α(p) + B1.Γ(p) + B3.Cm(p)  

 Cm(p) = B5.H1(p). (UC(p) − E(p)) 

 Et enfin : E(p) = B6.ωm(p) ωm(p) =B4.p.α(p) 

On en déduit : B1 = m1.ZG B2 = m1.g.ZG B3 = 
1

r
 B4 = 

1

r
 

 B5 = kc B6 = ke B7 = 
1

Jeq
 H1(p) = 

1

R + L.p
 

Question 10 

A partir du schéma bloc et en appliquant la formule de Black on obtient : 
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 Hdyn(p) = 

B3.B7

p2

1 − 
B2.B7

p2

 Soit : Hdyn(p) = 
B3.B7

− B2.B7 + p
2  

Ou encore : Hdyn(p) = 

1
r.Jeq

− m1.g.ZG

Jeq
 + p2

 Soit : Hdyn(p) = 
1

− r.m1.g.ZG + r.Jeq.p
2
 

Question 11 

A partir du schéma bloc et en appliquant la formule de Black on obtient : 

 F(p) = 
B5.H1(p).Hdyn(p)

1 + B4.B5.B6.H1(p).Hdyn(p).p
 = 

B5 . 
1

R + L.p
 . 

B3.B7

− B2.B7 + p2

1 + B4.B5B6 . 
1

R + L.p
 . 

B3.B7

− B2.B7 + p2 . p
 

Soit : F(p) = 
B3.B5.B7

− R.B2.B7 + (B3.B4.B5.B6.B7 − L.B2.B7).p + R.p
2
 + L.p

3
 

Ou encore : F(p) = 

kc

r.Jeq

− 
R.m1.g.ZG

Jeq
 + 







kc.ke

r2.Jeq
 − 

L.m1.g.ZG

Jeq
.p + R.p2 + L.p3

 

Soit sous forme canonique : F(p) = 

− 
kc

r.R.m1.g.ZG

1 + 
r

2
.L.m1.g.ZG − kc.ke

r
2
.R.m1.g.ZG

 . p − 
Jeq

m1.g.ZG
 . p

2
 − 

L.Jeq

R.m1.g.ZG
 . p

3

 

Il s’agit d’une fonction de transfert : D’ordre 3 de Classe 0 De gain statique − 
kc

r.R.m1.g.ZG
 

Question 12 

Etant donné l’approximation on a : F(p) = 
K

(1 + τ1.p).(− 1 + τ1.p)
 . 

1

1 + τ2.p
 = HA(p) . HB(p) 

Avec :  HB(p) = 
1

1 + τ2.p
 et : HA(p) = 

− K

1 − τ1
2.p2 Soit :  HA(j.ω) = 

− K

1 + τ2.ω2    (réel < 0) 

Le gain de HA(p) est donc de : GdBA(ω) = 20.log K − 20.log(1 + τ1
2.ω2) 

 Deux asymptotes à la courbe de gain de pentes 0 dB/dec et − 40 dB/dec se coupant à 
1

τ1
2
 

Et sa phase de : ϕA(ω) = − 180° Phase constante de − 180° 

Quant à HB(p), il s’agit d’un premier ordre dont la phase est de − 45° à la pulsation 
1

τ2
 

A la pulsation de coupure 
1

τ2
 La phase de F(p) est donc de −180° − 45° = − 225° 

Soit par lecture graphique : 
1

τ2
 = 103 Soit : τ2 = 10−3

 s. 

D'autre part les asymptotes à la courbe de pentes 0 dB/dec et − 40 dB/dec se coupent à la pulsation 

de coupure de 1 rad/s égale à 
1

τ1
2 . Donc : τ1 = 1 s 
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Enfin l’asymptote de pente 0 dB/dec a pour ordonnée − 37 dB. 

Donc le gain statique − K est tel que 20.log K = − 37 dB Soit : K = 10
− 

37

20 = 1,4.10−2
 rad.V−1 

Question 13 

On a τ2 << τ1 donc pour des pulsations petites devant 
1

τ2
 la fonction HB(p) = 

1

1 + τ2.p
 est négligeable 

(Gain dynamique égal à 0 dB et phase égale à 0°). Or la bande passante visée pour la FTBO est bien 

petite devant 
1

τ2
 : ωBP = 50 rad.s−1 << 103 rad.s−1 = 

1

τ2
. 

On peut donc faire l’approximation : F(p) = 
K

(1 + τ1.p).(− 1 + τ1.p)
 

Question 14 

Les pôles de cette FTBO sont : − 1τ1
 et 

1

τ1
. Deux pôles réels dont un est positif. La FTBO est donc 

instable et par conséquent la FTBF est également instable. 

Question 15 

a) Notons HBONC(p) cette FTBO non corrigée. On a alors : HBONC(p) = 
α(p)
Uc(p)

 = 
F(p)

1 + F(p).Hci(p)
 

HBONC(p) = 

K

(1 + τ1.p).(− 1 + τ1.p)

1 + 
K.K1.(1 + T.p)

(1 + τ1.p).(− 1 + τ1.p)

  HBONC(p) = 
K

K.K1 − 1 + K.K1.T.p + τ1
2.p2

 

b) Le premier coefficient : τ1
2 est positif tout comme le second : K.K1.T. Donc pour que cette 

nouvelle FTBO soit stable il faut que le troisième K.K1 − 1 soit également positif. 

 Soit : K.K1 − 1 > 0 ⇔ K1 > 
1

K
 A.N. K1 > 71 V.rad−1 

Question 16 

La FTBO sous sa forme canonique s’écrit : HBONC(p) = 

K

K.K1 − 1

1 + 
K.K1.T

K.K1 − 1
.p + 

τ1
2

 K.K1 − 1
.p2

 

D’où La pulsation propre et le facteur d’amortissement de cette FTBO : 

 ω0 = 
K.K1 − 1

τ1
 Et : ξ = 

1
2

 . 
K.K1 − 1

τ1
 . 

K.K1.T

K.K1 − 1
  ξ = 

K.K1.T

2.τ1. K.K1 − 1
 

Par conséquent : ξ = 1,7 ⇔ 
K.K1.T

2.τ1. K.K1 − 1
 = 1,7 ⇔ 

3,4.τ1

K.T
 = 

K1

K.K1 − 1
 

Sachant que T = τ1 = 1 s et K = 0,014 rad.V−1 ξ = 1,7 ⇔ 
K1

K.K1 − 1
 = 243 

ξ = 1,7 ⇔ K1
2 − 2432×0,014.K1 + 59 049 = 0 ⇔ K1 = 79 V.rad−1 ou K1 = 745 V.rad−1 

Ces deux valeurs sont compatibles avec la stabilité de la FTBO car K1 > 71 V.rad−1
. 

Pour ces deux valeurs de K1 on alors les valeurs numériques de la FTBO : 

 K1 = 79 V.rad−1 K1 = 745 V.rad−1 
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ω0 = 
K.K1 − 1

τ1
 0,33 rad.s− 3,1 rad.s−1 

KBO = 
K

K.K1 − 1
 0,132 rad.V−1 1,5.10−3

 rad.V−1 

Question 17 

Il s'agit d'un correcteur à avance de phase. Aussi appelé proportionnel dérivé filtré. 

Question 18 

La phase de la FTBO non corrigée pour une pulsation ω > ω0 est de :  

ϕBONC(ω) = − 180° − arctan 






2.ξ.ω.ω0

ω0
2 − ω2  Soit pour : ω = ωBP = 50 rad.s−1 ϕBONC(ω) = − 168,4° 

Donc pour une marge de phase de Mϕ = 50°, il faut que la phase du correcteur à la pulsation 
ωBP = 50 rad.s−1 soit telle que : 50° = 180° − 168,4° + ϕCor(ωBP)  ϕCor(ωBP) = 38,4° = ϕm 

On en déduit donc : a = 
1 + sin 38,4

1 − sin 38,4
 = 4,3 et : Τ = 

1

ωBP. a
 = 

1

50. 4,3
 = 9,6.10−3

 s 

Question 19 

Le gain dynamique de la FTBO non corrigé à ωBP est de : 

 GdBBONC(ωBP) = 20.log KBO − 10.log 
















1 − 
ωBP

2

ω0
2

2

 + 4.ξ2.
ωBP

2

ω0
2  = − 108,3 dB 

Donc pour vérifier le critère de bande passante il faut : 20.log KP + 10.log a = + 108,3 

Soit : KP = 10

108,3 − 10.log a

20  K = 10

108,3 − 10.log 4,3

20  = 1,25.10
5
 V.rad−1 

Question 20 

Sur la première phase on a une accélération (La perturbation est donc non nulle) qui crée une erreur 
de 2,4.10−3 deg. Ensuite, à vitesse constante (perturbation nulle) l’erreur diminue fortement pour devenir 
nulle. On voit sur cette réponse temporelle que : 

 Quelque soit la perturbation l’erreur est au maximum de 2,8.10−3
 deg donc très inférieure à 0,5 °. 

 Le critère de précision est donc vérifié 

 Le dépassement maximal de la valeur finale est d’environ 0,4.10−3
 deg donc très inférieure à 1°. 

 Le critère de dépassement est donc vérifié. 

 Le temps de réponse à 5% est d’environ 35 ms donc très inférieur à 0,2 s. 

 Le critère de temps de réponse est donc vérifié. 

Par dimensionnement le correcteur vérifie les critères de bande passante et de marge de phase. 

Donc ce correcteur permet bien de vérifier l’ensemble des critères du cahier des charges 

Partie 2 : Alterner les phases d’appui sur les deux pied (marche du robot) 

Question 21 

A la vitesse de 5 km.h−1 = 1,39 m.s−1 pour une foulée de 1,5 m, la durée d’un cycle de marche est 

de : 
1,5

1,39
 = 1,08 s. Cela est cohérent avec le cahier des charges qui stipule que la période d’un cycle 

de marche ne peut pas être inférieure à 1 s. 
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Question 22 

Pour avoir uniquement un mouvement de tangage du pied, il faut déplacer les points B et B’ par 
rapport au tibia à la même vitesse et dans le même sens. 

Pour avoir uniquement un mouvement de roulis du pied, il faut déplacer les points B et B’ par 
rapport au tibia à la même vitesse et en sens opposés. 

Donc pour obtenir un mouvement du pied uniquement :  En tangage il faut : ωz
50 = ωz

5'0 

  En roulis il faut : ωz
50 = − ωz

5'0 

Question 25 

a) La fermeture géométrique du cycle s’écrit : 
→
OA + 

→
AB + 

→
BC + 

→
CE + 

→
EO = 

→
0 

Soit : − h.
→
z0  − r.

→
y1  + l.

→
z4  + d’.

→
y0  + λ.

→
z0  = 

→
0  

Avec : 
→
y1  = cos α .

→
y0  + sin α .

→
z0  et : 

→
z4  = − sin β .

→
y0  + cos β .

→
z0  

On obtient donc :  En projection sur 
→
y0  : l.sin β = d’ − r.cos α (a) 

  En projection sur 
→
z0  : l.cos β = (h − λ) + r.sin α (b) 

La combinaison de ces deux équations ( (a)2 + (b)2 ) donnne alors l’équation : 

l
2 = (h − λ)2 +d’2 +r2 + 2.r.sin α . (h − λ) − 2.r.d’.cos α 

Equation de la forme : x
2
 + b.x + c = 0 Avec : x = h − λ 

 b = 2.r.sin α 

 c = d’
2
 + r

2
 − l

2
 − 2.r.d’.cos α 

b) On a − 45° < α < 62°  

Déterminons la valeur de x pour les deux valeurs extrêmales de α. 

Pour α = − 45° b = − 124,5 mm et : c = − 111 200 mm2  

 D’où l’équation : x
2 − 124,5.x − 111 200 = 0 ⇔ x = 401,5 mm ou x =  − 276,9 mm 

 On ne retient bien sur que la solution : x = 401,5 mm 

Pour α = 62° b = 155,4 mm et : c = − 109 600 mm2  

 D’où l’équation : x
2 − 155,4.x − 109 600 = 0 ⇔ x = 262,4 mm ou x =  − 417,8 mm 

 On ne retient bien sur que la solution : x = 262,4 mm 

On en déduit la course du chariot nécessaire au débattement angulaire : 

∆C = 401,5 − 262.4 = 139,1 mm 

Question 26 

Poulie motrice et poulie réceptrice ayant le même diamètre nominal, la roue en entrée de 
l’engrenage conique tourne à la même vitesse que l’arbre de sortie du moto réducteur. 

De même les deux roues de l’engrenage conique ayant le même nombre dents, la vis tourne à la 
même vitesse que la roue en entrée de l’engrenage conique et donc à la mêm vitesse que l’arbre de sortie 
du moto réducteur. 

La vitesse de rotation de la vis 5 est donc de : 
2 200 × 2.π

60
 = 230,4 rad.s−1 

La vitesse nominale du chariot est alors de : 
230,4.PV

2.π  = 36,67.PV 

Or pour que le pied puisse parcourir le débattement angulaire imposé par le cahier des charges en 

moins de 0,8 s il faut une vitesse de 
∆C
0,8

 = 174 mm.s−1 

On doit donc avoir : 36,67.PV ≥ 174 Soit : PV ≥ 4,75 mm 


