
Sciences Industrielles de l’Ingénieur CPGE - Saint Stanislas - Nantes

Bras artificiel - Correcteur.docx page 1/3

TD4 : Bras artificiel : Correcteur numérique

1- Présentation du système

Mise en situation

Cette étude concerne un manipulateur développé en laboratoire. Il se

caractérise par une structure anthropomorphique à 7 degrés de liberté activés

par des paires de muscles montés en opposition.

Un muscle est constitué d'une vessie en caoutchouc emprisonnée dans

une tresse de fils. L'angle d'inclinaison de cette tresse permet de convertir le

gonflement de la vessie, sous l'effet de la pression, en effort de traction.

La modulation de pression, réalisée à partir d'une tension de commande

u(t), permet alors de faire varier l'effort de traction. En associant deux muscles

en opposition, on peut ainsi activer une articulation à l'aide d'un fil (tendon)

relié aux deux extrémités des muscles et roulant sans glisser sur une poulie.

Structure de l’articulation du coude

La chaine fonctionnelle du coude est

décrite par le schéma ci-contre :

On s’intéresse ici à la carte de

commande du coude qui assure la

commande de l’articulation du coude. Il

s’agit d’un microprocesseur dont le code

est écrit en Python.

La carte de commande est en

communication avec l’unité centrale de

commande du bras par un réseau « I2C ».

 La commande « Acqu_Ic_Ass() » permet d’interroger l’unité centrale qui répond en renvoyant la

consigne et si le coude doit être asservi en position. Cette fonction renvoie donc un entier (image de

la position de consigne du coude) et un booléen qui indique si le système doit être asservi.

 La commande « Informer(Im) » permet d’envoyer sur le réseau « I2C » une trame à l’unité centrale

qui indique la position réelle mesurée par le codeur absolu.

 La commande « Acqu_Position() » permet d’interroger le codeur absolu qui renvoie l’image de la

position réelle du coude : Im. Cette fonction retourne donc l’entier Im image de θ.

 La commande « Envoyer_commande(U) » permet d’attribuer à la sortie de la carte de commande

reliée au modulateur de pression, une tension U qui assure la commande du modulateur de pression.

Code du microprocesseur

Le code (incomplet) du microprocesseur est donné ci-dessous. On ne donne que la fonction

principale qui est exécuté en boucle lorsque la carte de commande est active.

def asservissement():

 # Toutes les variables sont globales et sont initialisées à 0

 global Date,Datep,dt,Ic,Im,E,Ep,U1,U1p,U2,U2p,U,Up,M,Mp,Cext,Cons,Te,Tep,Tepp

 Cons=0.0 # Consigne de l'asservissement (Cons)

 Ic,Im=0,0 # Images de la consigne (Ic) et de la réponse (Im)

 E,Ep=0.0,0.0 # Ecart entre les images de la consigne et de la réponse

 U1,U1p=0.0,0.0 # Sortie du 1ier correcteur

 U2,U2p=0.0,0.0 # Sortie du 2nd correcteur

 U,Up=0.0,0.0 # Sortie du 3ième correcteur

 Date,Datep=0.0,0.0 # Dates actuelle et précédentes

 Asservissement = True # Booléen indiquant si l’articulation doit être asservie

Sciences Industrielles de l’Ingénieur CPGE - Saint Stanislas - Nantes

Bras artificiel - Correcteur.docx page 2/3

 While Asservissement==True: # Boucle d'asservissement

 Datep=Date # Memorisation de la date précédente

 Date=t.time() # Acquisition de la date de l’horloge de la carte de commande

 dt=Date-Datep # Calcul de la durée d’échantillonnage

 Ic,Asservissement=Acqu_Ic_Ass() # Acquisition des consignes

 Im=Acqu_Position() # Pour mesurer l'image de la réponse à la Date actuelle

 Ep=E # Memorisation de l’écart précédent

 E=Ic-Im # Calcul de l’écart actuel

 Calcul_Commande() # Fonction à définir suivant le correcteur

 Envoyer_commande(U) # Envoie de la commande au modulateur de pression

 t.sleep(0.005) # Temporisation de 5 ms

 Envoyer_commande(0) # Pour annuler la commande

Modélisation de l’asservissement

Une première étude a permis d’obtenir la structure de l’asservissement ci-dessous :

+
-

ΙC(p) Θ(p)
Correc-

teur

ε(p) U(p) ∆P(p)

Cext(p)

Codeur

ΘC(p)
Adap-

tateur

Ιm(p)

Modulateur

de pression

Muscles

+ bras

Une seconde étude a permis de déterminer la fonction de transfert non corrigée du système :

HBONC(p) =
114,6

(1 + 0,16.p + 0,1.p
2
).(1 + 0,06.p)

 On a ainsi le diagramme de Bode de cette FTBO

Objectif du problème

L’objectif du problème est de coder le correcteur. C'est-à-dire écrire en langage Python la fonction

« Calcul_Commande() » qui permet d’obtenir la tension u(t) à la sortie du correcteur (la variable « U »).

Laquelle commande permet de vérifier le cahier des charges :

 Mϕ ≥ 45° ω0dB ≥ 8 rad.s−1
 t5% ≤ 2 s εS = 0° εt ≤ 5° = 8,7.10−2

 rad.

Sciences Industrielles de l’Ingénieur CPGE - Saint Stanislas - Nantes

Bras artificiel - Correcteur.docx page 3/3

Travail demandé

A- Correcteur proportionnel

1- On envisage pour commencer un correcteur proportionnel : C(p) = Kp. Déterminer la valeur de

Kp permettant de garantir une marge de phase de 45°.

2- Compléter le code de la fonction Calcul_Commande1()(Une seule ligne suffit) qui à partir de

l’écart E calcule la commande U (E et U variables globales).

def Calcul_Commande1():

 global U, E

2- Taper ce code dans le code Python fourni et tester cette correction avec une perturbation de 0

N.m et 5 N.m. Pour cela taper dans le Shell les commandes test(calcul_Commande1,0,14,1000)

et test(calcul_Commande1,5,14,1000) (14 est la durée de simulation et 1000 le nombre points)

4- Conclure quand au respect des critères de précision et de rapidité du cahier des charges.

B- Correcteur à deux étages

A partir du diagramme de Bode de la FTBO non corrigé et du cahier des charges, une 3
ième

 étude

montre qu’ilest envisageable d’utiliser un correcteur à 2 étages C(p) = C1(p) . C2(p) :

ε(p) U1(p)
C1(p)

U(p)
C2(p)

Avec : C1(p) =
1 + 1,17.p

1 + 0,014.p

 et : C2(p) =
0,016.(1 + 0,343.p)

p

5- Ecrire les relations numérique (avec la variable de Laplace) liant les fonctions symboliques, du

correcteur : ε(p), U1(p) et U(p). Passer ces relations dans le domaine temporel. Discrétiser ces relations :

d f(t)

dt
 =

f(t) − f(t−dt)

dt
 et en déduire les expressions numériques de u1(t) et u(t) en fonction de ε(t), ε(t−dt),

u1(t), u1(t−dt) et u(t−dt).

6- Compléter le code de la fonction Calcul_Commande2() qui à partir de l’écart E calcule la

commande U (E et U variables globales).

def Calcul_Commande2():

 global dt, E, Ep, U1, U1p, U

7- Taper ce code dans le code Python fourni et tester cette correction avec une perturbation de 0

N.m et 5 N.m. Pour cela taper dans le Shell les commandes test(calcul_Commande2,0,14,1000)

et test(calcul_Commande2,5,14,1000)

8- Conclure quand au respect des critères de précision et de rapidité du cahier des charges.

C- Correcteur à trois étages

A partir du diagramme de Bode de la FTBO non corrigé et du cahier des charges, une 3
ième

 étude

montre qu’il faut utiliser un correcteur à 3 étages C(p) = C1(p) . C2(p) . C3(p) :

ε(p) U1(p)
C1(p)

U2(p)
C2(p)

U(p)
C3(p)

Avec : C1(p) = C2(p) =
1 + 0,26.p

1 + 0,06.p

 et : C3(p) =
0,034.(1 + 0,343.p)

p

9- Reprendre les questions 5, 6 et 7 avec la fonction Calcul_Commande3() .

def Calcul_Commande3():

 global dt, E, Ep, U1, U1p, U2, U2p, U

10- Conclure quant au respect des critères du cahier des charges avec cette commande.

