
Informatique Tronc Commun CPGE – St Stanislas

TP - Floyd-Warshall.docx page 1/4

TP : Floyd-Warshall : Le plus court chemin

Mise en situation

On se propose dans ce TP d’utiliser

l’algorithme de Floyd-Warshall afin de

déterminer le plus court chemin entre deux

villes de France. Ce chemin se fait par des

lignes droites entre deux grandes villes de

France dont la population est supérieure à

30 000 habitants et qui sont distantes de 120

km au plus l’une de l’autre.

Un premier TP a permis de déterminer

et tracer le graphe correspondant aux villes de

30 000 habitants au moins et distantes de 120

km au plus l’une de l’autre. Voir carte ci-

contre.

Tout cela peut-être obtenu avec le code

python fourni dans le fichier « Itineraire

grandes villes – Floyd-Warshall.py ». Ce code

python permet d’obtenir le graphe qui lui-

même permet de faire le tracé ci-contre.

Objectif

L’objectif est de créer les fonctions qui en indiquant, les noms de deux villes, la population

minimale des villes françaises (par exemple 30 000 habitants) qui peuvent accueillir les étapes d’un

parcours entre les deux villes et la distance maximale (par exemple 120 km) entre les villes étapes ;

permettront d’obtenir l’itinéraire le plus court et de le tracer sur cette carte.

Récupérations des données

Copier et enregistrer dans votre dossier personnel le dossier « Itinéraire grandes villes - Floyd-

Warshall » qui contient les deux fichiers : « dots.db » et « Itineraire grandes villes - Floyd-Warshall.py».

Puis ouvrir avec Pyzo le fichier « Itineraire grandes villes - Floyd-Warshall.py».

Procédure pour rendre courant dans le shell un dossier :

 (1) Visualiser la fenêtre de « l’explorateur de fichier »

 (2) Sélectionner le dossier contenant le dossier en

question.

 (3) Clic droit sur le dossier en question puis sélectionner

« Ajouter ce répertoire à la liste des projets »

 (4) Sélectionner le dossier en question dans la liste des

projets

 (5) Clic gauche puis sélectionner « Aller dans ce dossier»

 (6) Exécuter le code (Touche F5)

 Tester le code en tapant la commande Trace_graphe(30,120) puis plt.show(), cela doit

permettre l’affichage de la carte ci-dessus.

Si l’affichage ne se fait pas correctement (superposition des cartes des départements) mettre les

lignes 46 et 47 en commentaire.

Informatique Tronc Commun CPGE – St Stanislas

TP - Floyd-Warshall.docx page 2/4

Codage de l’algorithme de Floyd-Warshall

 Le graphe obtenu par la fonction « Constr_graphe(30,120) » renvoie un couple de dictionnaires.

Taper les commandes Graphe,Dvilles=Constr_graphe(30,120) , puis Dvilles[‘BREST’] , et

enfin Graphe[‘BREST’] . Ce que renvoient ces commandes doit vous permettre (avec vos

connaissances en géographie) de comprendre la structure des deux dictionnaires renvoyés par la fonction

« Constr_graphe(30,120) »

Le premier dictionnaire renvoyé par la commande « Constr_graphe(30,120) » est un graphe

d’adjacence. Appelons le « Graphe_adj ». Ce graphe est décrit par un dictionnaire dont les clés sont toutes

les villes d’au moins 30 000 habitants. Les valeurs sont des dictionnaires dont les clés sont uniquement

les villes voisines de la ville clé (maximum 120 km). Les deux dictionnaires ont la même dimension.

Notons « n » cette dimension. Le second dictionnaire est une collection de toutes les villes de plus de

30 000 habitants avec les coordonnées GPS et leur population.

Nous allons construire une matrice d’adjacence de ce même graphe (matrice n×n). Appelons la

« Mat_adj ». Cette matrice sera décrite par un dictionnaire de dictionnaire dont les clés (clésA) sont toutes

les villes d’au moins 30 000 habitants. Les valeurs seront des dictionnaires dont les clés (clésB) sont aussi

toutes les villes d’au moins 30 000 habitants et les valeur un couple (distance,suivante).

 La variable du couple « suivante » sera au départ la même chaine de caractère que la clé (clésB).

 La variable du couple « distance » sera un float. Ce réel est :

 La distance entre les villes cléA et cléB, si les villes « cléA », « cléB » sont distantes de mois de

« autonomie » km, autrement dit si cléB est une des clés du dictionnaire « Graphe_adj[cleA] »

 Une distance nulle si cléA = clé B

 Une distance infinie (« inf » renvoyé la commande « np.inf » de Numpy), si les villes « cléA »,

« cléB » sont distantes de plus de « autonomie » km, C'est-à-dire si cléB n’est pas une des clés du

dictionnaire « Graphe_adj[cleA] ».

 Question 1 Ecrire une fonction Constr_mat(Graphe_adj) » qui prend en argument un

graphe d’adjacence et qui renvoie la matrice d’adjacence (Mat_adj), sous la forme d’un dictionnaire de

dictionnaires, correspondant au graphe d’adjacence renvoyé par la commande
Constr_graphe(Pop_min,autonomie)

Après avoir écrit ce code et l’avoir exécuté, taper successivement dans le shell les commandes

Graphe,Dvilles=Constr_graphe(30,120) , puis Mat_adj=Constr_mat(Graphe) , et enfin

Mat_adj[‘BREST’][‘LORIENT’] cela doit vous retourner : (111.33592697619756, 'LORIENT')

car la ville de Lorient est à 111 km de Brest ce qui est inférieur à 120 km.

En tapant ensuite Mat_adj[‘BREST’][‘VANNES’] cela doit retourner : (inf, 'VANNES') car

Vannes est à plus de 120 km de Brest. Et donc à une distance infinie si on ne peut faire que des étapes de

120 km maximum.

 Question 2 La fonction précédente renvoie une matrice donnant la distance la plus courte entre

deux villes et la direction à prendre pour rejoindre ces deux villes sans étapes intermédiaire. Nous allons

maintenant écrire une fonction qui permet de d’ajouter une ville permettant une étape intermédiaire.

Ecrire une fonction Ajout_ville(M,Ajout) qui prend en argument une matrice d’adjacence

(dictionnaire de dictionnaires) et une ville (chaîne de caractère) et qui retourne une nouvelle matrice

d’adjacence pour laquelle on a ajouté la possibilité de faire étape à la ville Ajout.

Après avoir écrit ce code et l’avoir exécuté, taper successivement dans le shell les commandes

Mat_adj= Ajout_ville(Mat_adj,’LORIENT’) puis Mat_adj[‘BREST’][‘VANNES’] cela doit

retourner (159.0655081587547, 'LORIENT') car Vannes est à 159 km de Brest et que l’on peut

aller de Brest à Vannes en faisant étape à Lorient et qu’enfin pour cela il faut aller vers Lorient.

Informatique Tronc Commun CPGE – St Stanislas

TP - Floyd-Warshall.docx page 3/4

 Question 3 L’algorithme de Floyd-Warshall consiste à ajouter une à une la possibilité de passer

par une étape intermédiaire et de retenir le chemin le plus court (La distance et la direction à prendre)

 Ecrire une fonction Floyd_Warshall(Graphe) qui prend en argument un graphe d’adjacence

(Celui obtenue par la commande Graphe,Dvilles=Constr_graphe(30,120)) et qui renvoie une

matrice d’adjacence (MFW) à laquelle on a appliqué l’algorithme de Floyd-Warshall en ajoutant une a une

toutes les villes correspondant aux clés de la 1
ière

 matrice d’adjacence renvoyée par la fonction

Constr_mat(Graphe_adj).

Cette fonction utilisera les fonctions Constr_mat(Graphe_adj) et Ajout_ville(M,Ajout).

Après avoir écrit ce code et l’avoir exécuté, taper successivement dans le shell les commandes

Graphe,Dvilles=Constr_graphe(30,120) , puis MFW=Floyd_Warshall(Graphe) , et enfin

MFW [‘BREST’][‘NANTES’] cela doit vous retourner : (261.35043233309915, 'LORIENT') car

la ville de Nantes est à 261 km de Brest par étapes de moins de 120 km et qu’enfin pour cela il faut aller

vers Lorient.

En tapant ensuite dans le shell la commande : MFW[‘BREST’][‘CAEN’] cela doit vous retourner :

(448.2001559976825, 'QUIMPER') car la ville de Caen est à 448 km de Brest par étapes de moins

de 120 km et qu’enfin pour cela il faut aller vers Quimper.

Bien sur la direction à prendre et la distance obtenue sont celles du plus court itinéraire.

Tracé de l’itinairaire le plus court

 Question 4 Ecrire une fonction Itineraire(Pop_min,autonomie,Depart,Arrivee) qui

prend en argument deux nombres et deux chaines de caractères (deux noms de villes de plus de Pop_min

habitant) et qui renvoie un triplet :

 La distance du plus court chemin entre les villes Départ et Arrivée (en passant par des villes de plus de

Pop_min habitants avec des étapes de moins de autonomie km)

 L’itinéraire emprunté pour rejoindre les 2 villes : La liste des noms des villes (du Départ à l’Arrivée)

étapes de ce plus court chemin.

 Le dictionnaire des villes de plus de Pop_min habitants tel que renvoyé par la fonction

Constr_graphe(Pop_min,autonomie)

Cette fonction reprendra les étapes suivantes :

 Construction du graphe d’adjacence (enregistrement dans la variable Graphe) et du dictionnaire des

villes de plus de Pop_min habitants (enregistrement dans la variable Dvilles)

 Construction de la matrice d’adjacence après application de l’algorithme de Floyd-Warshall à partir du

graphe d’adjacence Graphe (Enregistrement dans la variable MFW).

 Enregistrement de la distance de l’itinéraire le plus court de la ville Départ à la ville Arrivée dans

une variable distance.

 Construction de la liste des villes étapes de la ville Départ à la ville Arrivée (Enregistrement dans la

variable Etapes des chaines de caractères que sont les noms des villes étapes)

 Retour du triplet (distance,Etapes,Dvilles)

 Tester votre fonction Itineraire(Pop_min,autonomie,Depart,Arrivee) en tapant les

commandes Dist,Iti,Villes=Itineraire(30,120,'BREST','CAEN') puis print(Dist,Iti)

cela doit renvoyer : 448.2001559976825 ['BREST', 'QUIMPER', 'SAINT-BRIEUC', 'SAINT-
MALO', 'CHERBOURG-OCTEVILLE', 'CAEN']

Et Dist,Iti,Villes=Itineraire(30,120,'BREST','NICE') et enfin print(Dist,Iti)

cela doit renvoyer : 1167.8240813100008 ['BREST', 'LORIENT', 'VANNES', 'NANTES',

'CHOLET', 'CHATELLERAULT', 'CHATEAUROUX', 'MONTLUCON', 'CLERMONT-FERRAND',

'SAINT-ETIENNE','MONTELIMAR','AVIGNON','AIX-EN-PROVENCE','DRAGUIGNAN','NICE']

Informatique Tronc Commun CPGE – St Stanislas

TP - Floyd-Warshall.docx page 4/4

 Question 5 Ecrire une fonction Trace_itineraire(Pop_min,autonomie,Depart,Arrivee)

qui prend en argument deux nombres et deux chaines de caractères (deux noms de villes de plus de

Pop_min habitants) et qui trace sur la carte de France l’itinéraire renvoyé

Cette fonction reprendra les étapes suivantes :

 Application de la commande Itineraire(Pop_min,autonomie,Depart,Arrivee) et

enregistrement des valeurs retournées dans les variable Distance, Itineraire, Dvilles

 Tracé de la carte de France avec la commande appelant la fonction carteFrance()

 Tracé de l’itinéraire sur la carte de France en utilisant les variables Itineraire et Dvilles.

 Affichage dans le Shell de la distance et de l’itinéraire (avec la commande print())

 Tester votre fonction Trace_itineraire(Pop_min,autonomie,Depart,Arrivee) en

tapant les commandes Trace_itineraire(30,120,'BREST','STRASBOURG') puis plt.show() .

Cela doit vous affiche la carte ci-dessous :

 Question 6 Tester les commandes >>> Trace_itineraire(30,120,'BREST','STRASBOURG')

puis Trace_itineraire(30,90,'BREST','STRASBOURG'), et ensuite

Trace_itineraire(30,80,'BREST','STRASBOURG') , et enfin plt.show().

Pourquoi un des trois tracés est-il abhérant ? Comment peut-on modifier le code pour éviter

d’afficher un tel tracé aberrant ? Modifier votre code pour cela.

