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Démonstrations de cinétique 

1- Notations pour les démonstrations 

Soit un repère R ce repère est le repère dans lequel on applique le Principe Fondamental de la 

Dynamique ou le Théorème de l'Energie Cinétique. Il s'agit donc d'un repère galiléen. 

Soit un solide S   de masse M 

  de centre de gravité G 

  auquel on associe un repère RS 

  Ce solide est constitué de masses élémentaire dm aux points P. On a donc : 

  M = 

 
  

 
  


S
  dm 


 
  

 
  


S
  

→
GP.dm = 

→
0 

Soit un point A fixe dans le solide S. 

Soit un point O fixe dans le solide S et dans le repère R 

On note 
→

ΩS/R la résultante cinématique (Vecteur rotation) du mouvement de S dans le repère R. 

On note les coordonnées des vecteurs  
→
AP, 

→
OP, 

→
GP et 

→
ΩS/R dans le repère RS liée à au solide S : 

 
→
AP = 









xAP

yAP

zAP RS

  
→
OP = 









xOP

yOP

zOP RS

 
→
GP = 









xGP

yGP

zGP RS

 
→

ΩS/R = 









ω1

ω2

ω3 RS

 

2- Résultante cinétique 

Par définition la résultante cinétique est le vecteur : 
→

RC(S/R) = 

 
  

 
  


S
   

→
VP∈S/R.dm 

Selon la relation de Varignon : 
→
VP∈S/R = 

→
VG∈S/R + 

→
ΩS/R ∧ 

→
GP 

Donc : 
→

RC(S/R) = 

 
  

 
  


S
  

→
VG∈S/R.dm + 


 
  

 
  


S
  

→
ΩS/R ∧ 

→
GP.dm 

Or 
→
VA∈S/R et 

→
ΩS/R sont liés au mouvement du solide S par rapport au repère R et donc sont 

indépendant du point P suivant lequel se fait l'intégration sur le solide S. 

Donc : 
→

RC(S/R) = 
→
VG∈S/R.


 
  

 
  


S
  dm + 

→
ΩS/R ∧ 







 
  

 
  


S
  

→
GP.dm  

Or :  M = 

 
  

 
  


S
  dm et 


 
  

 
  


S
  

→
GP.dm = 

→
0 

On en déduit : 
→

RC(S/R) = M.
→
VG∈S/R 

3- Moment cinétique 

Par définition le moment cinétique au point A est le vecteur : 
→

σA(S/R) = 

 
  

 
  


S
   

→
AP∧

→
VP∈S/R.dm 

Selon les relations de Varignon : 
→
VP∈S/R = 

→
VA∈S/R + 

→
ΩS/R∧

→
AP et Chasles : 

→
AP = 

→
AG + 

→
GP 

Donc : 
→

σA(S/R) = 

 
  

 
  


S
   

→
AG∧

→
VA∈S/R.dm + 


 
  

 
  


S
   

→
GP∧

→
VA∈S/R.dm + 


 
  

 
  


S
   

→
AP∧

→
ΩS/R∧

→
AP.dm 

Or 
→
VA∈S/R et 

→
AG sont liés solide S ou a son mouvement du par rapport au repère R et donc sont 

indépendant du point P suivant lequel se fait l'intégration sur le solide S. 

Donc : 
→

σA(S/R) = 







 
  

 
  


S
   dm .

→
AG∧

→
VA∈S/R + 







 
  

 
  


S
   

→
GP.dm ∧

→
VA∈S/R + 


 
  

 
  


S
   

→
AP∧

→
ΩS/R∧

→
AP.dm 

Or :  M = 

 
  

 
  


S
  dm et 


 
  

 
  


S
  

→
GP.dm = 

→
0 

On en déduit : 
→

σA(S/R) = M.
→
AG∧

→
VA∈S/R + 


 
  

 
  


S
   

→
AP∧

→
ΩS/R∧

→
AP.dm 
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D'autre part : 
→
AP∧

→
ΩS/R∧

→
AP = 









xAP

yAP

zAP RS

∧ 









ω1

ω2

ω3 RS

∧ 








xAP

yAP

zAP RS

= 








xAP

yAP

zAP RS

∧ 









ω2.zAP − ω3.yAP

ω3.xAP − ω1.zAP

ω1.yAP − ω2.xAP RS

 

 
→
AP∧

→
ΩS/R∧

→
AP = 









ω1.(yAP

2
+zAP

2
) − ω2.xAP.yAP − ω3.xAP.zAP

− ω1.xAP.yAP + ω2.(xAP
2
+zAP

2
) − ω3.yAP.zAP

− ω1.xAP.zAP − ω2.yAP.zAP + ω3.(xAP
2
+yAP

2
) RS

 

Donc : 
→
AP∧

→
ΩS/R∧

→
AP = 









yAP

2
 + zAP

2  − xAP.yAP  − xAP.zAP

− xAP.yAP  xAP
2
 + zAP

2
 − yAP.zAP

− xAP.zAP  − yAP.zAP  xAP
2
 + yAP

2
RS

. 









ω1

ω2

ω3 RS

 

d'où : 
→

σA(S/R) = M.
→
AG∧

→
VA∈S/R + 


 
  

 
  


S
   









yAP

2
 + zAP

2  − xAP.yAP  − xAP.zAP

− xAP.yAP  xAP
2
 + zAP

2
 − yAP.zAP

− xAP.zAP  − yAP.zAP  xAP
2
 + yAP

2
RS

. 









ω1

ω2

ω3 RS

.dm 

Or 
→

ΩS/R est lié au mouvement du solide S par rapport au repère R et donc est indépendant du point P 

suivant lequel se fait l'intégration sur le solide S. 

Donc : 
→

σA(S/R) = M.
→
AG∧

→
VA∈S/R +  













 
  

 
  


S
   









yAP

2
 + zAP

2  − xAP.yAP  − xAP.zAP

− xAP.yAP  xAP
2
 + zAP

2
 − yAP.zAP

− xAP.zAP  − yAP.zAP  xAP
2
 + yAP

2
RS

.dm . 









ω1

ω2

ω3 RS

 

En posant : JA(S)  = 










 
  

 
  


S
   (yAP

2
 + zAP

2
).dm  


 
  

 
  


S
   − xAP.yAP.dm  


 
  

 
  


S
   − xAP.zAP.dm

 

 
  

 
  


S
   − xAP.yAP.dm  


 
  

 
  


S
   (xAP

2
 + zAP

2
) .dm  


 
  

 
  


S
   − yAP.zAP.dm

 

 
  

 
  


S
   − xAP.zAP.dm  


 
  

 
  


S
   − yAP.zAP.dm  


 
  

 
  


S
   (xAP

2
 + yAP

2
) .dm

RS

 

On obtient : 
→

σA(S/R) = M.
→
AG∧

→
VA∈S/R + JA(S) .

→
ΩS/R 

Calcul au centre de gravité G ou en un point fixe O dans R 

Dans le cas où on prend pour le point A, le point G centre de gravité ou O point fixe dans R, on a 
→
AG = 

→
GG = 

→
0 ou 

→
VA∈S/R = 

→
VO∈S/R = 

→
0. On obtient donc : 

 
→

σG(S/R) = JG(S) .
→

ΩS/R et: . 
→

σO(S/R) = JO(S) .
→

ΩS/R 

4- Théorème de Huygens généralisé 

Quelque soit le vecteur 
→
U  et le point A, on peut définir une rotation d'axe (A,

→
U ) et de vecteur 

rotation 
→

ΩS/R = 
→
U  du solide S par rapport au repère R. 

On a alors : 
→
VA∈S/R = 

→
0 et donc : 

→
σA(S/R) = JA(S) .

→
U  

D'autre part de la relation de Varignon sur le torseur cinétique : 
→

σA(S/R) = 
→

σG(S/R) + 
→
AG∧M.

→
VG∈S/R 

On obtient donc : JA(S) .
→
U  = JG(S) .

→
U  + M.

→
AG∧.

→
VG∈S/R 

Or pour cette rotation d'axe (A,
→
U ) et de vecteur 

→
U  : 

→
VG∈S/R = 

→
VA∈S/R + 

→
U ∧ 

→
AG 

 avec : 
→
VA∈S/R= 

→
0 

On a donc la relation de Huygens généralisées applicable quelque soit le vecteur 
→
U  : 

JA(S) .
→
U  = JG(S) .

→
U  + M.

→
AG∧

→
U ∧ 

→
AG 
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On note les coordonnées du vecteur 
→
AG dans le repère RS : 

→
AG = 









a

b

c RS

.  Avec : 
→

ΩS/R = 









ω1

ω2

ω3 RS

 

On a alors : M.
→
AG∧ 

→
ΩS/R∧ 

→
AG = M. 









a

b

c RS

∧ 









ω1

ω2

ω3 RS

∧ 








a

b

c RS

= M. 








a

b

c RS

∧








c.ω2 − b.ω3

a.ω3 − c.ω1

b.ω1 − a.ω2 RS

 

ou : M.
→
AG∧ 

→
ΩS/R∧ 

→
AG = M. 









(b

2
 + c

2
).ω1 − a.b.ω2 − a.c.ω3

− a.b.ω1 + (a
2
 + c

2
).ω2 − b.c.ω3

− a.c.ω1 − b.c.ω2 + (a
2
 + b

2
).ω3 RS

 

ou encore : M.
→
AG∧ 

→
ΩS/R∧ 

→
AG = M. 









b

2
 + c

2  − a.b  − a.c

− a.b  a
2
 + c

2
 − b.c

− a.c  − b.c  a
2
 + b

2
RS

.









ω1

ω2

ω3 RS

 

On obtient donc : JA(S) .
→

ΩS/R = JG(S) .
→

ΩS/R + M. 









b

2
 + c

2  − a.b  − a.c

− a.b  a
2
 + c

2
 − b.c

− a.c  − b.c  a
2
 + b

2
RS

.
→

ΩS/R 

Cette relation étant vérifiées quelque soit le vecteur rotation 
→

ΩS/R on en déduit : 

JA(S)
RS

 = JG(S)
RS

 + M. 









b

2
 + c

2  − a.b  − a.c

− a.b  a
2
 + c

2
 − b.c

− a.c  − b.c  a
2
 + b

2
RS

 où : 
→
AG = 









a

b

c RS

 

5- Energie cinétique 

Calcul par le comoment des torseurs cinétique et cinématique 

Calculons le comoment du torseur cinétique et cinématique d'un solide S par rapport à un repère R. 

Quelque soit le point A appartenant au solide S on a : 

{C(S/R)}⊗{V(S/R)} = 

A








 
  

 
  


S
  

→
VP∈S/R.dm

 

 
  

 
  


S
  

→
AP∧

→
VP∈S/R.dm

 ⊗
A







→
ΩS/R

 
→
VA∈S/R

  

{C(S/R)}⊗{V(S/R)} = 

 
  

 
  


S
  

→
VP∈S/R.dm .

→
VA∈S/R + 

→
ΩS/R.


 
  

 
  


S
  

→
AP∧

→
VP∈S/R.dm.  

{C(S/R)}⊗{V(S/R)} = 

 
  

 
  


S
  

→
VP∈S/R.( )

→
VP∈S/R + 

→
AP∧

→
ΩS/R .dm + 


 
  

 
  


S
  

→
ΩS/R.

→
AP∧

→
VP∈S/R.dm 

{C(S/R)}⊗{V(S/R)} = 

 
  

 
  


S
  

→
VP∈S/R

 2
.dm + 


 
  

 
  


S
  

→
VP∈S/R.

→
AP∧

→
ΩS/R.dm + 


 
  

 
  


S
  

→
ΩS/R.

→
AP∧

→
VP∈S/R.dm  

{C(S/R)}⊗{V(S/R)} = 

 
  

 
  


S
  

→
VP∈S/R

 2
.dm + 


 
  

 
  


S
  

→
ΩS/R.

→
VP∈S/R∧

→
AP.dm − 


 
  

 
  


S
  

→
ΩS/R.

→
VP∈S/R∧

→
AP.dm 

{C(S/R)}⊗{V(S/R)} = 

 
  

 
  


S
  

→
VP∈S/R

 2
.dm 

or l'énergie cinétique d'un solide S dans son mouvement par rapport au repère R est le réel : 

EC(S/R) = 

 
  

 
  


S
   

1

2
.

→
VP∈S/R

 2
.dm 

Donc l'énergie cinétique d'un solide S dans son mouvement par rapport au repère R est le demi 

comoment des torseurs cinétique et cinématique de ce solide S dans son mouvement par rapport à R : 

EC(S/R) = 
1

2
 . {C(S/R)}⊗{V(S/R)} 

On en déduit : EC(S/R) = 
1

2
 . M. 

→
VA∈S/R

  2
 + M.

→
AG∧

→
VA∈S/R . 

→
ΩS/R + 

1

2
.

→
ΩS/R. JA(S) . 

→
ΩS/R 
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Calcul par le centre de gravité G 

Au centre de gravité G les torseurs cinétique et cinématique du solide S dans son mouvement par 

rapport au repère R, ont pour expression :  {C(S/R)} = 

G







M.
→
VG∈S/R

JG(S) .
→

ΩS/R
 et : {V(S/R)} = 

G








→
ΩS/R

→
VG∈S/R

D'où l'expression de l'énergie cinétique : EC(S/R) = 
1

2
 . M.

→
VG∈S/R

  2
 + 

1

2
 .

→
ΩS/R. JG(S) .

→
ΩS/R 

Calcul par un point fixe O dans R 

En un point O fixe danss R les torseurs cinétique et cinématique du solide S dans son mouvement 

par rapport au repère R, ont pour expression :  {C(S/R)} =

O







M.
→
VG∈S/R

JO(S) .
→

ΩS/R
 et : {V(S/R)} = 

O








→
ΩS/R

→
0

D'où l'expression de l'énergie cinétique : EC(S/R) = 
1

2
.

→
ΩS/R. JO(S) .

→
ΩS/R 

6- Résultante dynamique 

Par définition la résultante dynamique est le vecteur : 
→

RD(S/R) = 

 
  

 
  


S
   

→
aP∈S/R .dm 

Selon la relation de Varignon : 
→
VP∈S/R = 

→
VG∈S/R + 

→
ΩS/R ∧ 

→
GP 

Sachant que : 
→
aP∈S/R  = 







d 

→
VP∈S/R

dt R
 et : 

→
aG∈S/R  = 







d 

→
VG∈S/R

dt R
  on a : 

→
aP∈S/R  = 







d 

→
VP∈S/R

dt R
 + 






d (

→
ΩS/R ∧ 

→
GP)

dt R
 

→
aP∈S/R  = 

→
aG∈S/R  + 







d 

→
ΩS/R

dt R
 ∧ 

→
GP + 

→
ΩS/R ∧ 







d 

→
GP

dt R
 

Or d'après la relation de Bour : 






d 

→
GP

dt RS
 = 






d 

→
GP

dt R
 + 

→
ΩS/R ∧ 

→
GP 

Or les point P et G sont fixes dans RS donc 






d 

→
GP

dt RS
 = 

→
0 donc : 







d 

→
GP

dt R
 = 

→
GP ∧ 

→
ΩS/R 

Donc : 
→
aP∈S/R  = 

→
aG∈S/R  + 







d 

→
ΩS/R

dt R
 ∧ 

→
GP + 

→
ΩS/R ∧ 

→
GP ∧ 

→
ΩS/R 

Soit : 
→

RD(S/R) = 

 
  

 
  


S
   

→
aG∈S/R .dm + 


 
  

 
  


S
  






d 

→
ΩS/R

dt R
 ∧ 

→
GP.dm + 


 
  

 
  


S
  

→
ΩS/R ∧ 

→
GP ∧ 

→
ΩS/R .dm 

Or 
→
aG∈S/R  et 

→
ΩS/R sont liés au mouvement du solide S par rapport au repère R et donc sont 

indépendant du point P suivant lequel se fait l'intégration sur le solide S. 

D’où : 
→

RD(S/R) = 
→
aG∈S/R .







 
  

 
  


S
  dm  + 







d 

→
ΩS/R

dt R
∧







 
  

 
  


S
  

→
GP.dm  + 

→
ΩS/R ∧







 
  

 
  


S
  

→
GP.dm ∧ 

→
ΩS/R  

Sachant que définition de la masse et du centre de gravité d'un solide S : 

 M = 

 
  

 
  


S
   dm et : 


 
  

 
  


S
   

→
GP . dm = 

→
0 

On en déduit : 
→

RD(S/R) = M. 
→
aG∈S/R 
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7- Moment dynamique 

Calcul au centre de gravité G 

Par définition le moment dynamique en G est le vecteur : 
→

δG(S/R) = 

 
  

 
  


S
   

→
GP ∧ 

→
aP∈S/R  .dm 

Selon la relation de Varignon : 
→
VP∈S/R = 

→
VG∈S/R + 

→
ΩS/R ∧ 

→
GP 

Sachant que : 
→
aP∈S/R  = 







d 

→
VP∈S/R

dt R
 et : 

→
aG∈S/R  = 







d 

→
VG∈S/R

dt R
  

on a : 
→
aP∈S/R  = 







d 

→
VP∈S/R

dt R
 + 






d (

→
ΩS/R ∧ 

→
GP)

dt R
 = 

→
aG∈S/R  + 







d (

→
ΩS/R ∧ 

→
GP)

dt R
 

soit : 
→

δG(S/R) = 

 
  

 
  


S
  

→
GP ∧ 

→
aG∈S/R .dm + 


 
  

 
  


S
   

→
GP ∧ 







d (

→
ΩS/R ∧ 

→
GP)

dt R
 .dm 

Or 
→
aG∈S/R  est lié au mouvement du solide S par rapport au repère R et donc sont indépendant du 

point P suivant lequel se fait l'intégration sur le solide S. 

donc : 

 
  

 
  


S
  

→
GP ∧ 

→
aG∈S/R .dm = 



S

→
GP.dm

 ∧ 
→
aG∈S/R  avec : 


 
  

 
  


S
  

→
GP.dm = 

→
0 

On en déduit : 
→

δG(S/R) = 

 
  

 
  


S
   

→
GP ∧ 







d (

→
ΩS/R ∧ 

→
GP)

dt R
 .dm (a) 

D'après la relation de Bour : 






d 

→
GP

dt RS
 = 






d 

→
GP

dt R
 + 

→
ΩS/R ∧ 

→
GP 

Or les point P et G sont fixes dans RS donc 






d 

→
GP

dt RS
 = 

→
0 donc : 







d 

→
GP

dt R
 = 

→
GP ∧ 

→
ΩS/R 

Donc : 






d 

→
GP

dt R
 ∧ 

→
GP ∧ 

→
ΩS/R = 

→
0 soit: 


 
  

 
  


S
   






d 

→
GP

dt R
 ∧ (

→
GP ∧ 

→
ΩS/R).dm = 

→
0 (b) 

Des équations (a) et (b) on en déduit : 

→
δG(S/R) = 


 
  

 
  


S
   






→

GP ∧ 






d (

→
ΩS/R ∧ 

→
GP)

dt R
 + 






d 

→
GP

dt R
 ∧ (

→
GP ∧ 

→
ΩS/R) .dm 

→
δG(S/R) = 


 
  

 
  


S
  






d 

→
GP ∧ 

→
ΩS/R ∧ 

→
GP

dt R
.dm = 









d 


 
  

 
  


S
  

→
GP ∧ 

→
ΩS/R ∧ 

→
GP.dm

dt R
 

Or en page 2 on a montré que 

 
  

 
  


S
   

→
GP ∧ 

→
ΩS/R ∧ 

→
GP .dm = 

→
σG(S/R) 

On en déduit donc : 
→

δG(S/R) = 






d 

→
σG(S/R)

dt R
 

Calcul en un point A quelconque du solide S 

D'après la relation de Varignon appliquée au torseur dynamique : 

→
δA(S/R) = 

→
δG(S/R) + 

→
AG ∧ 

→
RD(S/R) 

→
δA(S/R) = 

→
δG(S/R) + 

→
AG ∧M. 

→
aG∈S/R  

→
δA(S/R) = 







d 

→
σG(S/R)

dt R
 + 

→
AG ∧M.







d 

→
VG∈S/R

dt R
 

→
δA(S/R) = 







d 

→
σG(S/R)

dt R
 + 

→
AG ∧M.







d 

→
VG∈S/R

dt R
 + 






d 

→
AG

dt R
∧M.

→
VG∈S/R + M.

→
VG∈S/R∧







d 

→
AG

dt R
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→
δA(S/R) = 







d 

→
σG(S/R)

dt R
 + 






d 

→
AG ∧ M.

→
VG∈S/R

dt R
 + M.

→
VG∈S/R ∧ 







d 

→
AG

dt R
 

→
δA(S/R) = 







d 

→
σG(S/R)

dt R
 + 






d 

→
AG ∧ 

→
RC(S/R)

dt R
 + M.

→
VG∈S/R ∧ 







d 

→
AG

dt R
 

→
δA(S/R) = 







d 

→
σG(S/R)

dt R
 + 






d 

→
AG ∧ 

→
RC(S/R)

dt R
 + M.

→
VG∈S/R ∧ 







d 

→
AG

dt R
 

→
δA(S/R) = 







d [ ]

→
σG(S/R) + 

→
AG ∧ 

→
RC(S/R)

dt R
 + M.

→
VG∈S/R ∧ 







d 

→
AG

dt R
 

Or d'après la relation de Varignon appliquée au torseur cinétique : 
→

σA(S/R) = 
→

σG(S/R) + 
→
AG ∧ 

→
RC(S/R) 

Donc : 
→

δA(S/R) = 






d 

→
σA(S/R)

dt R
 + M.

→
VG∈S/R ∧ 







d 

→
AG

dt R
 (a) 

En prenant un point O fixe dans R on écrit, d'après la relation de Chasles : 

 






d 

→
AG

dt R
 = 






d 

→
AO

dt R
 + 






d 

→
OG

dt R
 = − 







d 

→
OA

dt R
 + 






d 

→
OG

dt R
 

Or le point O étant fixe dans R et le G fixe sur S : 







d 

→
OA

dt R
 = 

→
VA/R  et : 







d 

→
OG

dt R
 = 

→
VG∈S/R 

Donc : M.
→
VG∈S/R ∧ 







d 

→
AG

dt R
 = − M.

→
VG∈S/R ∧ 

→
VA/R  + M.

→
VG∈S/R ∧ 

→
VG∈S/R (a) 

Soit : M.
→
VG∈S/R ∧ 







d 

→
AG

dt R
 = M. 

→
VA/R  ∧ 

→
VG∈S/R (b) 

Des équations (a) et (b) on en déduit : 
→

δA(S/R) = 






d 

→
σA(S/R)

dt R
 + M. 

→
VA/R  ∧ 

→
VG∈S/R 

Calcul en un point O fixe dans R et dans S 

Si on applique au point O la relation précédente : 

→
δO(S/R) = 







d 

→
σO(S/R)

dt R
 + M.

→
VO/R  ∧ 

→
VG∈S/R 

Or le point O est également fixe dans R. Donc : 
→
VO/R  = 

→
0 

On en déduit donc : 
→

δO(S/R) = 






d 

→
σO(S/R)

dt R
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8- Opérateur d'inertie d'un cylindre de révolution 

Soit un cylindre homogène de révolution dont la masse 

volumique est ρ. Ce cylindre a un rayon R et une hauteur H. l'axe de 

révolution de ce cylindre est (G,
→
Z ) où G est le centre de gravité. 

Ce cylindre étant de révolution d'axe (G,
→
Z ) son opérateur 

d'inertie en G dans le repère du solide RS = (
→
X ,

→
Y ,

→
Z ) est : 

IG(S)  = 








A  0  0

0  A  0

0  0  C RS

 

On décompose ce cylindre en une infinité de volumes 

élémentaires dv de centre P tel que 
→
GP = 









xGP

yGP

zGP RS

. On a alors : 

A = 

 
  

 
  


S
   (yGP

2
 + zGP

2
).dm et :  C = 


 
  

 
  


S
   (xGP

2
 + yGP

2
).dm 

On décompose ce cylindre en une infinité de volumes 

élémentaires dv de centre P, hauteur dh, dans un secteur angulaire dθ 

et de largeur dr. 

G

h

dh

dθ

θ

r

dr

P

X

Y

Z

R

H

θ

 

la masse dm de ce volume élémentaire est alors : dm = ρ.r.dθ.dr.dh 

Et on a : xGP = r.cos θ yGP = r.sin θ zGP = h 
On a donc les moments d'inertie de ce cylindre : 

A = 


0

R 


0

2.π 


−Η/2

+H/2 (r
2
.sin

2θ + h
2
).ρ.r.dθ.dr.dh 

A = ρ.


0

R 


0

2.π 


−Η/2

+H/2 (r
3
.sin

2θ + h
2
.r).dh.dθ.dr 

A = ρ.


0

R 


0

2.π 






r

3
.sin

2θ.h + 
h

3

3
.r  

+-H/2

−H/2

.dθ.dr 

A = ρ.


0

R 


0

2.π 








r
3
.






1

2
 − 

cos 2.θ
2 .H + 

r.H
3

12
.dθ.dr 

A = 
ρ.Η
12

.


0

R 


0

2.π 








12.r
3
.






1

2
 − 

cos 2.θ
2  + r.H

2
.dθ.dr 

A = 
ρ.Η
12

.


0

R 








12.r
3
.






θ

2 − 
sin 2.θ

4  + r.H
2
.θ  

2.π

0
.dr

 

A = 
ρ.π.Η

12
.


0

R ( )12.r
3
 + 2.r.H

2
.dr 

A = 
ρ.π.Η

12
.[ ]3.r

4
 + r

2
.H

2 R

0
 

A = 
ρ.π.R

2
.H

12
 .( )3.R

2
 + H

2  

C = 


0

R 


0

2.π 


−Η/2

+H/2 (r
2
.cos

2θ + r
2
.sin

2θ).ρ.r.dθ.dr.dh 

 

C = ρ.


0

R 


0

2.π 


−Η/2

+H/2 r
3
.dh.dθ.dr 

 

C = ρ.


0

R 


0

2.π [ ]h.r
3 -H/2

+H/2
.dθ.dr 

 

C = ρ.H.


0

R [ ]θ.r
3 2.π

0
.dr 

 

C = ρ.2.π.H.






r

4

4  

R

0
 

 

C = ρ.π.H.
R

4

2
 

 

Sachant que la masse d'un cylindre de révolution de rayon R et hauteur H est : M = ρ.π.R
2
.H, on obtient : 

A = 
M.(3R

2
 + H

2
)

12
 et : C = 

M.R
2

2
 Soit : IG(S)  = 

M

12
 . 








3.R

2
 + H

2
 0  0

0  3.R
2
 + H

2
 0

0  0  6.R
2

RS

 


