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Cinétique : PFD et TEC pour des mouvements quelconques 

1- Généralités 

1.1- Objectif 

L’objectif de la cinétique est de modéliser trois grandeurs physiques : 

 La quantité de mouvement d’un corps. 

 La quantité d’accélération d’un corps. 

 L’énergie cinétique (Energie de mouvement) d’un corps.a 

Ces trois grandeurs dépendent de la masse du corps (et de sa répartition dans l’espace) et de son 

mouvement. Un mouvement ne pouvant être défini que par rapport à un repère (ou un solide) ces trois 

grandeurs ne peuvent donc être définies que par rapport à un repère. 

1.2- Cinétique d’une masse ponctuelle 

Soit un corps dont toute la masse m est concentrée en un point M. On définit alors : 

 La quantité de mouvement du corps S par rapport au repère R comme le vecteur : m. 
     →

VM∈ S/R 

 La quantité de d’accélération du corps S par rapport au repère R comme le vecteur : m. 
     →

aM∈ S/R 

 L’énergie cinétique du corps S par rapport au repère R comme le réel : 
1

2
.m. 

     →

VM∈ S/R
2
 

1.3- Cinétique d’un corps volumique 

1.3.1- Notions de base de géométrie des masses 

Un corps volumique S est toujours la somme sur le volume occupé par ce corps de masses 

élémentaires dm concentrées en des points P. 

La masse dm est le réel : dm = ρ(P).dv Où : dv est un volume élémentaire autour du point P 

et ρ(P), la masse volumique du corps autour du point P. Pour les calculs somatiques, sur le corps 

volumique il faut bien sur passer par une intégrale triple sur le volume de ρ(P).dv. Cependant pour 

simplifier les écritures nous écrirons l’intégrale sur le solide S des masses élémentaire dm. 

La masse de ce corps M est donc le réel : M = 




 
  




 
  




S
  dm 

Le centre d’inertie ou centre des masses est le point GI tel que : 





 
  




 
  




S
  

  →

GIP.dm = 
  →

0  

Le centre de gravité ou centre d'inertie est le point G tel que : 





 
  




 
  




S
  

  →

GP∧
  →

g(P).dm  = 
  →

0  

 Où : 
→

g(P) est le vecteur accélération gravitationnel en P. 
→

g(P) : le champ de gravité de la terre 

Très souvent en mécanique, la dimension des corps étant faible devant le rayon de la terre, on 

considère un champ de gravité uniforme. 

Sous l'hypothèse 
  →

g(P) = 
  →

C
te, le centre de gravité et le centre d'inertie sont confondus. 
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1.3.2- Quantité de mouvement 

La quantité de mouvement du corps volumique S (défini comme la somme des masses dm) par 

rapport au repère R est modélisée par le torseur cinétique : 

{C(S/R)} = 
A







     →

RC(S/R)

 
     →

σA(S/R)
 

Où on a :  La résultante cinétique : 
     →

RC(S/R) = 




 
  




 
  




S
  

     →

VP∈ S/R.dm  

  Le moment cinétique en A : 
     →

σA(S/R) = 




 
  




 
  




S
  

  →

AP∧
     →

VP∈ S/R.dm  

1.3.3- Energie cinétique 

L’énergie cinétique du corps volumique S (défini comme la somme des masses dm) par rapport au 

repère R est modélisée par le réel : 

EC(S/R) = 




 
  




 
  




S
  

1

2
 . 

     →

VP∈ S/R 
2 
. dm  

1.3.4- Quantité d’accélération 

La quantité d’accélération du corps volumique S (défini comme la somme des masses dm) par 

rapport au repère R est modélisée par le torseur dynamique : 

{D(S/R)} = 
A







     →

RD(S/R)

 
     →

δA(S/R)
 

On note :  La résultante dynamique : 
     →

RD(S/R) = 




 
  




 
  




S
  

     →

aP∈ S/R.dm  

  Le moment dynamique en A : 
     →

δA(S/R) = 




 
  




 
  




S
  

  →

AP ∧  
     →

aP∈ S/R.dm  

1.4- Cinétique d’un ensemble de solides 

Soit un système S constitué d’un nombre fini n de solides Si . : S = S1 ∪  S2 ∪  …. ∪  Sn 

1.4.1- Quantité de mouvement 

La quantité de mouvement du système S est la somme des quantités de mouvement des solides Si : 

{C(S/R)} = 
i=1

n

  {C(Si/R)} 

1.4.2- Energie cinétique 

L’énergie cinétique du système S est la somme des énergies cinétiques des solides Si : 

EC(S/R) = 
i=1

n

  EC(Si/R) 

1.4.3- Quantité d’accélération 

La quantité d’accélération du système S est la somme des quantités d’accélération des solides Si : 

{D(S/R)} = 
i=1

n

  {D(Si/R)} 
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2- Torseur cinétique d’un solide S 

2.1- Torseur cinétique en un point A quelconque de S 

Soit un solide S de masse M d’opérateur d’inertie en A : JA(S) . 

Alors : {C(S/R)} = 
A





M . 

     →

VG∈ S/R 

 

M.
  →

AG ∧  
     →

VA∈ S/R + JA(S)  . 
     →

Ω(S/R)
 

C'est-à-dire que : 

 
     →

RC(S/R) = M . 
     →

VG∈ S/R Voir démonstrations §2 

 
     →

σA(S/R) = M.
  →

AG ∧  
     →

VA∈ S/R + JA(S) . 
     →

Ω(S/R) Voir démonstration §3 

2.2- Torseur cinétique au centre de gravité 

Soit un solide S de masse M de centre d’inertie G et d’opérateur d’inertie en G : JG(S) . 

Alors le torseur cinétique est de la forme : {C(S/R)} = 
G





M . 

     →

VG∈ S/R 

 

JG(S)  . 
     →

Ω(S/R)
 

C'est-à-dire que :  
     →

RC(S/R) = M . 
     →

VG∈ S/R Voir démonstrations §2 

  
     →

σG(S/R) = JG(S) . 
     →

Ω(S/R) Voir démonstrations §3 

2.3- Torseur cinétique en un point O de S fixe dans R 

Soit un solide S de masse M de centre d’inertie G et d’opérateur d’inertie en O : JO(S) . Où le 

point O appartenant au solide S est fixe dans R : 
     →
VO∈ S/R = 

 →
0  

Alors le torseur cinétique est de la forme : {C(S/R)} = 
O





M . 

     →

VG∈ S/R 

 

JO(S)  . 
     →

Ω(S/R)
 

C'est-à-dire que :  
     →

RC(S/R) = M . 
     →

VG∈ S/R Voir démonstrations §2 

  
     →

σO(S/R) = JO(S) . 
     →

Ω(S/R) Voir démonstrations §3 

2.4- Autre méthode pour calculer le torseur cinétique en un point A quelconque 

Pour déterminer le torseur cinétique en un point M quelconque, on peut aussi détermine le torseur 

cinétique au centre de gravité G ou en un point O de S fixe dans R, puis on applique Varignon : 
     →

σA(S/R) = 
     →

σG(S/R) + 
  →

AG ∧  M.
     →

VG∈ S/R ou 
     →

σA(S/R) = 
     →

σO(S/R) + 
  →

AO ∧  M.
     →

VG∈ S/R 
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3- Energie cinétique d’un solide S 

3.1- Calculée par le comoment des torseurs cinématique et cinétique 

Soit un solide S en mouvement dans le repère R défini par le torseur cinématique {V(S/R)} 

De ce torseur cinématique et de la géométrise des masses du solide S (Masse, Centre de gravité et 

Opérateur d'inertie) on en déduit la quantité de mouvement définie par le torseur cinétique {C(S/R)} 

Alors l’énergie cinétique est : EC(S/R) = 
1

2
 {V(S/R)} ⊗  {C(S/R)} Voir démonstration §5 

3.1- Energie cinétique calculée par l’opérateur d’inertie au centre d’inertie G 

Soit un solide S de masse M de centre d’inertie G et d’opérateur d’inertie en G : JG(S) . Alors 

EC(S/R) = 
1

2
 . M . 

     →

VG∈ S/R 
2
 + 

1

2
 . 

     →

Ω(S/R) . JG(S) . 
     →

Ω(S/R) Voir démonstrations §5 

On écrit aussi parfois : EC(S/R) = EC(S/RG) + 
1

2
 . M . 

     →

VG∈ S/R 
2
 

Où EC(S/RG) est l’énergie cinétique par rapport à RG : le repère barycentrique du solide S lié à R. 

Ce repère barycentrique est un repère dont le centre est constamment en G centre d’inertie du solide 

S et dont les axes sont constamment parallèles aux axes du repère R. 

3.2- Energie cinétique calculée par l’opérateur d’inertie en un point O de S fixe dans R 

Soit un solide S de masse M de centre d’inertie G et d’opérateur d’inertie en O : JO(S) . 

Où le point O appartenant au solide S est fixe dans R : 
     →
VO∈ S/R = 

 →
0  Alors : 

 EC(S/R) = 
1

2
 . 

     →

Ω(S/R) . JO(S) . 
     →

Ω(S/R) Voir démonstrations §5 

4- Torseur dynamique d’un solide S 

4.1- Torseur dynamique au centre de gravité 

Soit un solide S de masse M de centre d’inertie G et de moment cinétique en G : 
     →

σG(S/R) 

Alors le torseur dynamique est de la forme : {D(S/R)} = 

G







M . 
     →

aG∈ S/R

 





d 

     →

σG(S/R)

dt R

 

C'est-à-dire que :  
     →

RD(S/R) = M . 
     →

aG∈ S/R Voir démonstrations §6 

  
     →

δG(S/R) = 




d 

     →

σG(SR)

dt R
 Voir démonstrations §7 
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4.2- Torseur dynamique en un point A quelconque de S 

Soit un solide S de masse M de centre d’inertie G et de moment cinétique en A : 
     →

σA(S/R) 

Alors : {D(S/R)} = 

A







M . 
     →

aG∈ S/R

 





d 

     →

σA(S/R)

dt R
 + M.

     →

VA/R ∧  
     →

VG∈ S/R

 

C'est-à-dire que : 

 
     →

RD(S/R) = M . 
     →

aG∈ S/R Voir démonstrations §6 

 
     →

δA(S/R) = 




d 

     →

σA(S/R)

dt R
 + M.

     →

VA/R ∧  
     →

VG∈ S/R Voir démonstrations §7 

4.3- Torseur dynamique en un point O de S fixe dans R 

Soit un solide S de masse M de centre d’inertie G et de moment cinétique en O : 
     →

σO(S/R). Où le 

point O appartenant au solide S est fixe dans R : 
     →
VO∈ S/R = 

 →
0  

Alors le torseur dynamique est de la forme : {D(S/R)} = 

O







M . 
     →

aG∈ S/R

 





d 

     →

σO(S/R)

dt R

 

C'est-à-dire que :  
     →

RD(S/R) = M . 
     →

aG∈ S/R Voir démonstrations §6 

  
     →

δO(S/R) = 




d 

     →

σO(S/R)

dt R
 Voir démonstrations §7 

4.4- Autre méthode pour calculer le torseur dynamique en un point A quelconque 

Pour déterminer le torseur dynamique en un point A, on détermine le torseur dynamique au centre 

de gravité G ou en un point O de S fixe dans R, puis on transporte le moment dynamique en A : 

     →

δA(S/R) = 
     →

δG(S/R) + 
  →

AG ∧  M . 
     →

aG∈ S/R 

ou 

     →

δA(S/R) = 
     →

δO(S/R) + 
  →

AO ∧  M . 
     →

aG∈ S/R 

 


