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 Interface esclave : Corrigé 

Question 1. 

Les barres S1, S2, S4 et S5 ont deux plans de symétrie : Le plan contenant les deux axes des liaisons 

pivots et le plan orthogonal aux deux axes des ces mêmes liaisons pivot. Les matrices d’inertie de ces 

barres sont donc des matrices diagonales. 

A supposer que l’épaisseur de la partie « mâle » des chapes est égale à la somme des deux 

épaisseurs de la partie « femelle » des chapes on en déduit que le centre d’inertie des ces barres est situé 

au milieu des deux centres des liaisons pivot. On a donc : 

  →
AG1 = 

  →
G1B= 

L

2
.

  →
x1  

  →
BG2 = 

  →
G2C = L.

  →
x2  

  →
DG4 = 

  →
G4E = 

L

2
.

  →
x4  

  →
EG5 = 

  →
G5F = 

L

2
.

  →
x5  

On a donc pour les barres S1, S2, S4 et S5 les opérateurs d’inertie donné par les matrices d’inertie en 

G1, G2, G4 et G5 dans les bases B1, B2, B4 et B5 : 

JG1
(S1)  = 









A1  0  0

0  B1  0

0  0  C1 B1

 JG2
(S2)  = 









A2  0  0

0  B2  0

0  0  C2 B2

 

JG4
(S4)  = 









A4  0  0

0  B4  0

0  0  C4 B4

 JG5
(S5)  = 









A5  0  0

0  B5  0

0  0  C5 B5

 

D’autre part étant donné les masses et la forme de parallélépipède rectangle des barres avec : 

 La longueur L ou 2.L suivant la direction 
→
x  pour les 4 barres : L pour S1, S4 et S5 et 2.L pour S2  

 L’épaisseur e pour les 4 barres suivant la direction : 
→
z  pour S1 et S2 et 

→
y  pour S4 et S5. 

 La largeur d pour les 4 barres suivant la direction : 
→
y  pour S1 et S2 et 

→
z  pour S4 et S5. 

 Une masse m pour les 3 barres S1, S4 et S5 et 2.m pour la barre S2 

On obtient : A1 = A4 = A5 = 
m.(e

2
+ d

2
)

12
 A2 = 

2.m.(e
2
+ d

2
)

12
 

 B1 = 
m.(L

2
+ e

2
)

12
 B2 = 

2.m.(4.L
2
+ e

2
)

12
  B4 = B5 = 

m.(L
2
+ d

2
)

12
 

 C1 = 
m.(L

2
+ d

2
)

12
 C2 = 

2.m.(4.L
2
+ d

2
)

12
  C4 = B5 = 

m.(L
2
+ e

2
)

12
 

On obtient finalement : 

JG1
(S1)  = 

m

12
.








e

2
 + d

2
 0  0

0  L
2
 + e

2
 0

0  0  L
2
 + d

2
B1

 JG2
(S2)  = 

2.m

12
. 








e

2
 + d

2
 0  0

0  4.L
2
 + e

2
 0

0  0  4.L
2
 + d

2
B2

 

JG4
(S4)  = 

m

12
.








e

2
 + d

2
 0  0

0  L
2
 + d

2
 0

0  0  L
2
 + e

2
B4

 JG5
(S5)  = 

m

12
.








e

2
 + d

2
 0  0

0  L
2
 + d

2
 0

0  0  L
2
 + e

2
B5

 

Puis en considérant : e < d << L on a : 

JG1
(S1)  = 

m

12
.








0  0  0

0  L
2

 0

0  0  L
2
B1

 JG2
(S2)  = 

2.m

3
. 








0  0  0

0  L
2

 0

0  0  L
2
B2

 

JG4
(S4)  = 

m

12
.








0  0  0

0  L
2

 0

0  0  L
2
B4

 JG5
(S5)  = 

m

12
.








0  0  0

0  L
2

 0

0  0  L
2
B5
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Question 2. 

Moto réducteur 

Le moment d’inertie du moto-réducteur ramené sur son arbre de sortie (A,
→
z0 ) est Jm d’où l’énergie 

cinétique de ce moto-réducteur dans son mouvement par rapport à S0 : 

EC(Mot/S0) = 
1

2
 . Jm.ω2

 

Barre S1 

Première méthode de calcul 

Cette barre est en mouvement de rotation par rapport à l’axe (A,
→
z0 ) d’où l’énergie cinétique de 

cette barre S1 dans son mouvement par rapport à S0 : 

EC(S1/S0) = 
1

2
 . 

→
Ω1/0 . JA1

(S1) . 
→
Ω1/0 

Or ayant 
→

AG1 = 
L

2
.

→
x1  par le théorème de Huygens on a : 

JA1
(S1)  = JG1

(S1)  + m. 









0  0  0

0  
L

2

4
 0

0  0  
L

2

4
B1

 = 
m

12
.








0  0  0

0  L
2

 0

0  0  L
2
B1

 + 
m

4
.








0  0  0

0  L
2

 0

0  0  L
2
B1

 = 
m

3
.








0  0  0

0  L
2

 0

0  0  L
2
B1

 

On obtient : EC(S1/S0) = 
1

2
 . 








0

0

ω B1

.
m

3
.








0  0  0

0  L
2

 0

0  0  L
2
B1

.








0

0

ω B1

 = 
1

2
 . 

m

3
.








0

0

ω B1

.








0

0

ω B1

 

Et donc finalement : EC(S1/S0) = 
1

2
 . 

m.L
2

3
.ω2

 

Deuxième méthode de calcul 

EC(S1/S0) = 
1

2
 . m.

→

VG1∈ 1/0

2
 + 

1

2
 . 

→
Ω1/0 . JG1

(S1) . 
→
Ω1/0 

Avec : 
→

VG1∈ 1/0 = 
→
VA∈ 1/0 + 

→
Ω1/0 ∧  

→
AG1 = 

→
0 + ω.

→
z1  ∧  

L

2
.

→
x1  = 

L

2
.ω.

→
y1  Soit : 

EC(S1/S0) = 
1

2
 . m. 







L

2
.ω.

→
y1

2

 + 
1

2
 . 








0

0

ω B1

.
m

12
.








0  0  0

0  L
2

 0

0  0  L
2
B1

.








0

0

ω B1

= 
1

2
 . 

m.L
2

4
.ω2

 + 
1

2
 . 

m.L
2

12
.ω2

 

Et donc finalement :  EC(S1/S0) = 
1

2
 . 

m.L
2

3
.ω2 

Barre S4 

Cette barre est en mouvement de rotation par rapport à l’axe (D,
→
y0 ) à la vitesse de rotation : 

•
θ4 = k4.

•
θ1 = k4.ω  car : θ4 = 0,13 + k4.θ1 

Donc par un calcul similaire à celui de EC(S1/S0) (1
ière

 méthode ou 2
nde

) on obtient : 

EC(S4/S0) = 
1

2
 . 

m.L
2

3
.k4

2
.ω2

 

Barre S2 

EC(S2/S0) = 
1

2
 . 2.m.

→

VG2∈ 2/0

2
 + 

1

2
 . 

→
Ω2/0 . JG2

(S2) . 
→
Ω2/0 

Avec : 
→

VG2∈ 2/0 = 
→
VC∈ 2/0  + 

→
G2C ∧  

→
Ω2/0 = 

•
x.

→
x0  + L.

→
x2  ∧  

•
θ2.

→
z2  = 

•
x.

→
x0  − L.

•
θ2.

→
y2  

On obtient donc : EC(S2/S0) = 
1

2
 . 2.m.( )

•
x.

→
x0  − L.

•
θ2.

→
y2

2
 + 

1

2
 . 








0

0
•

θ2 B2

.
2.m

3
.








0  0  0

0  L
2

 0

0  0  L
2
B2

.








0

0
•

θ2 B2
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EC(S2/S0) = 
1

2
 . 2.m.( )

•
x2

 + L
2
.

•
θ2

2
 + 2.L.

•
x.

•
θ2.sin θ2  + 

1

2
 . 

2.m.L
2

3
 . 

•
θ2

2
 

EC(S2/S0) = 
1

2
 . 2.m. 







•

x2
 + 

4.L
2

3
 . 

•
θ2

2
 + 2.L.

•
x.

•
θ2.sin θ2  

Par linéarisation, on a :  x = 0,27 − λ.θ1 Donc : 
•
x = − λ.

•
θ1 = − λ.ω soit :  

•
x2

 = λ2
.ω2

 

  θ2 = k2.
π
2

 − θ1   Dont on peut considérer deux cas : 

a) Si θ1 < 
π
2

 θ2 = k2.





π

2
 − θ1   

•
θ2 = − k2.

•
θ1 = − k2.ω   

•
θ2.sin θ2 = − k2.ω.sin









k2.





π

2
 − θ1  

b) Si θ1 > 
π
2

 θ2 = − k2.





π

2
 − θ1   

•
θ2 = k2.

•
θ1 = k2.ω   

•
θ2.sin θ2 = − k2.ω.sin









k2.





π

2
 − θ1  

  Donc ∀  θ1 ∈  [45°,135°] 
•

θ2
2
 = k2

2
.ω2 

et : 
•

θ2.sin θ2 = − k2.ω.sin








k2.





π

2
 − θ1  

Donc : EC(S2/S0) = 
1

2
 . m. 









2.λ2
 + 

8.L
2

3
.k2

2
 + 4.L.λ.k2.sin









k2.





π

2
 − θ1  . ω2

 

Barre S5 

EC(S5/S0) = 
1

2
 . m.

→

VG5∈ 5/0

2
 + 

1

2
 . 

→
Ω5/0 . JG5

(S5) . 
→
Ω5/0 

Avec : 
→

VG5∈ 5/0 = 
→
VF∈ 5/0  + 

→
G5F ∧  

→
Ω5/0 = 

•
x.

→
x0  + 

L

2
.

→
x5  ∧  

•
θ5.

→
y5  = 

•
x.

→
x0  + 

L

2
.

•
θ5.

→
z5  

On obtient donc : EC(S5/S0) = 
1

2
 . m.







•

x.
→
x0  + 

L

2
.

•
θ5.

→
z5

2

 + 
1

2
 . 








0

0
•

θ5 B5

.
m

12
.








0  0  0

0  L
2

 0

0  0  L
2
B5

.








0

0
•

θ5 B5

 

EC(S5/S0) = 
1

2
 . m.







•

x2
 + 

L
2

4
.

•
θ5

2
 + L.

•
x.

•
θ5.sin θ5  + 

1

2
 . 

m.L
2

12
 . 

•
θ5

2
 

EC(S5/S0) = 
1

2
 . m. 







•

x2
 + 

L
2

3
 . 

•
θ5

2
 + L.

•
x.

•
θ5.sin θ5  

Par linéarisation, on a :  x = 0,27 − λ.θ1 Donc : 
•
x = − λ.

•
θ1 = − λ.ω soit :  

•
x2

 = λ2
.ω2

 

  θ5 = − θ4 = − 0,13 − k4.θ1  Donc : 
•

θ5 = − k4.
•

θ1 = − k4.ω et: 
•

θ5
2
 =  k4

2
.ω2 

Donc : EC(S5/S0) = 
1

2
 . m. 







λ2

 + 
L

2

3
.k4

2
 − L.λ.k4.sin θ4  . ω2

 

Mandrin S3 

 EC(S3/S0) = 
1

2
 . M.

→

VG3∈ 3/0

2
 = 

1

2
 . M.

•
x2

 Soit : EC(S3/S0) = 
1

2
 . M.λ2

.ω2
 

Synthèse 

Sachant que : EC(Σ/S0) = EC(Mot/S0) + EC(S1/S0) + EC(S2/S0) + EC(S3/S0) + EC(S4/S0) + EC(S5/S0) 

Donc : EC(Σ/S0) = 
1

2
.Jm.ω2

 + 
1

2
 . 

m.L
2

3
.ω2 + 1

2
. m. 









2.λ2
 + 

8.L
2

3
.k2

2
 + 4.L.λ.k2.sin









k2.





π

2
 − θ1  . ω2  

+ 
1

2
 . M.λ2

.ω2
 + 

1

2
 . 

m.L
2

3
.k4

2
.ω2

 + 
1

2
 . m. 







λ2

 + 
L

2

3
.k4

2
 − L.λ.k4.sin θ4  . ω2

 

Soit Finalement : EC(Σ/S0) = 
1

2
 Jeq.ω2

 Avec : 

Jeq = Jm + M.λ2
 + m. 









3.λ2
 + 

L
2

3
 + 

8.L
2

3
.k2

2
 + 

2.L
2

3
.k4

2
 + 4.L.λ.k2.sin









k2.





π

2
 − θ1  − L.λ.k4.sin θ4  

Ou encore : Jeq ≈ Jm + M.λ2
 + m. 









3.λ2
 + 

L
2

3
+ 

8.L
2

3
.k2

2
 + 

2.L
2

3
.k4

2
  − 

L.λ.k4. 3

2
 


