Le problème comporte quatre parties largement indépendantes entre elles.

PREMIERE PARTIE

Le but de cette partie est de montrer que si une série $\sum u_n$ converge, alors la série $\sum \frac{u_n}{n}$ converge.

- 1) Démontrer ce résultat lorsque la série $\sum u_n$ est absolument convergente .
- 2) On suppose maintenant que la série $\sum u_n$ converge , sans être absolument convergente .

On pose
$$S_n = \sum_{k=0}^n u_k$$
 et $T_n = \sum_{k=1}^n \frac{u_k}{k}$.

- a) Etablir que : $\forall n \in N^*$, $T_n = \frac{S_n}{n} u_0 + \sum_{k=1}^{n-1} (\frac{1}{k} \frac{1}{k+1}) S_k$.
- b) Prouver que la série $\sum_{n\geq 1} (\frac{1}{n} \frac{1}{n+1}) S_n$ est convergente .
- c) En déduire que la série $\sum \frac{u_n}{n}$ converge .

DEUXIEME PARTIE

Cette partie s'intéresse aux séries de terme général $u_n = (1-\frac{1}{\sqrt{n}})^{n^\alpha}$ et $v_n = (-1)^n \frac{2n+1}{n(n+1)}$.

- 3) a) Déterminer, suivant les valeurs du réel α , la limite $\lim_{n\to +\infty} u_n$.
 - b) Déterminer, suivant les valeurs du réel α , la nature de la série $\sum u_n$.
- 4) a) Démontrer la convergence de la série de terme général v_n .
 - b) Calculer la valeur de la somme $\sum_{n=1}^{+\infty} (-1)^n \, \frac{2n-1}{n(n-1)} \, .$

TROISIEME PARTIE

L'objectif de cette partie est de calculer la somme $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

- 5) On pose, pour tout entier naturel n, $C_n = \int_0^{\frac{\pi}{2}} (\cos x)^{2n} \, \mathrm{d}x$ et $D_n = \int_0^{\frac{\pi}{2}} x^2 (\cos x)^{2n} \, \mathrm{d}x$. Établir, pour tout entier naturel n non nul, l'égalité : $C_n = (2n-1)(C_{n-1}-C_n)$.
- 6) Déterminer la valeur exacte de C_n , que l'on exprimera à l'aide de factorielles.

En déduire, à l'aide de la formule de Stirling, un équivalent très simple de C_n .

 \mathcal{A} Établic pour tout entier naturel n non nul, les égalités :

$$\int_0^{\frac{\pi}{2}} (\sin x)^2 (\cos x)^{2n-2} = \frac{C_n}{2n-1} = \frac{C_{n-1}}{2n}$$

91	Établir pour	tout entier	r natural m non	nul 1/4 molt	l'égalité : $C_n =$	(2a 1) a D	0.25
U)	Lubin pour	tout critici	naturer 16 non	пш,	regalite: $C_n =$	$= (2n-1) n D_n$	$-1 - 2n^2 D_n.$

 \mathfrak{G}) En déduire, pour tout entier n non nul, l'égalité : $\frac{1}{n^2} = 2\left(\frac{D_{n-1}}{C_{n-1}} - \frac{D_n}{C_n}\right)$.

(a) Etablia, pour tout réel
$$x \in [0, \frac{\pi}{2}]$$
, la minoration : $\sin x \geqslant \frac{2}{\pi} x$.

(b) En déduire, pour tout entier naturel
$$n$$
, la majoration : $D_n \leqslant \frac{\pi^2}{4} \frac{C_n}{2n+2}$

$$\text{MO) Etablir que } \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \ \ , \ puis \ en \ déduire \ les \ sommes \ \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} \ \ et \ \ \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} \ \ .$$

QUATRIEME PARTIE

Soit d un entier, $d \ge 2$. Soit $\omega = (\omega_n)_{n \ge 1}$ une suite de complexes, périodique de période d, c'est-à-dire telle que

$$\forall n \in \mathbb{N}^* \qquad \omega_{n+d} = \omega_n.$$

Dans alte partie, on s'intéresse à la nature (convergente ou divergente) de la série $\sum u_n(\lambda)$ de terme général

$$\forall n \geqslant 1$$
 $u_n(\lambda) = \frac{\omega_n + \lambda}{n}$

où λ est un complexe. On note plus simplement $u_n=u_n(0)$ pour tout $n\geqslant 1$.

 \mathcal{M}). Supposons, dans cette question uniquement, qu'il existe un complexe λ tel que $\sum u_n(\lambda)$ converge. Montrer que, pour toute valeur $\mu \neq \lambda$, la série $\sum u_n(\mu)$ diverge.

12) Dans cette question, on choisit $\lambda = 0$.

Pour tout entier naturel n non nul, on note S_n la somme partielle associée à la série $\sum u_n$, c'est-à-dire $S_n = \sum_{k=1}^n \frac{\omega_k}{k}$.

2) Pour tout entier naturel
$$m$$
, exprimer $\frac{1}{md+1}\sum_{k=1}^{d}\omega_{md+k}$ en fonction de $\Omega=\sum_{k=1}^{d}\omega_{k}$.

b) Déterminer un réel α tel que

$$\mathbf{S}_{(m+1)d} - \mathbf{S}_{md} = \frac{1}{md+1} \sum_{k=1}^d \omega_{md+k} + \frac{\alpha}{m^2} + \mathop{\mathrm{o}}_{m \to \infty} \left(\frac{1}{m^2} \right).$$

C) En déduire une condition nécessaire et suffisante sur Ω pour que la série $\sum (S_{(m+1)d} - S_{md})$ converge

Montrer très soigneusement que la condition obtenue à la question précédente est une condition nécessaire et suffisante pour que la série $\sum u_n$ converge.

A3) Montrer qu'il existe une unique valeur $\lambda \in \mathbb{C}$ telle que la série $\sum u_n(\lambda)$ converge.

. Une généralisation Dans cette question, on se donne une suite croissante $(a_n)_{n\geqslant 1}$ de réels, telle que $a_1>0$ et $\lim_{n\to\infty}a_n=+\infty$. On suppose que $\Omega=0$. On pose, pour tout $n\geqslant 1$,

$$u_n = \frac{\omega_n}{a_n}$$
 et $T_n = \sum_{k=1}^n \omega_k$.

Par souci de commodité, on note également $T_0=0$.

(A) Montrer que la suite $(T_n)_{n\geqslant 1}$ est bornée.

(7) Montrer que pour tout entier naturel n non nul,

$$\sum_{k=1}^{n} u_k = \sum_{k=1}^{n} T_k \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right) + \frac{T_n}{a_{n+1}}.$$

C) Mintrer que la série
$$\sum T_k \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right)$$
 converge.

4) Montrer que la série $\sum u_n$ converge.