ÉLÉMENTS PROPRES _______21

CHAPITRE 6 RÉDUCTION

PARTIE 6.1: ÉLÉMENTS PROPRES

DÉFINITION 6.1:

Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$:

- On dit que λ est une valeur propre de u s'il existe un vecteur x de E non nul tel que $u(x) = \lambda x$.
- Le spectre de u, noté Sp(u), est l'ensemble des valeurs propres de u.
- $Si \lambda \in Sp(u)$, on note $E_{\lambda}(u) = Ker(u \lambda id_F)$ l'espace propre de u associé à λ .
- Un vecteur <u>non nul</u> de $E_{\lambda}(u)$ est appelé vecteur propre de u associé à la valeur propre λ .
- Un vecteur propre est un vecteur non nul $x \in E$ tel qu'il existe $\lambda \in K$ qui vérifie $u(x) = \lambda x$.

 $\underline{\mathit{REMARQUE\ FONDAMENTALE\ 6.1}}: \bullet\ \mathit{Si}\ \lambda = 0,\ \mathit{alors}\ E_0(\mathfrak{u}) = \mathsf{Ker}(\mathfrak{u})\ \mathit{et\ si}\ \lambda \neq 0,\ E_\lambda(\mathfrak{u}) \subset \mathsf{Im}(\mathfrak{u}).$

Soit e ∈ E non nul et D = Vect(e) : (D stable par u) ← (e vecteur propre de u).

PROPOSITION 6.1:

Soit E un espace vectoriel, $\mathfrak{u}\in\mathcal{L}(E)$ et $\lambda_1,\cdots,\lambda_p$ 2 à 2 distinctes :

- les sous-espaces propres $E_{\lambda_1}(u), \dots, E_{\lambda_p}(u)$ sont en somme directe.
- Si x_1, \dots, x_p sont des vecteurs propres associés à $\lambda_1, \dots, \lambda_p, \ (x_1, \dots, x_p)$ est libre.

PROPOSITION 6.2:

Si u et ν sont deux endomorphismes de E qui commutent (c'est-à-dire que $u \circ \nu = \nu \circ u$) alors les espaces propres de u sont stables par ν (et réciproquement).

DÉFINITION 6.2:

Soit $A \in \mathfrak{M}_n(\mathbb{K})$. Les valeurs propres, le spectre de A (noté $\mathfrak{Sp}_{\mathbb{K}}(A)$) et les vecteurs propres et les espaces propres de A (notés $E_{\lambda}(A)$) sont ceux de u canoniquement associé à A.

PROPOSITION 6.3:

 $\mathbf{Soit}\ n\in\,\mathbb{N}^*\ \mathbf{et}\ A\in\mathfrak{M}_{\mathfrak{n}}(\,\mathbb{R}),\ \mathbf{alors}\ A\in\mathfrak{M}_{\mathfrak{n}}(\,\mathbb{C})\ \mathbf{et}\ \mathbf{on}\ \mathbf{a}:\ Sp_{\,\mathbb{R}}(A)\subset Sp_{\,\mathbb{C}}(A).$

De plus, si $\lambda \in Sp_{\mathbb{C}}(A)$ alors $\overline{\lambda} \in Sp_{\mathbb{C}}(A)$ et dim $E_{\lambda}(A) = \dim E_{\overline{\lambda}}(A)$.

PROPOSITION 6.4:

Soit A et B deux matrices de $\mathfrak{M}_n(\mathbb{K})$ semblables (il existe $P \in GL_n(\mathbb{K})$ telle que $B = P^{-1}AP$), alors $Sp_{\mathbb{K}}(A) = Sp_{\mathbb{K}}(B)$ et pour $\lambda \in Sp_{\mathbb{K}}(A)$, on a dim $E_{\lambda}(A) = dim E_{\lambda}(B)$.

PROPOSITION 6.5:

Soit E un K-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.

Pour toute base \mathcal{B} de E, on a $Sp(u) = Sp_{\mathbb{K}}(Mat_{\mathcal{B}}(u))$.

DÉFINITION 6.3:

Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.

Le polynôme caractéristique de u est le polynôme $\chi_u \in \mathbb{K}[X]$ associé à la fonction polynomiale définie par $\lambda \in \mathbb{K} \mapsto \det(\lambda id_E - u)$. Si $A \in \mathcal{M}_n(\mathbb{K})$, de même $\forall \lambda \in \mathbb{K}$, $\chi_A(\lambda) = \det(\lambda I_n - A)$.

<u>REMARQUE 6.2</u>: • Si B est une base de E, $u \in \mathcal{L}(E)$ et $A = Mat_B(u)$ alors $\chi_u = \chi_A$.

• Soit $n \in \mathbb{N}^*$ et $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$, $x \mapsto \det(A + xB)$ est polynomiale de degré inférieur ou égal à n.

22 ______ RÉDUCTION

THÉORÈME ÉNORME 6.6:

Si $A \in \mathcal{M}_n(\mathbb{K})$ alors $deg(\chi_A) = n$ et $\chi_A = X^n - tr(A)X^{n-1} + \dots + (-1)^n det(A)$. Soit E un espace de dimension finie n et $u \in \mathcal{L}(E)$, alors $deg(\chi_u) = n$ et $\chi_u = X^n - tr(u)X^{n-1} + \dots + (-1)^n det(u)$.

THÉORÈME 6.7:

Soit E un \mathbb{K} -espace vectoriel de dimension finie n, u un endomorphisme de E et $\lambda \in \mathbb{K}$, on a les équivalences suivantes : $\lambda \in Sp(u) \iff (u - \lambda id_E) \notin GL(E) \iff \chi_u(\lambda) = 0$.

Les valeurs propres de u sont exactement les racines de χ_u (dans \mathbb{K}).

 $\mathbf{Si}\ A\in\mathfrak{M}_{\mathbf{n}}(\,\mathbb{K})\ \mathbf{et}\ \lambda\in\,\mathbb{K}\ \mathbf{alors}:\ \lambda\in\,\mathsf{Sp}_{\,\mathbb{K}}(A)\Longleftrightarrow(A-\lambda I_{\mathbf{n}})\notin\,\mathsf{GL}_{\mathbf{n}}(\,\mathbb{K})\Longleftrightarrow\chi_{A}(\lambda)=0.$

Le spectre de A (sur \mathbb{K}) est l'ensemble des racines de χ_A (dans \mathbb{K}).

<u>REMARQUE 6.3</u>: On en déduit, si $u \in \mathcal{L}(E)$ et E de dimension n ou si $A \in \mathcal{M}_n(K)$:

- u admet au plus n valeurs propres distinctes. A admet au plus n valeurs propres complexes distinctes.
- Si $\mathbb{K} = \mathbb{C}$, \mathfrak{u} (ou A) possède au moins une valeur propre complexe.
- Si $\mathbb{K} = \mathbb{R}$ et si n est impair, u (ou A) possède au moins une valeur propre réelle.

PROPOSITION 6.8:

Si A et B semblables, elles ont les mêmes valeurs propres de mêmes multiplicités car $\chi_A = \chi_B$. De même avec A et tA car $\chi_A = \chi_{{}^tA}$.

<u>REMARQUE HP 6.4</u>: Soit E un espace de dimension finie, u un endomorphisme de E et F un sous-espace de E stable par u. On note u_F l'endomorphisme de F induit par $u: \chi_{u_F}$ divise χ_u .

Plus généralement, si la matrice de u dans une base $\mathbb B$ est triangulaire par blocs avec des blocs $(A_k)_{1\leqslant k\leqslant r}$ sur la diagonale, alors : $\chi_u=\prod\limits_{k=1}^r\chi_{A_k}.$

THÉORÈME ÉNORME 6.9:

Soit E de dimension n et $u \in \mathcal{L}(E)$, $\chi_u(u) = 0$. Soit $A \in \mathcal{M}_n(\mathbb{K})$, alors $\chi_A(A) = 0$ (Cayley-Hamilton).

DÉFINITION 6.4:

Soit E un espace de dimension finie, $u \in \mathcal{L}(E)$, $A \in \mathcal{M}_n(\mathbb{K})$. On appelle ordre de multiplicité algébrique de λ , notée $\mathfrak{m}_{\lambda}(u)$ (ou $\mathfrak{m}_{\lambda}(A)$) l'ordre de multiplicité de λ en tant que racine du polynôme χ_u (ou χ_A). L'entier dim $E_{\lambda}(u)$ est appelé l'ordre de multiplicité géométrique de la valeur propre λ .

THÉORÈME 6.10:

Soit E de dimension n et $u \in \mathcal{L}(E)$, si χ_u est scindé sur $\underline{\mathbb{K}}$ (par ex. si $\underline{\mathbb{K}} = \mathbb{C}$): $n = \sum_{\lambda \in Sp(u)} m_{\lambda}(u), \quad tr(u) = \sum_{\lambda \in Sp(u)} \lambda \, m_{\lambda}(u) \text{ et } det(u) = \prod_{\lambda \in Sp(u)} \lambda^{m_{\lambda}(u)}.$ Si $A \in \mathcal{M}_n(\underline{\mathbb{K}})$: $n = \sum_{\lambda \in Sp_{\mathbb{C}}(A)} m_{\lambda}(A), \quad tr(A) = \sum_{\lambda \in Sp_{\mathbb{C}}(A)} \lambda \, m_{\lambda}(A) \text{ et } det(A) = \prod_{\lambda \in Sp_{\mathbb{C}}(A)} \lambda^{m_{\lambda}(A)}.$

<u>REMARQUE 6.5</u>: • Si on a toutes les valeurs propres de A sauf une, on utilise la trace.

• Si $A \in \mathcal{M}_n(\mathbb{R})$ et si $\lambda \in \mathbb{C} \setminus \mathbb{R}$ est valeur propre de A, alors on sait que $\overline{\lambda}$ l'est aussi et que $E_{\lambda}(A)$ et $E_{\overline{\lambda}}(A)$ ont même dimension mais λ et $\overline{\lambda}$ ont aussi même ordre de multiplicité algébrique.

THÉORÈME ÉNORME 6.11 :

Soit E de dimension finie, $u \in \mathcal{L}(E)$ et $\lambda \in Sp(u)$, on a $1 \leq \dim E_{\lambda}(u) \leq m_{\lambda}(u)$. Si $A \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{K})$ et $\lambda \in Sp_{\mathbb{K}}(A)$, on a $1 \leq \dim E_{\lambda}(A) \leq m_{\lambda}(A)$.

<u>REMARQUE 6.6</u> : L'ordre géométrique est donc inférieur à l'ordre algébrique pour toute valeur propre.

PARTIE 6.2: RÉDUCTION EN DIMENSION FINIE

DÉFINITION 6.5:

Soit E un espace de dimension finie et $u \in \mathcal{L}(E)$ est diagonalisable s'il existe une base B de E telle que $Mat_{B}(u)$ est diagonale.

PROPOSITION 6.12:

Si λ est une valeur propre simple, alors $E_{\lambda}(u)$ (ou $E_{\lambda}(A)$) est une droite.

DÉFINITION 6.6:

On dit qu'un polynôme $P \in \mathbb{K}[X]$ est scindé à racines simples ou simplement scindé (noté souvent SARS) s'il est de degré $n \ge 1$ et s'il possède n racines distinctes deux à deux.

PROPOSITION 6.13:

Soit E de dimension n et $u \in \mathcal{L}(E)$. Si u possède n valeurs propres distinctes (si χ_u est SARS) alors $\forall \lambda \in Sp(u)$, dim $E_{\lambda}(u) = 1$ et u est diagonalisable.

<u>REMARQUE 6.7</u>: Attention : ce n'est qu'une condition suffisante de diagonalisabilité ; il est clair que id_E est diagonalisable mais que son polynôme caractéristique n'est pas à racines simples.

THÉORÈME 6.14:

Soit E un espace de dimension finie et $u \in \mathcal{L}(E)$, les propriétés suivantes sont équivalentes :

- (i) Il existe une base de E formée de vecteurs propres de u.
- (ii) Il existe une base de E dans laquelle la matrice de u est diagonale.
- (iii) $dim(E) = \sum_{\lambda \in Sp(u)} dim(E_{\lambda}(u))$.
- $\mbox{(iii)} \ E = \bigoplus_{\lambda \in Sp(\mathfrak{u})} E_{\lambda}(\mathfrak{u}).$
- (iv) Il existe F_1, \dots, F_p stables par u tels que $E = \sum_{k=1}^p F_k$ et u_{F_1}, \dots, u_{F_p} sont des homothéties.

<u>REMARQUE FONDAMENTALE 6.8</u>: Soit E un espace de dimension finie et $u \in \mathcal{L}(E)$.

- u est diagonalisable $\Longrightarrow E = Ker(u) \oplus Im(u)$.
- Si u est nilpotent, u est diagonalisable \iff u = 0.

<u>REMARQUE 6.9</u>: Soit E un espace vectoriel de dimension n et u endomorphisme de E. Il suffit de trouver des valeurs propres distinctes $\lambda_1, \cdots, \lambda_r$ de u telles que $\sum\limits_{k=1}^r dim\left(E_{\lambda_k}(u)\right) = n$ pour que u soit diagonalisable et qu'on puisse conclure que $Sp(u) = \{\lambda_1, \cdots, \lambda_r\}$.

PROPOSITION 6.15:

Soit E un espace de dimension finie et $u \in \mathcal{L}(E)$ diagonalisable tel que $Sp(u) = \{\lambda_1, \cdots, \lambda_r\}$. Si p_1, \cdots, p_r est la famille des projecteurs associée à $E = \bigoplus E_{\lambda_k}(u)$:

•
$$p_1 + \cdots + p_r = id_E$$
. • $\forall (i,j) \in [[1;n]]^2$, $i \neq j \Longrightarrow p_i \circ p_j = 0$. • $\forall n \in \mathbb{N}$, $u^n = \lambda_1^n p_1 + \cdots + \lambda_r^n p_r$.

THÉORÈME ÉNORME 6.16:

Soit E un K-espace de dimension finie et $u \in \mathcal{L}(E)$:

 $\big(\mathfrak{u} \text{ est diagonalisable}\big) \Longleftrightarrow \big(\chi_{\mathfrak{u}} \text{ est scind\'e sur } \mathbb{K} \text{ et } \forall \lambda \in Sp(\mathfrak{u}), \text{ dim} \big(E_{\lambda}(\mathfrak{u})\big) = \mathfrak{m}_{\lambda}(\mathfrak{u})\big).$

24 _______ RÉDUCTION

DÉFINITION 6.7:

Soit $A \in \mathfrak{M}_n(\mathbb{K})$, on dit que A est **diagonalisable** (dans \mathbb{K}) si A est semblable (dans $\mathfrak{M}_n(\mathbb{K})$) à une matrice diagonale; s'il existe $P \in GL_n(\mathbb{K})$ telle que $P^{-1}AP$ est une matrice diagonale.

PROPOSITION 6.17:

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et u canoniquement associé à A:

- ullet A est diagonalisable \Longleftrightarrow u est diagonalisable.
- Si A est diagonalisable et $P \in GL_n(\mathbb{K})$ telle que $A = PDP^{-1}$ avec $D = diag(\lambda_1, \cdots, \lambda_n)$ alors $Sp_{\mathbb{K}}(A) = \{\lambda_1, \cdots, \lambda_n\}$ et $P = P_{\mathcal{B}_{can}, \mathcal{B}}$ où \mathcal{B} est une base de vecteurs propres de u.

<u>REMARQUE 6.10</u>: Plus généralement, soit $A \in \mathcal{M}_n(\mathbb{K})$, E de dimension n, \mathcal{B} une base de E, $u \in \mathcal{L}(E)$ tel que $A = Mat_{\mathcal{B}}(u)$, alors : (A est diagonalisable) \iff (u est diagonalisable).

PROPOSITION 6.18:

Soit E un espace vectoriel, $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$:

- Si $\lambda \in Sp(\mathfrak{u})$ alors $P(\lambda) \in Sp(P(\mathfrak{u}))$.
- Si P(u) = 0 alors $\forall \lambda \in Sp(u)$, $P(\lambda) = 0$; donc $\prod_{\lambda \in Sp(u)} (X \lambda)$ divise P.

<u>REMARQUE 6.11</u>: Toutes les valeurs propres de u sont **des** racines de tout polynôme annulateur de u alors que ce sont **les** racines du polynôme caractéristique de u (ou du polynôme minimal de u).

THÉORÈME ÉNORME 6.19:

Soit E un \mathbb{K} -espace de dimension finie et $\mathfrak{u}\in\mathcal{L}(E)$: $\left(\mathfrak{u} \text{ diagonalisable} \Longleftrightarrow \left(\exists P\in\mathbb{K}[X],\ P(\mathfrak{u})=0 \text{ et } P \text{ SARS (dans }\mathbb{K})\right) \Longleftrightarrow \left(\prod_{\lambda\in Sp(\mathfrak{u})}(X-\lambda) \text{ annule }\mathfrak{u}\right).$

PROPOSITION 6.20:

Si u est un endomorphisme diagonalisable de E, espace vectoriel de dimension finie, et F un sous-espace de E stable par u, alors l'endomorphisme induit par u sur F est diagonalisable.

PROPOSITION 6.21:

Soit E de dimension finie et $(u, v) \in \mathcal{L}(E)^2$, on suppose u diagonalisable :

- $(v \text{ commute avec } u) \iff (\text{ tous les sous-espaces propres de } u \text{ sont stables par } v)$.
- Si $v \circ u = u \circ v$ et v diagonalisable, alors il existe une base de E composée de vecteurs propres communs à u et v (on dit que u et v codiagonalisent dans \mathfrak{B}).

DÉFINITION 6.8:

Soit u un endomorphisme d'un espace E de dimension finie, on dit que u est trigonalisable s'il existe une base de E dans laquelle la matrice de u est triangulaire (supérieure).

 $A \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{K})$ est dite **trigonalisable** si $\exists P \in GL_{\mathfrak{n}}(\mathbb{K}), P^{-1}AP$ est triangulaire supérieure.

THÉORÈME ÉNORME 6.22 :

Soit E de dimension finie et $u \in \mathcal{L}(E)$: (u est trigonalisable) $\iff (\chi_u$ est scindé (sur $\mathbb{K})$).

<u>REMARQUE FONDAMENTALE 6.13</u> : • Toute matrice est donc trigonalisable sur \mathbb{C} .

• Si $A \in \mathfrak{M}_n(\mathbb{K})$ et si $\lambda_1, \dots, \lambda_n$ sont les valeurs propres complexes de A (comptées avec multiplicité), alors pour tout $k \in \mathbb{N}^*$, on a $tr(A^k) = \sum\limits_{i=1}^n \lambda_i^k$.