DS 2.1: FAMILLES OBTUSANGLES

PSI 1 2023/2024

samedi 30 septembre 2023

Soit E un espace euclidien et $\mathfrak{p} \in \mathbb{N}^*$. On dit qu'une famille de vecteurs $(\nu_1, \cdots, \nu_{\mathfrak{p}})$ de E est <u>obtusangle</u> si elle vérifie la condition suivante : $\forall (i,j) \in [\![1;\mathfrak{p}]\!]^2$, $i \neq j \Longrightarrow (\nu_i|\nu_j) < 0$.

On se propose de montrer (par deux méthodes) que si (v_1, \dots, v_p) est une famille obtusangle dans un espace euclidien de dimension n, alors $p \leq n+1$. On définit, pour $n \in \mathbb{N}^*$, la propriété \mathfrak{P}_n par :

 $\mathfrak{P}_{\mathfrak{n}} = \text{``si E euclidien de dimension } \mathfrak{n}, \, \mathfrak{p} \in \, \mathbb{N}^* \, \, \text{et } (\nu_1, \cdots, \nu_{\mathfrak{p}}) \, \, \text{une famille obtusangle de E, alors } \mathfrak{p} \leqslant \mathfrak{n} + 1\text{''}.$

PARTIE 1 : MÉTHODE 1

- 1 Dans \mathbb{R}^2 euclidien canonique, trouver trois vecteurs v_1 , v_2 et v_3 tels que (v_1, v_2, v_3) est obtusangle.
- Vérifier que \mathcal{P}_1 est vraie. Indication : supposer que E = Vect(e) et que (v_1, v_2, v_3) est obtusangle.
- **3** Hérédité : soit $n \ge 2$, on suppose que \mathcal{P}_{n-1} est vraie

Soit donc un espace euclidien E de dimension n, $p\geqslant 2$ et $(\nu_1,\cdots,\nu_p)\in E^p$ une famille obtusangle de E.

3.1 Montrer que $v_p \neq 0_E$ et déterminer la dimension de $F = Vect(v_p)^{\perp}$.

Pour $k \in [1; p-1]$, on définit le vecteur $w_k = p_F(v_k)$ qui est le projeté orthogonal de v_k sur F.

- $\boxed{\textbf{3.2}}$ Donner une expression vectorielle de w_k en fonction de v_p et de v_k .
- 3.3 Montrer que (w_1, \dots, w_{p-1}) est une famille obtusangle de vecteurs de F. Qu'en déduire sur p?
- 4 Conclure.

PARTIE 2 : MÉTHODE 2

Soit E euclidien de dimension $n \in \mathbb{N}^*$, un entier $p \in \mathbb{N}^*$ et $(\nu_1, \cdots, \nu_p) \in E^p$ une famille obtusangle de vecteurs de E. On va montrer par l'absurde que la famille $(\nu_1, \cdots, \nu_{p-1})$ est libre. On suppose donc qu'il existe $(\lambda_1, \cdots, \lambda_{p-1}) \neq (0, \cdots, 0) \in \mathbb{R}^{p-1}$ tel que $\sum\limits_{k=1}^{p-1} \lambda_i \nu_i = 0_E$.

Quitte à multiplier (1) par -1, on peut supposer qu'il existe un indice $i_0 \in [\![1;p-1]\!]$ tel que $\lambda_{i_0} > 0$. On définit alors les deux parties $I = \{i \in [\![1;p-1]\!] \mid \lambda_i > 0\}$ et $J = \{i \in [\![1;p-1]\!] \mid \lambda_i \leq 0\}$ de $[\![1;p-1]\!]$.

- $\boxed{\mathbf{5}} \quad \text{Comparer } \sum_{i \in I} \lambda_i \nu_i \text{ et } \sum_{i \in I} \lambda_j \nu_j.$
- **6** Montrer que $\left\|\sum_{i\in I}\lambda_i\nu_i\right\|^2 \le 0$. Qu'en déduit-on sur le vecteur $\sum_{i\in I}\lambda_i\nu_i$?
- 7 En considérant le produit scalaire $\left(\sum_{i\in I}\lambda_i\nu_i\Big|\nu_p\right)$, trouver une contradiction.
- 8 Conclure.

DS 2.2: EULER ET GAUSS

PSI 1 2023/2024

samedi 30 septembre 2023

PARTIE 1: FONCTION GAMMA

- $\boxed{ \textbf{1} } \text{ Montrer que la fonction } f_x: t \mapsto e^{-t}t^{x-1} \text{ est intégrable sur } \mathbb{R}_+^* \text{ si, et seulement si, } x>0.$ $\text{On définit donc } \Gamma: \mathbb{R}_+^* \to \mathbb{R}, \text{ appelée fonction gamma d'Euler, } par \ \forall x>0, \ \Gamma(x) = \int_0^{+\infty} e^{-t}t^{x-1}dt.$
- $\boxed{\mathbf{2}}$ À l'aide d'une intégration par parties, exprimer, pour tout x > 0, $\Gamma(x+1)$ en fonction de $\Gamma(x)$.
- **3** En déduire une expression simple de $\Gamma(n)$ pour tout entier $n \in \mathbb{N}^*$.

PARTIE 2: RELATION

 $\boxed{\textbf{4}} \ \text{Pour } n \in \mathbb{N}^* \text{ et } x \in \mathbb{R}_+^*, \text{ justifier la convergence des l'intégrales } \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt \text{ et } \int_0^1 (1 - t)^n t^{x-1} dt.$

$$\label{eq:pour x > 0, on pose} \begin{cases} I_n(x) = \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt & \text{si } n \in \mathbb{N}^* \\ J_n(x) = \int_0^1 (1-t)^n t^{x-1} dt & \text{si } n \in \mathbb{N}. \end{cases}$$

- $\boxed{\textbf{5}} \ \ \text{Justifier que } \forall n \in \, \mathbb{N}^*, \ \forall x \in [0;n], \ e^x \bigg(1-\frac{x}{n}\bigg)^{n-1} \leqslant e.$
- $\boxed{\mathbf{6}} \ \ \text{Montrer, pour } x \in [0; n], \, \text{que } 0 \leqslant e^{-x} \left(1 \frac{x}{n}\right)^n \leqslant e^{\frac{x^2}{n}} e^{-x}. \ \ \text{Indication: \'etudier } \theta: x \mapsto \left(1 \frac{x}{n}\right)^n e^x + e^{\frac{x^2}{n}} 1.$
- 7 En déduire que, pour tout x > 0 fixé, on a $\lim_{n \to +\infty} I_n(x) = \Gamma(x)$.
- 8 Montrer, pour tout entier naturel n et tout x > 0, que

$$J_{n+1}(x) = \frac{n+1}{x} J_n(x+1).$$

9 En déduire que

$$\forall x>0, \ \forall n\in \ \mathbb{N}, \ J_n(x)=\frac{n!}{x(x+1)\dots(x+n-1)(x+n)}.$$

10 Conclure enfin que

$$\forall x \in \mathbb{R}_+^*, \ \Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1) \cdots (x+n)} \ (1).$$

PARTIE 3: DEUX VALEURS

- 11 Déterminer avec la relation (1) et à l'aide de la formule de STIRLING la valeur exacte de $\Gamma\left(\frac{1}{2}\right)$.
- **12** En déduire la valeur exacte de $I = \int_0^{+\infty} e^{-x^2} dx$ dite intégrale de GAUSS.

DS 2.3: MINES 2 PC 2020

PSI 1 2023/2024

samedi 30 septembre 2023

L'objectif du problème est d'établir, par des méthodes euclidiennes, des théorèmes d'approximation par des polynômes ou des exponentielles-polynômes de certaines fonctions définies sur $[0; +\infty[$ ou sur \mathbb{R} .

On note $C^0([0; +\infty[, \mathbb{R}) \ l'espace\ vectoriel\ contenant\ les\ fonctions\ continues\ de\ \mathbb{R}_+\ dans\ \mathbb{R}.$ Étant donné un intervalle I de \mathbb{R} , on appelle fonction polynomiale sur I toute fonction de la forme $f: I \to \mathbb{R}$ telle que $\forall x \in I,\ f(x) = \sum_{k=0}^n \lambda_k x^k,\ où\ n\ est\ un\ entier\ naturel\ et\ \lambda_0,\dots,\lambda_n\ des\ nombres\ réels.$

Pour tout réel x > 0, on définit le réel strictement positif $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$ (cette intégrale converge d'après la question 1 de la partie 1 du DS2.2 EULER et GAUSS). Ceci définit donc la fonction $\Gamma: \mathbb{R}_+^* \to \mathbb{R}_+^*$ appelée fonction gamma d'EULER, qui vérifie d'après le DS2.2 la relation $\forall x > 0$, $\Gamma(x+1) = x\Gamma(x)$.

Soit α un réel strictement supérieur à -1. Pour tout $n \in \mathbb{N}$, on pose $a_n = \frac{\Gamma(n+\alpha+1)}{n!}$ qui est bien définicar $n+\alpha+1>0$. On admet que $\sum_{n=0}^{+\infty}a_nx^n=\frac{\Gamma(\alpha+1)}{(1-x)^{\alpha+1}}$ pour tout réel $x\in]-1;1[$ (1).

PARTIE 1: PROJECTIONS ORTHOGONALES

Dans cette partie, E désigne un espace préhibertien réel, pas forcément de dimension finie, muni d'un produit scalaire (.|.). On note ||.|| la norme associée à ce produit scalaire, définie par $||x|| = (x|x)^{1/2}$ si $x \in E$. Soit F un sous-espace vectoriel de E différent de $\{0_E\}$ et de dimension finie.

- Soit $\mathfrak{B}=(e_1,\cdots,e_n)$ une base orthonormale de F.
- $\boxed{\mathbf{1}} \ \, \text{Soit} \,\, x \,\, \text{un vecteur de } E, \, \text{montrer que} \,\, x \sum_{i=1}^n (x|e_i)e_i \in F^\perp. \,\, \text{En déduire que } E = F \oplus F^\perp.$
- $\boxed{\bf 3} \ \ \text{Montrer que, pour } x \in E, \ \text{on a} \ ||x-\pi_F(x)||^2 = ||x||^2 \sum_{i=1}^n (x|e_i)^2.$

PARTIE 2 : POLYNÔMES DE LAGUERRE

Dans cette partie, on fixe un réel $\alpha > -1$, et on note E_{α} l'ensemble des fonctions continues $f:[0;+\infty[\to \mathbb{R}$ telles que l'intégrale $\int_0^{+\infty} x^{\alpha} e^{-x} f(x)^2 dx$ est convergente.

- $\boxed{\textbf{4}} \ \ \text{Montrer que, pour tout } (a,b) \in \mathbb{R}^2, \, |ab| \leqslant \frac{a^2 + b^2}{2}.$
- $\boxed{\mathbf{5}} \ \text{En déduire que, si f et } g \ \text{sont deux éléments de } E_{\alpha}, \ l'intégrale \ \int_{0}^{+\infty} x^{\alpha} e^{-x} f(x) g(x) dx \ \text{est convergente.}$
- **6** En déduire que E_{α} est un sous-espace vectoriel de $C^{0}([0;+\infty[,\mathbb{R}).$
- $\boxed{7}$ Montrer que toute fonction polynomiale sur $[0; +\infty[$ est élément de E_{α} .

Pour tout $n \in \mathbb{N}$, on définit les fonctions : φ_n :]0; $+\infty[\to \mathbb{R} \text{ et } \psi_n :]0; +\infty[\to \mathbb{R} \text{ par } \varphi_n(x) = x^{n+\alpha}e^{-x} \text{ et } \psi_n(x) = x^{-\alpha}e^x\varphi_n^{(n)}(x)$ où la notation $\varphi_n^{(n)}$ désigne la dérivée d'ordre n de φ_n (avec la convention $\varphi_0^{(0)} = \varphi_0$).

- 8 Calculer ψ_0 , ψ_1 et ψ_2 .
- Pour tout n∈ N, montrer que la fonction ψ_n est polynomiale. Préciser son degré et son coefficient dominant.
 Dans la suite, on identifie ψ_n à son unique prolongement continu à [0; +∞[, qui est une fonction polynomiale sur [0; +∞[. Cela permet désormais de considérer ψ_n comme un élément de E_α.

Pour tout $(f,g) \in E_{\alpha}^2$, on pose $(f|g) = \int_0^{+\infty} x^{\alpha} e^{-x} f(x) g(x) dx$.

10 Montrer que (.|.) définit un produit scalaire sur E_{α} .

Dans la suite, on note $||.||_{\alpha}$ la norme associée à (.|.) : $||f||_{\alpha} = \left(\int_0^{+\infty} x^{\alpha} e^{-x} f(x)^2 dx\right)^{1/2}$ pour tout $f \in E_{\alpha}$.

- $\boxed{\textbf{11}} \text{ Soit un entier } \mathfrak{n} \geqslant 1. \text{ Pour tout entier } k \in \llbracket 0; \mathfrak{n}-1 \rrbracket, \text{ \'etablir que } \lim_{x \to 0^+} \phi_{\mathfrak{n}}^{(k)}(x) = 0 \text{ et que } \phi_{\mathfrak{n}}^{(k)}(x) \underset{+ \infty}{=} o\big(e^{-x/2}\big).$
- 13 Montrer que, pour tout $n \in \mathbb{N}$, on a $||\psi_n||_{\alpha}^2 = n! \Gamma(n + \alpha + 1)$.

PARTIE 3: APPROXIMATION

On conserve les hypothèses et notations de la partie 2. Pour tout entier naturel k, on définit la fonction $f_k:[0,+\infty[\to\mathbb{R}\ par\ f_k(x)=e^{-kx},\ qui\ est\ élément\ de\ E_{\alpha}\ (on\ ne\ demande\ pas\ de\ le\ vérifier).$

Pour tout $N \in \mathbb{N}$, on note V_N le sous-espace vectoriel de E_α engendré par la famille finie (ψ_0, \cdots, ψ_N) , et on note π_N la projection orthogonale de E_α sur V_N .

- Soit $k \in \mathbb{N}$. Montrer l'existence de la somme $\sum_{n=0}^{+\infty} \frac{(f_k|\psi_n)^2}{||\psi_n||_{\alpha}^2}$, et calculer sa valeur. Indication : on pourra employer la même méthode qu'en question **12** pour calculer $(f_k|\psi_n)^2$ sans détailler la récurrence et utiliser la relation (1) donnée dans l'énoncé.

- Montrer que, pour tout $\epsilon > 0$, il existe $n \in \mathbb{N}$ ainsi que des réels $\lambda_0, \cdots, \lambda_n$ tels que $\left| \left| f \sum_{k=0}^n \lambda_k f_k \right| \right|_{\alpha} \leqslant \epsilon$. Indication : on pourra utiliser la fonction $g:[0;1] \to \mathbb{R}$ telle que $g(t) = f(-\ln(t))$ si t < 0 et g(0) = 0 et le résultat <u>admis</u> suivant dû à Weierstass : si $\varphi:[0;1] \to \mathbb{R}$ est une fonction continue, alors, pour tout $\epsilon > 0$, il existe une fonction polynomiale $\mathfrak{p}:[0;1] \to \mathbb{R}$ telle que $\forall t \in [0;1], \ |\varphi(t) \mathfrak{p}(t)| \leqslant \epsilon$.
- $\boxed{\textbf{18}} \ \text{Montrer que, pour tout } \epsilon > 0, \text{ il existe } \mathfrak{p} \in \mathfrak{P} \text{ telle que } ||f \mathfrak{p}||_{\alpha} \leqslant \epsilon.$
- Soit $h: \mathbb{R} \to \mathbb{R}$ une fonction continue, paire et nulle en dehors d'un segment [-A;A] (où A>0). Montrer que, pour tout $\epsilon>0$, il existe une fonction polynomiale $q:\mathbb{R}\to\mathbb{R}$ telle que $\int_{-\infty}^{+\infty} \left(h(x)-q(x)e^{\frac{-x^2}{2}}\right)^2 dx \leqslant \epsilon$. Indication: on pourra utiliser la question 18 avec $f:[0;+\infty[\to\mathbb{R}]\to\mathbb{R}$ telle que $f(x)=h(\sqrt{x})e^{\frac{x}{2}}$ et α bien choisi.