DS 4.1 : INTÉGRALES PAR LES SÉRIES

PSI 1 2023/2024

samedi 09 décembre 2023

Le but de ce problème est de calculer, lorsqu'elle converge pour $x \in \mathbb{R}$, la valeur de l'intégrale

$$I_{x} = \int_{0}^{1} \frac{t^{x-1} + t^{-x}}{1 + t} dt.$$

Pour $x \in \mathbb{R}$, en cas de convergence de la série, on pose $F(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}$.

On définit, pour $x \in]0;1[$ fixé, la fonction $S_x:[0;1] \to \mathbb{R}$ définie par $S_x(y) = \sum_{n=0}^{+\infty} \frac{(-1)^n y^n}{n+x}.$

$igl(\mathsf{PARTIE} \ 1 : \ \mathsf{\acute{E}TUDE} \ \mathsf{DE} \ oldsymbol{F} igr)$

Dans cette partie, pour $n \in \mathbb{N}$, on note $u_n(x) = \frac{(-1)^n}{n+x}$.

- $\boxed{1.1}$ Déterminer le domaine de définition D_F de F.
- **1.2** Montrer que F est de classe C^1 sur \mathbb{R}_+^* et déterminer, pour tout réel x > 0, le signe de F'(x).
- $\boxed{\textbf{1.3}} \ \, \text{Montrer que } \sum_{n\geqslant 0} \mathfrak{u}_n \ \, \text{converge uniformément sur } \, \mathbb{R}_+^*.$
- 1.4 En déduire la valeur de $\lim_{x \to +\infty} F(x)$.
- **1.5** Montrer que, pour x > 0, on a $F(x) + F(x+1) = \frac{1}{x}$.
- **1.6** En déduire un équivalent et la limite de F en 0^+ . Faire de même en $+\infty$.
- 1.7 Tracer l'allure du graphe de F sur \mathbb{R}_{+}^{*} .

$oxed{\mathsf{PARTIE 2}}$: ÉTUDE DE $oldsymbol{S_x}$

Dans cette partie, on fixe $x \in]0;1[$. Pour $n \in \mathbb{N}$ et $y \in [0;1]$, on pose $v_n(y) = \frac{(-1)^n}{n+x}y^n$.

- **2.1** Justifier que S_x est bien définie sur [0;1].
- **2.2** Montrer que la série $\sum_{n\geqslant 0} v_n$ converge uniformément sur [0;1].
- **2.3** Justifier que S_x est continue sur [0;1].
- **2.4** En déduire que $\lim_{y\to 1^-} S_x(y) = F(x)$.

$\overline{\mathsf{PARTIE}\; \mathsf{3} : \mathsf{EXPRESSION}\; \mathsf{DE}\; I_x \; \mathsf{avec}\; F }$

- $\boxed{\textbf{3.1}} \ \text{Justifier que la fonction } f_x: t \mapsto \frac{t^{x-1}}{1+t} \ \text{est intégrable sur }]0;1] \ \text{si et seulement si } x>0.$
- **3.2** En déduire que I_x existe si $x \in]0;1[$.

Dans la suite de cette partie, on fixe $x \in]0;1[$. On définit, pour tout $n \geqslant 1$, la fonction $w_n : [0;1] \to \mathbb{R}$ par $w_n(t) = (-1)^n t^{x-1+n}$ si t > 0 et $w_n(0) = 0$. On se donne aussi un réel $y \in]0;1[$.

- 3.3 Montrer que $\forall t \in]0;1[, f_x(t) = t^{x-1} + \sum_{n=1}^{+\infty} w_n(t).$
- 3.4 Montrer que $\sum_{n\geq 1} w_n$ converge normalement sur [0;y].
- $\boxed{\textbf{3.5}} \ \mathrm{En \ d\'eduire \ que } \int_0^y \left(f_x(t)-t^{x-1}\right)\!dt = \sum_{n=1}^{+\infty} \frac{(-1)^n y^{x+n}}{n+x}.$
- **3.6** Montrer alors $\int_0^1 \frac{t^{x-1}}{1+t} dt = F(x)$.
- 3.7 En déduire que, pour $x \in]0; 1[$, on a $I_x = F(x) + F(1-x)$.

PARTIE 4 : NOYAU DE POISSON ET CALCUL DE $I_{m{x}}$

 $\label{eq:pour_to_pose} \textit{Pour}\; t \in [0;1], \; y \in [0;1[, \; \textit{on pose} \; P(t,y) = 1 + 2 \sum_{n=1}^{+\infty} y^n \cos(n\pi t).$

Soit $y \in [0; 1]$ fixé. On pose $\theta_n(t) = y^n \cos(n\pi t)$

- 4.1 Montrer que la série $\sum_{n\geq 1} \theta_n$ converge normalement sur [0;1].
- **4.2** En déduire que $\int_0^1 P(t,y)dt = 1$.
- $\boxed{\textbf{4.3}} \ \operatorname{Avec} \cos(n\pi t) = \operatorname{Re} \left(e^{in\pi t}\right), \ \operatorname{prouver} \ \operatorname{que} \ \forall t \in [0;1], \ \forall y \in [0;1[, \ P(t,y) = \frac{1-y^2}{1-2u\cos(\pi t)+u^2} \ \operatorname{et} \ P(t,y) \geqslant 0.$

On admet le résultat suivant (R) : $\text{si } \phi: [0;1] \to \mathbb{R}$ est continue, alors $\lim_{u \to 1^-} \int_0^1 P(t,y) \phi(t) dt = \phi(0)$.

- 4.4 Calculer, pour $n \ge 0$, la valeur de $J_n = \frac{\pi}{\sin(\pi x)} \int_0^1 \cos[(n+x)\pi t] dt$.

- $\textbf{4.7} \ \, \text{En introduisant la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{définie par } \forall t \in [0;1], \ \, \phi(t) = cos(\pi xt) + cos(\pi(1-x)t), \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{définie par } \forall t \in [0;1], \, \phi(t) = cos(\pi xt) + cos(\pi(1-x)t), \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{définie par } \forall t \in [0;1], \, \phi(t) = cos(\pi xt) + cos(\pi(1-x)t), \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{définie par } \forall t \in [0;1], \, \phi(t) = cos(\pi xt) + cos(\pi(1-x)t), \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonction } \phi:[0;1] \rightarrow \mathbb{R} \ \, \text{déterminer la fonc$ avec (R) la limite, quand y tend vers 1^- de $A_x(y) = \operatorname{Re} \left(\int_0^1 \frac{e^{i\pi xt} + e^{i\pi(1-x)t}}{1 - ye^{i\pi t}} dt \right)$.
- 4.8 Conclure que $I_x = \int_0^1 \frac{t^{x-1} + t^{-x}}{1+t} dt = \frac{\pi}{\sin(\pi x)}$

PARTIE 5 : LE RÉSULTAT (R)

 $Soit \ y \in [0;1] \ et \ \varphi : [0;1] \to \mathbb{R}$ continue telle que $\varphi(0) = 0$. Soit $\varepsilon > 0$ et $\alpha > 0$ tel que $\forall t \in [0;\alpha], \ |\varphi(t)| \leqslant \varepsilon$; l'existence de α est assurée par la continuité de ϕ en 0 et la condition $\phi(0)=0$.

- **5.1** Montrer qu'il existe r > 0 tel que, si $0 \le 1 y \le r$, on a $\left| \int_{\alpha}^{1} P(t, y) \varphi(t) dt \right| \le \varepsilon$.
- 5.2 En déduire que $\lim_{u\to 1^-} \int_0^1 P(t,y)\phi(t)dt = 0$.
- **5.3** Démontrer le résultat (R) admis à la partie 4.

DS 4.2 : RÉDUCTION DE SOUS-ALGÈBRES

PSI 1 2023/2024

samedi 09 décembre 2023

Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et \mathbb{E} est un \mathbb{K} -espace vectoriel de dimension $n \geq 1$.

On dit qu'un sous-ensemble \mathcal{A} de $\mathcal{L}(E)$ est une sous-algèbre de $\mathcal{L}(E)$ si \mathcal{A} est un sous-espace vectoriel de $\mathcal{L}(E)$, stable pour la composition, c'est-à-dire que $\mathfrak{u} \circ \mathfrak{v}$ appartient à \mathcal{A} quels que soient les éléments \mathfrak{u} et \mathfrak{v} de \mathcal{A} (remarquer qu'on ne demande pas que id E appartienne à \mathcal{A}).

On dit qu'une sous-algèbre \mathcal{A} de $\mathcal{L}(\mathsf{E})$ est commutative si pour tous u et v dans \mathcal{A} , on a $\mathsf{u} \circ \mathsf{v} = \mathsf{v} \circ \mathsf{u}$.

Une sous-algèbre \mathcal{A} de $\mathcal{L}(E)$ est dite diagonalisable (respectivement trigonalisable) s'il existe une base \mathcal{B} de E telle que $Mat_{\mathcal{B}}(\mathfrak{u})$ soit diagonale (respectivement triangulaire supérieure) pour tout \mathfrak{u} de \mathcal{A} .

On dit qu'une partie A de $M_n(\mathbb{K})$ est une sous-algèbre de $M_n(\mathbb{K})$ si A est un sous-espace vectoriel stable pour le produit matriciel. Elle est dite commutative si, pour toutes matrices A et B de A, on a AB = BA.

Une sous-algèbre \mathcal{A} de $\mathfrak{M}_n(\mathbb{K})$ est diagonalisable (resp. trigonalisable) s'il existe $P \in GL_n(\mathbb{K})$ telle que pour toute matrice M de \mathcal{A} , $P^{-1}MP$ soit diagonale (resp. triangulaire supérieure).

Si \mathbb{B} est une base de E, on admet que l'application $Mat_{\mathbb{B}}: \mathcal{L}(E) \to \mathfrak{M}_n(\mathbb{K})$ qui associe $Mat_{\mathbb{B}}(u)$ à tout endomorphisme u de E est une bijection qui envoie une sous-algèbre (resp. commutative, diagonalisable, trigonalisable) de $\mathcal{L}(E)$ sur une sous-algèbre de $\mathfrak{M}_n(\mathbb{K})$ (resp. commutative, diagonalisable, trigonalisable).

Un sous-espace vectoriel F de E est dit strict si F est différent de E.

On désigne par $S_n(\mathbb{K})$ (resp. $A_n(\mathbb{K})$, $T_n(\mathbb{K})$, $T_n^+(\mathbb{K})$) l'ensemble des matrices symétriques de $\mathfrak{M}_n(\mathbb{K})$ (resp. antisymétriques, triangulaires supérieures, triangulaires supérieures à coefficients diagonaux nuls).

PARTIE 1 : EXEMPLES DE SOUS-ALGÈBRES

- 1.1 Exemples de sous-algèbres de $\mathfrak{M}_{\mathfrak{n}}(\mathbb{K})$
 - 1.1.1 Les sous-ensembles $T_n(\mathbb{K})$ et $T_n^+(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$?
 - 1.1.2 Les sous-ensembles $S_2(\mathbb{K})$ et $A_2(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_2(\mathbb{K})$?
 - $\boxed{1.1.3}$ On suppose $n \ge 3$. Les sous-ensembles $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$?
- 1.2 Exemples de sous-algèbres de $\mathcal{L}(E)$

Soit F un sous-espace vectoriel de E de dimension $\mathfrak p$ et $\mathcal A_F$ l'ensemble des endomorphismes de E qui stabilisent F, c'est-à-dire $\mathcal A_F = \{\mathfrak u \in \mathcal L(E) \mid \mathfrak u(F) \subset F\}$ (F est stable par tout $\mathfrak u \in \mathcal A_F$).

- **1.2.1** Montrer que \mathcal{A}_{F} est une sous-algèbre de $\mathcal{L}(\mathsf{E})$.
- 1.2.2 Montrer que $\dim(A_F) = n^2 pn + p^2$. Indication : on pourra considérer une base de E dans laquelle la matrice de tout élément de A_F est triangulaire par blocs.
- $\boxed{\textbf{1.2.3}} \ \text{Déterminer la valeur de} \ \underset{1\leqslant p\leqslant n-1}{\text{Max}} (n^2-pn+p^2).$
- 1.3 Exemples de sous-algèbres de $\mathfrak{M}_2(\mathbb{K})$ diagonalisables ou pas

 $\textit{Soit} \; \Gamma(\,\mathbb{K}) \; \textit{le sous-ensemble de} \; \mathfrak{M}_{2}(\,\mathbb{K}) \; \textit{constitu\'e des matrices de la forme} \; \begin{pmatrix} \mathfrak{a} & -\mathfrak{b} \\ \mathfrak{b} & \mathfrak{a} \end{pmatrix} \; \textit{où} \; (\mathfrak{a},\mathfrak{b}) \in \, \mathbb{K}^{2}.$

- [1.3.1] Montrer que $\Gamma(\mathbb{K})$ est une sous-algèbre de $\mathcal{M}_2(\mathbb{K})$.
- [1.3.2] Montrer que $\Gamma(\mathbb{R})$ n'est pas une sous-algèbre diagonalisable de $\mathcal{M}_2(\mathbb{R})$.
- **1.3.3** Montrer que $\Gamma(\mathbb{C})$ est une sous-algèbre diagonalisable de $M_2(\mathbb{C})$ en établissant d'abord que $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ est diagonalisable sur \mathbb{C} .

PARTIE 2 : SOUS-ALGÈBRE COMMUTATIVE DE $\mathfrak{M}_n(\,\mathbb{R})$

 $\textit{Dans cette partie, on suppose } n \geqslant 2. \quad \textit{On pose } J(\alpha_0, \cdots, \alpha_{n-1}) = \begin{pmatrix} \alpha_0 & \alpha_{n-1} & \cdots & \alpha_1 \\ \alpha_1 & \alpha_0 & \cdots & \alpha_2 \\ \vdots & \vdots & & \vdots \\ \alpha_{n-1} & \alpha_{n-2} & \cdots & \alpha_0 \end{pmatrix} \textit{ pour tout }$

 $\begin{array}{l} (a_0,\cdots,a_{n-1})\in\mathbb{R}^n. \ \ \textit{Ainsi}, \ \textit{le coefficient en case} \ (i,j) \ \textit{de } J(a_0,\cdots,a_{n-1}) \ \textit{est} \ a_{i-j} \ \textit{si} \ i\geqslant j \ \textit{et} \ a_{i-j+n} \ \textit{si} \ i< j. \\ \textit{Soit } \mathcal{A} \ \textit{l'ensemble des matrices de} \ \mathcal{M}_n(\mathbb{R}) \ \textit{de la forme} \ J(a_0,\cdots,a_{n-1}) \ \textit{où} \ (a_0,\cdots,a_{n-1}) \in \mathbb{R}^n. \\ \textit{Soit } J \in \mathcal{M}_n(\mathbb{R}) \ \textit{la matrice canoniquement associ\'ee} \ \textit{\`{a} l'endomorphisme} \ \phi \in \mathcal{L}(\mathbb{R}^n) \ \textit{d\'efini par } \phi(e_j) = e_{j+1} \\ \textit{si} \ j \in \llbracket 1; n-1 \rrbracket \ \textit{et} \ \phi(e_n) = e_1, \ \textit{où} \ (e_1,\cdots,e_n) \ \textit{est la base canonique de} \ \mathbb{R}^n. \end{array}$

2.1 Une base de A

- **[2.1.1]** Donner sans preuve les matrices J^k pour $2 \le k \le n$.
- **2.1.2** Quel est le lien entre la matrice $J(a_0, \dots, a_{n-1})$ et les J^k , où $0 \le k \le n-1$?
- **2.1.3** Montrer que $(I_n, J, J^2, \dots, J^{n-1})$ est une base de A.
- **2.1.4** Si $M \in \mathcal{M}_n(\mathbb{R})$, montrer que M commute avec J si et seulement si M commute avec tout élément de A.
- **2.1.5** Montrer que \mathcal{A} est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{R})$.

2.2 Diagonalisation de J et de A

- [2.2.1] Déterminer le polynôme caractéristique de J.
- **[2.2.2]** Montrer que J est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$. Et dans $\mathcal{M}_n(\mathbb{R})$?
- **2.2.3** Déterminer les valeurs propres complexes de J est les espaces propres associés.
- **2.2.4** Le sous-ensemble \mathcal{A} est-il une sous-algèbre de $\mathcal{M}_{\mathfrak{n}}(\mathbb{C})$?
- **2.2.5** Montrer qu'il existe $P \in GL_n(\mathbb{C})$ telle que, pour toute matrice $A \in \mathcal{A}$, la matrice $P^{-1}AP$ est diagonale.
- **2.2.6** Quelles sont les valeurs propres complexes de la matrice $J(a_0, \dots, a_{n-1})$?

PARTIE 3 : RÉDUCTION D'UNE ALGÈBRE NILPOTENTE

Soit E un \mathbb{C} -espace vectoriel de dimension finie $\mathfrak{n}\geqslant 1$. Soit \mathcal{A} une sous-algèbre de $\mathcal{L}(E)$ qui est constituée d'endomorphismes nilpotents. On admet dans cette partie le théorème de Burnside :

"Soit E un \mathbb{C} -espace vectoriel de dimension $n \geqslant 2$, \mathcal{A} une sous-algèbre de $\mathcal{L}(E)$. Si les seuls sous-espaces vectoriels de E stables par tous les éléments de \mathcal{A} sont $\{0_E\}$ et E, alors $\mathcal{A} = \mathcal{L}(E)$."

On se propose de démontrer par récurrence forte sur $n \in \mathbb{N}^*$ que si tous les éléments de A sont nilpotents, alors A est trigonalisable.

3.1 Montrer que le résultat est vrai si n = 1.

On suppose désormais que $n \ge 2$ et que le résultat est vrai pour tout entier naturel $d \le n-1$.

- Montrer qu'il existe un sous-espace vectoriel V de E distinct de E et $\{0_E\}$ stable par tous les éléments de \mathcal{A} .

 On fixe dans la suite un tel sous-espace vectoriel V et on note r sa dimension. Soit aussi s = n r.
- 3.3 Montrer qu'il existe une base \mathcal{B} de E telle que pour tout $u \in \mathcal{A}$, on a $Mat_{\mathcal{B}}(u) = \begin{pmatrix} A(u) & B(u) \\ 0 & D(u) \end{pmatrix}$ où $A(u) \in \mathcal{M}_r(\mathbb{C})$, $B(u) \in \mathcal{M}_{r,s}(\mathbb{C})$ et $D(u) \in \mathcal{M}_s(u)$.
- 3.4 Montrer que $\{A(\mathfrak{u}) \mid \mathfrak{u} \in \mathcal{A}\}$ est une sous-algèbre de $\mathfrak{M}_r(\mathbb{C})$ constituée de matrices nilpotentes et que $\{D(\mathfrak{u}) \mid \mathfrak{u} \in \mathcal{A}\}$ est une sous-algèbre de $\mathfrak{M}_s(\mathbb{C})$ constituée de matrices nilpotentes.
- [3.5] Montrer que \mathcal{A} est trigonalisable.
- **3.6** Montrer qu'il existe une base de E dans laquelle les matrices des éléments de \mathcal{A} appartiennent à $T_n^+(\mathbb{C})$.