CHAPITRE 5 SUITES ET SÉRIES DE FONCTIONS

PARTIE 5.1: MODES DE CONVERGENCE

DÉFINITION 5.1:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions de I dans \mathbb{K} . On dit que :

- $(f_n)_{n \in \mathbb{N}}$ converge simplement sur I vers $f \in \mathcal{F}(I, \mathbb{K})$ (sa limite simple) $si \ \forall x \in I$, $\lim_{n \to +\infty} f_n(x) = f(x)$.
- $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur I vers f $si \lim_{n \to +\infty} ||f_n f||_{\infty} = 0$ $(f_n f \ born\'ee \ si \ n \ assez \ grand)$.
- $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,\mathbb{K})^{\mathbb{N}}$ converge uniformément sur tout segment de I vers f si pour tout segment $[a;b] \subset I$, $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur [a;b] (comme son nom l'indique).

<u>REMARQUE 5.1</u>: • Convergence simple: $\forall x \in I, \forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geqslant n_0, |f_n(x) - f(x)| \leqslant \varepsilon$.

- Convergence uniforme: $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ \forall x \in I, \ |f_n(x) f(x)| \leqslant \varepsilon$.
- $\bullet \ \text{Conv. unif. sur tout segment}: \ \forall \epsilon > 0, \ \forall [a;b] \subset I, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ \forall x \in [a;b], \ |f_n(x) f(x)| \leqslant \epsilon.$
- CVS: n₀ dépend de ε et x. CVU: n₀ dépend de ε seulement. CVUTS: n₀ dépend de ε et de a, b.
- Si $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I, elle le fait sur tout partie I de I.
- Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I, elle le fait sur tout partie J de I.
- Pour I segment, les notions de convergence uniforme sur I et sur tout segment de I sont équivalentes.

PROPOSITION 5.1:

 $(f_n)_{n\in\mathbb{N}}$ CVU vers f sur I \Longrightarrow $(f_n)_{n\in\mathbb{N}}$ CVU vers f sur TS de I \Longrightarrow $(f_n)_{n\in\mathbb{N}}$ CVS vers f sur I.

DÉFINITION 5.2:

Soit $(f_n)_{n\in\mathbb{N}}\in \mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions, on dit que :

- $\sum f_n$ converge simplement sur I $si \ \forall x \in I$, $\sum_{n \in \mathbb{N}} f_n(x)$ converge. On note $S : x \mapsto \sum_{n=0}^{+\infty} f_n(x)$ sa somme.
- $\sum f_n$ converge uniformément sur I si $\left(S_n = \sum_{k=0}^n f_k\right)_{n \in \mathbb{N}}$ converge uniformément sur I ou encore que

$$\left(R_n = S - S_n = \sum_{k=n+1}^{+\infty} f_k\right)_{n \in \mathbb{N}} \text{ converge uniform\'ement vers 0 sur I } (\lim_{n \to +\infty} ||R_n||_{\infty} = 0).$$

- $\sum f_n$ converge uniformément sur tout segment de I $si \ \forall [a;b] \subset I, \ \sum f_n \ CVU \ sur \ [a;b].$ $\sum f_n$ converge normalement sur I $si \ \sum_{n \geqslant n_0} ||f_n||_{\infty,I} \ converge \ (f_n \ bornée \ pour \ n \ assez \ grand).$
- $\sum f_n$ converge normalement sur tout segment de I $si \ \forall [a;b] \subset I$, $\sum f_n \ CVN \ sur \ [a;b]$.

<u>REMARQUE 5.2</u>: • Si $\sum_{n \in \mathbb{N}} f_n$ CVS sur I alors $(R_n)_{n \in \mathbb{N}}$ CVS vers la fonction nulle sur I.

- Si $\sum f_n$ CVS (resp. CVU, CVN) sur I et si $J \subset I$, alors $\sum f_n$ CVS (resp. CVU, CVN) sur J.
- \bullet Si $\sum f_{\mathfrak{n}}$ CVN sur I, alors la suite $(f_{\mathfrak{n}})_{\mathfrak{n}\in\mathbb{N}}$ CVU vers la fonction nulle sur I.
- Si $\sum f_n$ CVN sur tout segment de I alors $\forall x \in I$, $\sum_{n \in \mathbb{N}} f_n(x)$ CVA.
- S'il existe $(\alpha_n)_{n\in\mathbb{N}}\in\mathbb{R}_+^{\mathbb{N}}$ telle que $\forall x\in I$, $|f_n(x)|\leqslant \alpha_n$ avec $\sum \alpha_n$ CV, alors $\sum f_n$ CVN sur I.

THÉORÈME 5.2:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions. À propos de convergence sur I:

$$\sum f_n$$
 CVN $\Longrightarrow \sum f_n$ CVNTS $\Longrightarrow \sum f_n$ CVUTS $\Longrightarrow \sum f_n$ CVS et aussi

$$\textstyle \sum f_n \text{ CVN} \Longrightarrow \sum f_n \text{ CVU} \Longrightarrow \sum f_n \text{ CVUTS} \Longrightarrow \sum f_n \text{CVS}.$$

PARTIE 5.2 : CONTINUITÉ ET LIMITE

THÉORÈME 5.3:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,\mathbb{K})^\mathbb{N}$ une suite de fonctions qui converge uniformément sur I (ou sur tout segment de I) vers la fonction $f:I\to\mathbb{K}$, alors :

- (i) Soit $a \in I$, si pour tout $n \in \mathbb{N}$, f_n est continue en a alors f est continue en a.
- (ii) Si pour tout $n \in \mathbb{N}$, f_n est continue sur I alors f est continue sur I.

THÉORÈME ÉNORME 5.4:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\,\mathbb{K})^{\,\mathbb{N}}$ une suite de fonctions. On suppose que :

- (i) $\sum f_n$ CVU (ou CVN ou CVUTS ou CVNTS) sur I vers S,
- (ii) pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur I.

Alors la somme $S = \sum_{n=0}^{+\infty} f_n$ est continue sur I.

 $\underline{\mathit{REMARQUE~5.3}}: Soit~(f_n)_{n\in\,\mathbb{N}}\in\mathfrak{F}(I,\,\mathbb{K})^{\,\mathbb{N}},~a~un~r\acute{e}el~adh\acute{e}rent~\grave{a}~I~(a=\pm\infty~est~possible).~On~suppose:$

- (H_1) la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I (vers f),
- (H_2) pour tout $n \in \mathbb{N}$, la fonction f_n admet une limite finie ℓ_n en a.

$$\mathit{Alors}\; (\ell_n)_{n\in\mathbb{N}}\; \mathit{converge}\; \mathit{et}\; \lim_{x\to a} f(x) = \lim_{n\to +\infty} \ell_n \; \mathit{i.e.}\; \lim_{x\to a} \left(\lim_{n\to +\infty} f_n(x) \right) = \lim_{n\to +\infty} \left(\lim_{x\to a} f_n(x) \right).$$

THÉORÈME ÉNORME 5.5:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,\mathbb{K})^\mathbb{N}$ une suite de fonctions et $\mathfrak a$ un réel adhérent à I ($\mathfrak a=\pm\infty$ est possible) ; on suppose de plus avoir les deux hypothèses suivantes :

- (H_1) la série de fonctions $\sum f_n$ converge uniformément (ou normalement) sur I vers S,
- (H_2) pour tout $n \in \mathbb{N}$, la fonction f_n admet une limite finie ℓ_n en a.

Alors
$$\sum \ell_n$$
 converge et $\lim_{x \to a} S(x) = \sum_{n=0}^{+\infty} \ell_n$ i.e. $\lim_{x \to a} \left(\sum_{n=0}^{+\infty} f_n(x) \right) = \sum_{n=0}^{+\infty} \left(\lim_{x \to a} f_n(x) \right)$.

<u>REMARQUE 5.4</u>: Ce théorème de la double limite est faux (dans la remarque et le théorème précédents) si par exemple $a = Sup(I) \notin I$ et qu'on a juste convergence uniforme sur tout segment de I (ou convergence normale sur tout segment de I dans le cas des séries de fonctions).

EN PRATIQUE: Soit une suite de fonctions $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,\mathbb{K})^{\mathbb{N}}$:

- On détermine la limite simple f de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$.
- Pour montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f, on calcule $||f_n-f||_{\infty}$ (étude de fonction) ou on cherche $(\alpha_n)_{n\in\mathbb{N}}$ tendant vers 0 telle que $\forall x\in I, |f_n(x)-f(x)|\leqslant \alpha_n$.
- Pour montrer que $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur I, on cherche une suite $(x_n)_{n\in\mathbb{N}}\in I^\mathbb{N}$ telle que la suite $(f_n(x_n) - f(x_n))_{n \in \mathbb{N}}$ ne tende pas vers 0.
- On étudie la convergence simple de $\sum_{n\in\mathbb{N}}f_n$: ensemble de définition D de $S=\sum_{n=0}^{+\infty}f_n$,
- On étudie la convergence normale sur D (éventuellement sur tout segment de D).
- À défaut, on cherche à établir la convergence uniforme en étudiant $||R_n||_{\infty}$ et en la majorant.
- On cherche limite ou équivalent de S(x) aux bornes par comparaison série-intégrale ou double limite.

PARTIE 5.3: INTÉGRATION ET DÉRIVATION

THÉORÈME ÉNORME 5.6:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}([a;b],\mathbb{K})^\mathbb{N}$ une suite de fonctions, on suppose que :

- (H_1) La suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur le segment [a;b] vers f.

(H₂) Pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur le segment [a;b].

Alors f est continue sur [a;b] et $\int_a^b f(t)dt = \lim_{n \to +\infty} \left(\int_a^b f_n(t)dt \right) = \int_a^b \left(\lim_{n \to +\infty} f_n(t) \right) dt$.

<u>REMARQUE 5.5</u> : On peut généraliser ce théorème à un intervalle borné I qui n'est pas un segment si on suppose les fonctions f_n intégrables sur I.

THÉORÈME ÉNORME 5.7 :

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}([a;b],\mathbb{K})^\mathbb{N}$ une suite de fonctions, on suppose que :

- (H_1) La série $\sum f_n$ converge uniformément sur le segment [a;b] vers S. (H_2) Pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur le segment [a;b].

Alors S est continue sur [a; b], $\sum \int_a^b f_n(t)dt$ converge et $\int_a^b S(t)dt = \int_a^b \left(\sum_{i=1}^{+\infty} f_n(t)\right)dt$.

THÉORÈME 5.8:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}([a;b],\mathbb{K})^\mathbb{N}$ une suite de fonctions, on suppose que :

- (H_1) La série $\sum f_{\mathfrak n}$ converge normalement sur le segment $[\mathfrak a;\mathfrak b]$ vers S
- (H₂) Pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur le segment [a;b].

Alors en plus du th. 5.10, $\sum \int_a^b |f_n(t)| dt$ CV et $\int_a^b |S(t)| dt = \int_a^b |\sum_{n=0}^{+\infty} f_n(t)| dt \leqslant \sum_{n=0}^{+\infty} \int_a^b |f_n(t)| dt$.

THÉORÈME ÉNORME 5.9 :

Soit $(f_n)_{n\in\mathbb{N}}\in \mathfrak{F}(I,\mathbb{K})^\mathbb{N}$ une suite de fonctions. On suppose que : (H_1) la série $\sum f_n$ converge simplement sur I vers S,

- (H₂) les fonctions f_n et la fonction S sont continues par morceaux sur I,
- (H_3) les fonctions f_n sont intégrables sur I et la série $\sum \left(\int_I |f_n|\right)$ converge.

Alors S est intégrable sur I, $\sum \int_{I} f_n$ converge et $\int_{I} S = \int_{I} \left(\sum_{n=0}^{+\infty} f_n \right) = \sum_{n=0}^{+\infty} \int_{I} f_n$ (TITT).

THÉORÈME ÉNORME 5.10 :

Soit $(f_n)_{n\in\mathbb{N}}\in \mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions telle que :

- (H_1) la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers f,
- (H_2) pour tout $n \in \mathbb{N}$, la fonction f_n est de classe C^1 sur I,
- $(H_3) \ \ (f_n')_{n \in \, \mathbb{N}} \ \text{converge uniformément sur I (ou unif. sur tout segment de I) vers g.}$

Alors f est de classe C¹ sur I et f' = g, ie $\forall x \in I$, $\left(\lim_{n \to +\infty} f_n\right)'(x) = \lim_{n \to +\infty} \left(f'_n(x)\right)$.

<u>REMARQUE FONDAMENTALE 5.6</u>: Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions telle que :

- (H_1) la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers une fonction f,
- (H_2) pour tout $n\in \mathbb{N},$ la fonction f_n est de classe C^∞ sur I,
- (H_3) pour tout $k \in \mathbb{N}^*$, la suite $(f_n^{(k)})_{n \in \mathbb{N}}$ converge uniformément sur I (ou uniformément sur tout segment de I) (vers φ_k).

Alors f est de classe C^{∞} sur I et $\forall k \in \mathbb{N}^*$, $f^{(k)} = \varphi_k \iff \forall x \in I$, $\left(\lim_{n \to +\infty} f_n\right)^{(k)}(x) = \lim_{n \to +\infty} \left(f_n^{(k)}(x)\right)$.

THÉORÈME 5.11 :

Soit $(f_n)_{n\in\mathbb{N}}\in \mathfrak{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions, $\mathfrak{p}\geqslant 2$, si :

- (H_1) toutes les fonctions f_n sont de classe C^p sur I,
- (H_2) les suites $(f_n^{(k)})_{n \in \mathbb{N}}$ convergent simplement sur I (vers φ_k) pour $k \in [0; p-1]$,
- (H_3) $(f_n^{(p)})_{n\in\mathbb{N}}$ converge uniformément sur I (ou unif. sur tout segment de I) (vers φ_p). Alors on peut conclure (on admet que ces conditions suffisent):
 - (R_1) f = φ_0 est de classe C^p sur I.
 - $(R_2) \ \forall k \in [\![0;p]\!], f^{(k)} = \phi_k, \mathbf{c'est-\grave{a}-dire:} \ \forall k \in [\![0;p]\!], \ \forall x \in I, \ \left(\lim_{n \to +\infty} f_n\right)^{(k)}(x) = \lim_{n \to +\infty} \left(f_n^{(k)}(x)\right)$

THÉORÈME ÉNORME 5.12 :

Soit $(f_n)_{n\in\mathbb{N}}\in\mathfrak{F}(I,\mathbb{K})^\mathbb{N}$ une suite de fonctions telle que :

 $(H_1) \text{ la série } \sum f_n \text{ converge simplement sur I vers S,} \\ (H_2) \text{ pour tout } n \in \mathbb{N}, \text{ la fonction } f_n \text{ est de classe } C^1 \text{ sur I,} \\ (H_3) \sum f'_n \text{ converge uniformément sur I (ou uniformément sur tout segment de I).} \\ \textbf{Alors S est de classe } C^1 \text{ sur I et S'} = \sum_{n=0}^{+\infty} f'_n \text{ ie } \forall x \in I, \ \left(\sum_{n=0}^{+\infty} f_n\right)'(x) = \sum_{n=0}^{+\infty} \left(f'_n(x)\right).$

$\underline{\textit{REMARQUE FONDAMENTALE 5.7}}: Soit \ (f_{\mathfrak{n}})_{\mathfrak{n} \in \mathbb{N}} \in \mathfrak{F}(I, \ \mathbb{K})^{\mathbb{N}} \ \textit{telle que}:$

- (H_1) la série $\sum f_n$ converge simplement sur I,
- $\begin{array}{l} (H_2) \ \ pour \ tout \ n \in \mathbb{N}, \ la \ fonction \ f_n \ est \ de \ classe \ C^{\infty} \ sur \ I, \\ (H_3) \ \ \forall k \in \mathbb{N}^*, \sum f_n^{(k)} \ converge \ uniform\'ement \ sur \ I \ (ou \ unif. \ sur \ tout \ segment \ de \ I). \end{array}$

Alors $\sum_{n=0}^{+\infty} f_n$ est de classe C^{∞} sur I et $\forall x \in I$, $\forall k \in \mathbb{N}^*$, $\left(\sum_{n=0}^{+\infty} f_n\right)^{(k)}(x) = \sum_{n=0}^{+\infty} f_n^{(k)}(x)$.

THÉORÈME 5.13:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,\mathbb{K})^{\mathbb{N}}$ une suite de fonctions, $p\geqslant 2$, si :

- (H_1) pour tout $n \in \mathbb{N}$, la fonction f_n est de classe C^p sur I,
- (H_2) les séries $\sum f_n^{(k)}$ convergent simplement sur I pour $k \in [0; p-1]$,
- (H_3) $\sum f_n^{(p)}$ converge uniformément sur I (ou uniformément sur tout segment de I).

Alors $\sum_{n=0}^{+\infty} f_n$ est de classe C^p sur I et $\forall x \in I$, $\forall k \in [1; p]$, $\left(\sum_{n=0}^{+\infty} f_n\right)^{(k)}(x) = \sum_{n=0}^{+\infty} f_n^{(k)}(x)$.

REMARQUE 5.8 : On peut a fortiori avoir les mêmes conclusions en remplaçant la convergence uniforme (ou uniforme sur tout segment) par la convergence normale (ou normale sur tout segment).