DEVOIR MAISON 6: NORMES

PSI 1 2024/2025

pour le mardi 19 novembre 2024

On note E le \mathbb{R} -espace vectoriel des fonctions continues de [0;1] dans \mathbb{R} : $E = C^0([0;1], \mathbb{R})$. Soit $(\alpha,\alpha') \in [0;1]^2$, pour une fonction $f \in E$, on pose $N_{\alpha,\alpha'}(f) = \sup_{x \in [\alpha;1]} |f(x)| + \int_0^{\alpha'} |f(x)| dx$.

- 1 Norme ou pas norme : soit $(\alpha, \alpha') \in [0, 1]^2$
 - 1.1 Pour $f \in E$, montrer que $N_{\alpha,\alpha'}(f)$ est bien défini et positif.
 - 1.2 Montrer que : $(N_{\alpha,\alpha'}$ est une norme) \iff $(\alpha \leqslant \alpha')$.
- **Premier cas**: soit trois réels α , α' , α'' tels que $0 \leqslant \alpha < \alpha' < \alpha'' \leqslant 1$

 - **2.2** Justifier qu'on a toujours : $\forall f \in E, \ N_{\alpha',\alpha''}(f) \leq N_{\alpha,\alpha''}(f)$

On considère, pour n assez grand (c'est-à-dire $\frac{1}{n} < \frac{\alpha' - \alpha}{2}$), la fonction $f_n : [0;1] \to \mathbb{R}$ affine par morceaux (affine sur les intervalles $\left[0; \frac{\alpha' + \alpha}{2} - \frac{1}{n}\right], \left[\frac{\alpha' + \alpha}{2} - \frac{1}{n}; \frac{\alpha' + \alpha}{2}\right], \left[\frac{\alpha' + \alpha}{2}; \frac{\alpha' + \alpha}{2} + \frac{1}{n}\right]$ et $\left[\frac{\alpha' + \alpha}{2} + \frac{1}{n}; 1\right]$) et qui vérifie f(0) = 0, $f\left(\frac{\alpha' + \alpha}{2} - \frac{1}{n}\right) = 0$, $f\left(\frac{\alpha' + \alpha}{2}\right) = 1$, $f\left(\frac{\alpha' + \alpha}{2} + \frac{1}{n}\right) = 0$ et f(1) = 0.

- **2.3** Tracer (rapidement) l'allure du graphe de la fonction f_n (n quelconque). Que vaut la fonction f_n sur l'intervalle $[0;\alpha]$? Que vaut-elle sur $[\alpha';1]$? Calculer $N_{\alpha,\alpha''}(f_n)$ et $N_{\alpha',\alpha''}(f_n)$ et en déduire que ces deux normes ne sont pas équivalentes.
- **3** Second cas : soit $(\alpha, \beta) \in [0; 1]^2$ avec $\alpha < \beta$, on veut "comparer" les normes $N_{\alpha, \alpha}$ (noté dorénavant N_{α}) et $N_{\beta, \beta}$ (noté bien sûr aussi N_{β} dans la suite)
 - $\boxed{\textbf{3.1}} \ \text{Prouver que } \forall f \in E, \ N_{\beta}(f) \leqslant (1+\beta-\alpha)N_{\alpha}(f).$
 - **3.2** Montrer que la constante $1+\beta-\alpha$ de la question 3.1 est optimale ; c'est-à-dire que pour un réel positif k, on a : $(\forall f \in E, \ N_{\beta}(f) \leqslant kN_{\alpha}(f)) \Longrightarrow k \geqslant 1+\beta-\alpha$.

1

 $\boxed{\textbf{3.3}} \text{ Les deux normes } N_{\alpha} \text{ et } N_{\beta} \text{ sont-elles \'equivalentes ?}$