TD 15 : ESPACES PRÉHILBERTIENS

PSI 1 2024-2025

vendredi 17 janvier 2025

15.1 OdlT 2013/2014 Centrale PSI planche 120II

Soit U_1, \dots, U_p des parties non vides et 2 à 2 distinctes de [1;n] telles que $\forall (i,j) \in [1;p]^2$, card $(U_i \cap U_j) = a$. On définit $\alpha_k = \operatorname{card}(U_k)$ pour $k \in [1;p]$ et la matrice $A \in \mathcal{M}_{p,n}(\mathbb{R})$ par $a_{i,j} = 1$ si $j \in U_i$ et $a_{i,j} = 0$ sinon.

- a. Calculer $A^{t}A$ en fonction de a et α_{k} .
- **b.** Que peut-on dire du cardinal de $E = \{k \in [1; p] \mid a = \alpha_k\}$?
- c. En déduire que $A^{t}A$ est inversible. Montrer que $\mathfrak{p} \leqslant \mathfrak{n}$.

15.2 OdlT 2016/2017 CCP PSI planche 212II abordable dès la 1^{ère} année

On munit $E = C^2([0;1], \mathbb{R})$ du produit scalaire $< f, g >= \int_0^1 (f(t)g(t) + f'(t)g'(t)) dt$.

- $\textbf{a.} \ \mathrm{Montrer} \ \mathrm{que} \ (\mathrm{ch}\,, \mathrm{sh}\,) \ \mathrm{est} \ \mathrm{une} \ \mathrm{base} \ \mathrm{de} \ A = \{y \in E \ | \ y'' = y\}.$
- **b.** Montrer que $\forall f \in A, \ \forall g \in E, \ < f, g >= f'(1)g(1) f'(0)g(0)$. Calculer $< \text{sh}, \text{ch} >, ||\text{ch}||^2$ et $||\text{sh}||^2$.
- **c.** Montrer que si $f \in A$ et $g \in B = \{y \in E \mid y(1) = y(0) = 0\}$, alors $\langle f, g \rangle = 0$.
- **d.** Pour $f \in H = \{y \in E \mid y(1) = 1, \ y(0) = \operatorname{ch} 1\}$, calculer $< f, \operatorname{sh} > \operatorname{et} < f, \operatorname{ch} >$.
- $\mathbf{e.}\,$ Déterminer les coordonnées dans (sh , ch) du projeté orthogonal de $f\in H$ sur A ?
- f. En déduire $M = \inf_{f \in H} \int_0^1 \left(f(t)^2 + f'(t)^2 \right) dt$.

15.3 OdlT 2016/2017 EIVP PSI planche 245II abordable dès la 1^{ère} année

Dans un espace E euclidien de dimension n, soit deux familles $(x_1, ..., x_n)$ et $(y_1, ..., y_n)$ de vecteurs de E et $F = Vect(x_1, ..., x_n)$ et $G = Vect(y_1, ..., y_n)$. On suppose que $\forall (i, j) \in [1, n]^2, (x_i|x_j) = (y_i|y_j)$.

- a. Montrer que (x_1, \ldots, x_n) est libre si et seulement si (y_1, \ldots, y_n) est libre.
- b. Montrer que F et G sont de même dimension.

15.4 Mines PSI 2018 Lucie Jandet II

- **a.** Montrer que $\theta: (M, N) \in \mathcal{M}_n(\mathbb{R})^2 \mapsto \operatorname{Tr}({}^tMN)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
- **b.** Montrer que $H = \{M \in \mathfrak{M}_n(\mathbb{R}) \mid Tr(M) = 0\}$ est un sous-espace vectoriel de $\mathfrak{M}_n(\mathbb{R})$ et donner dim(H).
- **c.** Calculer d(J, H) si $J = (1)_{1 \le i, j \le n} \in \mathcal{M}_n(\mathbb{R})$.

15.5 Mines PSI 2018 Charlotte Nivelle II

Soit E un espace euclidien, un entier $\mathfrak{p}\in\mathbb{N}^*$ tel que $\mathfrak{p}\leqslant dim(E)$ et $(\nu_k)_{1\leqslant k\leqslant \mathfrak{p}}$ une famille de vecteurs de E. Montrer que les assertions suivantes sont équivalentes :

(i) $\forall x \in E$, $||x||^2 = \sum_{k=1}^p (x|\nu_k)^2$ (ii) $\forall x \in E$, $x = \sum_{k=1}^p (x|\nu_k)\nu_k$ (iii) (ν_1, \dots, ν_p) est une b.o.n. de E

[15.6] Centrale Maths 1 PSI 2019 Mathis Chénet

a. Soit E un espace préhilbertien réel. Rappeler l'inégalité de BESSEL.

Soit a et b deux réels tels que a < b, $E = C^0([a;b], \mathbb{R})$ et $K : [a;b]^2 \to \mathbb{R}$ une fonction continue.

 $\mathrm{Pour}\ f\in E,\ \mathrm{on}\ \mathrm{definit}\ T(f)=g:[\mathfrak{a};\mathfrak{b}]\to \mathbb{R}\ \mathrm{par}\ \forall x\in [\mathfrak{a};\mathfrak{b}],\ g(x)=\int_{\mathfrak{a}}^{\mathfrak{b}}K(x,y)f(y)dy.$

- **b.** Montrer que $\varphi:(\mathfrak{u},\nu)\mapsto\int_{\mathfrak{g}}^{\mathfrak{b}}\mathfrak{u}(\mathfrak{t})\nu(\mathfrak{t})d\mathfrak{t}$ définit un produit scalaire sur E.
- c. Montrer que T est un endomorphisme de E.

Prenons $\lambda \in Sp(T)$ et (f_1, \dots, f_p) une famille orthonormée de $E_{\lambda}(T)$.

d. Montrer que $\forall x \in [a;b], \ \lambda^2 \sum_{i=1}^p (f_i(x))^2 \leqslant \int_a^b K(x,y)^2 dy.$

15.7) <u>Centrale Maths1 PSI 2021</u> Paul Jaïs

 $\mathrm{Soit}\ \Phi:\ \mathbb{R}\to\ \mathbb{R}\ \mathrm{d\acute{e}finie}\ \mathrm{par}\ \Phi(x)=e^{-x^2}\ \mathrm{et}\ (.|.)\ \mathrm{d\acute{e}fini}\ \mathrm{sur}\ \ \mathbb{R}[X]\ \mathrm{par}\ (P|Q)=\int_{-\infty}^{+\infty}P(x)Q(x)e^{-x^2}dx.$

- **a.** Montrer que Φ est de classe C^{∞} sur \mathbb{R} et que, pour tout entier n, il existe un polynôme réel P_n tel que $\forall x \in \mathbb{R}, \ \Phi^{(n)}(x) = P_n(x)\Phi(x)$. Quel est le degré de P_n ?
- **b.** Montrer que (.|.) est bien un produit scalaire sur $\mathbb{R}[X]$.
- c. Montrer que la famille $(P_n)_{n\in\mathbb{N}}$ est orthogonale.
- **d.** Montrer que P_n n'admet que des racines réelles simples pour tout $n \in \mathbb{N}^*$.

(15.8) <u>Mines PSI 2021</u> Robin De Truchis I

Déterminer la matrice dans la base canonique de \mathbb{R}^3 de la projection orthogonale p sur le plan P: x+y+z=0.

- **a.** Montrer que <..,.> définit un produit scalaire sur $\mathbb{R}[X]$.
- **b.** Soit $n \in \mathbb{N}$, montrer que $((X-1)^k)_{k \in [0:n]}$ est une base orthogonale de $\mathbb{R}_n[X]$.
- c. Déterminer $(\mathbb{R}_n[X])^{\perp}$.

(15.10) <u>Centrale Maths1 PSI 2023</u> Marie-Lys Ruzic

Soit u l'endomorphisme canoniquement associé à $A = \begin{pmatrix} -1 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathfrak{M}_{3,1}(\mathbb{R})$ et le vecteur

 $b = (1,1,1) \in \mathbb{R}^3$ associé à B. Pour $x \in \mathbb{R}^3$, on lui associe canoniquement le vecteur colonne $X \in \mathcal{M}_{3,1}(\mathbb{R})$. On définit l'application $f : \mathbb{R}^3 \to \mathbb{R}$ pas $f(x) = ||u(x) - b||^2$.

- a. L'équation AX = B d'inconnue $X \in \mathcal{M}_{3,1}(\mathbb{R})$ admet-elle une solution ?
- **b.** Montrer que f admet un minimum global sur \mathbb{R}^3 .
- c. Ce minimum est-il atteint en un unique point de \mathbb{R}^3 ?
- **d.** Montrer l'équivalence entre (i) : $u(x) b \in (\operatorname{Im}(u))^{\perp}$ et (ii) : $A^{\mathsf{T}}AX = A^{\mathsf{T}}B$.
- e. Donner une condition nécessaire et suffisante pour que f admette son minimum en $x \in \mathbb{R}^3$.

15.11 CCP PSI 2019 et CCINP PSI 2023 Perrine Hoffmann II et Paul-Antoine Baury-Carpentier I

 $\mathrm{Soit}\ \phi: \mathfrak{M}_{2}(\,\mathbb{R})^{2} \to \,\mathbb{R}\ \mathrm{d\acute{e}finie}\ \mathrm{par}\ \phi(A,B) = \mathrm{Tr}\ (A^{\mathsf{T}}B)\ \mathrm{et}\ \Sigma = \Big\{M = \left(\begin{matrix} a & b \\ -b & a \end{matrix}\right)\ \Big|\ (a,b) \in \,\mathbb{R}^{2}\Big\}.$

- a. Montrer que φ définit un produit scalaire sur $\mathcal{M}_2(\mathbb{R})$.
- **b.** Montrer que Σ est un sous-espace vectoriel de $\mathfrak{M}_2(\mathbb{R})$. Exhiber une base orthonormale de Σ^{\perp} .
- c. Trouver la distance de la matrice $M=\begin{pmatrix}1&1\\1&1\end{pmatrix}$ à $\Sigma^{\perp}.$ Et celle de M à Σ ?

(15.12) <u>CCP PSI 2018 et CCINP PSI 2023</u> Benoit Souillard I et Rémi Darrieumerle II

- $\textbf{a.} \ \mathrm{Calculer} \ I_n = \int_{-\infty}^{+\infty} t^n e^{-t^2} dt \ \mathrm{en} \ \mathrm{distinguant} \ \mathrm{selon} \ \mathrm{la} \ \mathrm{parit\acute{e}} \ \mathrm{de} \ n. \ \mathrm{On} \ \mathrm{donne} \ \int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}.$
- **b.** Montrer que $\phi:(P,Q)\mapsto \frac{1}{\sqrt{\pi}}\int_{-\infty}^{+\infty}P(t)Q(t)e^{-t^2}dt$ est un produit scalaire sur $\mathbb{R}[X]$.
- c. Déterminer $d(X^3, \mathbb{R}_2[X])$.

15.13 <u>CCINP PSI 2023</u> Marius Desvalois II

Soit $n \in \mathbb{N}^*$, soit $(.|.): \mathbb{R}_n[X]^2 \to \mathbb{R}$ définie par $(P|Q) = \sum\limits_{k=0}^n \alpha_k b_k$ si $P = \sum\limits_{k=0}^n \alpha_k X^k$ et $Q = \sum\limits_{k=0}^n b_k X^k$.

- $\mathbf{a.}$ Montrer que (, | ,) est un produit scalaire sur $\,\mathbb{R}_n[X].$
- **b.** Calculer d(1, H) où $H = \{P \in \mathbb{R}_n[X] \mid P(1) = 0\}$.