TD 15 : ESPACES PRÉHILBERTIENS

PSI 1 2024-2025

vendredi 17 janvier 2025

- $\begin{array}{l} \textbf{(15.1)} \bullet \ \mathrm{Si} \ \mathfrak{a} = 0, \ \mathrm{les \ parties} \ U_1, \cdots, U_p \ \mathrm{sont \ disjointes} \ \mathrm{et \ non \ vides \ donc} \ \forall k \in \llbracket 1; \mathfrak{p} \rrbracket, \ \mathrm{card} \ (U_k) \geqslant 1 \ \mathrm{et}, \ \mathrm{comme \ on} \\ \\ \mathrm{a \ clairement} \ U_1 \cup \cdots \cup U_p \subset \llbracket 1; \mathfrak{n} \rrbracket, \ \mathrm{il \ vient} \ \mathfrak{p} \leqslant \sum_{k=1}^p \mathrm{card} \ (U_k) \leqslant \mathfrak{n} \ \mathrm{d} \ \mathrm{ou} \ \mathfrak{p} \leqslant \mathfrak{n}. \end{array}$
 - De même, si p=1, alors $U_1\subset \llbracket 1;n\rrbracket$ donc $n\geqslant 1$ car U_1 est non vide donc $p=1\leqslant n$. On peut donc supposer dans la suite que l'on a $\alpha>0$ et $p\geqslant 2$.
 - a. Notons la matrice $B = A^tA = (b_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{R})$. Par définition du produit matriciel, pour $(i,j) \in [\![1;n]\!]^2$, $b_{i,j} = \sum_{k=1}^n a_{i,k} a_{j,k}$ car la case (k,j) de tA contient $a_{j,k}$. Or, par définition de A, on a $a_{i,j} = \mathbb{1}_{U_i}(j)$ ce qui donne, puisque l'on sait que $\mathbb{1}_{U_i \cap U_j} = \mathbb{1}_{U_i} \mathbb{1}_{U_j}$ sur les fonctions indicatrices, la relation $b_{i,j} = \sum_{k=1}^n \mathbb{1}_{U_i}(k) \mathbb{1}_{U_j}(k) = \sum_{k=1}^n \mathbb{1}_{U_i \cap U_j}(k) = \operatorname{card}(U_i \cap U_j)$. D'après l'énoncé, $b_{i,j} = \operatorname{card}(U_i \cap U_j) = a$ si

$$i \neq j \text{ et } b_{i,i} = \operatorname{card} \left(U_i \cap U_i \right) = \operatorname{card} \left(U_i \right) = \alpha_i \text{ sinon. Par conséquent, } B = \begin{pmatrix} \alpha_1 & \alpha & \cdots & \alpha \\ \alpha & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \alpha & \cdots & \alpha & \alpha_n \end{pmatrix}.$$

 $\begin{aligned} \mathbf{b.} \ \operatorname{Si} \ \operatorname{card} (E) \geqslant 2, \ \exists (i,j) \in [\![1;p]\!]^2 \ \operatorname{tel} \ \operatorname{que} \ i \neq j \ \operatorname{et} \ \alpha_i = \alpha_j = a \ \operatorname{donc} \ \operatorname{card} (U_i) = \operatorname{card} (U_j) = \operatorname{card} (U_i \cap U_j) \\ \operatorname{ce} \ \operatorname{qui} \ \operatorname{impose} \ U_i = U_j = U_i \cap U_j \ (\operatorname{car} \ U_i \cap U_j \subset U_i \ \operatorname{et} \ \operatorname{on} \ a \ \operatorname{\'egalit\'e} \ \operatorname{des} \ \operatorname{cardinaux} \ \operatorname{donc} \ U_i = U_i \cap U_j \ \operatorname{par} \\ \operatorname{exemple}) \ \operatorname{contrairement} \ \grave{a} \ l'hypoth\`ese. \ Ainsi, \ \operatorname{on} \ \operatorname{en} \ \operatorname{d\'eduit} \ \operatorname{que} \ \operatorname{card} (E) \leqslant 1 \ \operatorname{donc} \ \operatorname{card} (E) \leqslant \{0,1\}. \end{aligned}$

 $\textbf{c.} \ \ \underline{\text{M\'ethode 1}} : \ \text{Soit} \ X \in \mathfrak{M}_{n,1}(\mathbb{R}) \ \text{tel que } X \in \text{Ker}(A^tA), \ \text{alors } A^tAX = 0, \ \text{on considère classiquement}$ ${}^tXA^tAX \ \text{et il vient } {}^tXA^tAX = 0 = \sum_{k=1}^n x_k \Big(\alpha_k x_k + \sum_{1 \leqslant i \leqslant n \atop i \neq k} \alpha x_i\Big) = \sum_{k=1}^n x_k \Big((\alpha_k - \alpha)x_k + \sum_{i=1}^p \alpha x_i\Big). \ \text{On obtient}$

 $\mathrm{donc}\ \mathfrak{a}\Big(\sum_{k=1}^p x_k\Big)^2 + \sum_{k=1}^p (\alpha_k - \alpha) x_k^2 = 0 \Longrightarrow \Big(\sum_{k=1}^p x_k = 0 \ \mathrm{et}\ \forall k \in [\![1;p]\!],\ (\alpha_k - \alpha) x_k^2 = 0\Big) \ \mathrm{car}\ \alpha_k - \alpha \geqslant 0 \ \mathrm{puisque}$

 $U_k \cap U_i \subset U_k$ si $i \neq k$. Or un seul des $\alpha_k - \alpha$ peut être non nul donc tous les x_k sauf au plus un doivent être nuls et comme leur somme est nulle : ils sont tous nuls ! $A^tAX = 0 \Longrightarrow X = 0$ et l'endomorphisme canoniquement associé à A^tA est injectif donc est inversible puisqu'on est en dimension finie. En fait, on a établi que $(X,Y) \mapsto {}^tXA^tAY$ est un produit scalaire. On verra plus tard dans l'année que la matrice tAA s'appelle une matrice symétrique définie positive.

 $\operatorname{car} \ \forall k \in [\![1;p]\!], \ \alpha_k - \alpha \geqslant 0 \ \operatorname{et} \ \operatorname{qu'il} \ \operatorname{ne} \ \operatorname{peut} \ \operatorname{exister} \ \operatorname{au} \ \operatorname{plus} \ \operatorname{qu'un} \ \operatorname{entier} \ k \ \operatorname{tel} \ \operatorname{que} \ \alpha_k - \alpha = 0.$

 $\underline{\text{M\'ethode 3}}: \text{ on peut r\'esoudre le syst\`eme lin\'eaire tAAX} = 0 \text{ qui s\'ecrit } \forall i \in [\![1;n]\!], \ (\alpha_i - a)x_i + a \sum_{k=1}^n x_k = 0.$

Puisqu'on a imposé $a\neq 0,$ on a $s=\sum\limits_{k=1}^nx_k=-\frac{\alpha_i-a}{a}x_i.$ Traitons deux cas :

- si $\forall i \in [1; n]$, $\alpha_i > a$, alors $x_i = -\frac{\alpha s}{\alpha_i a}$ sont de signe opposé à s. Mais comme $s = \sum_{i=1}^n x_i$, on a forcément $s = 0 = x_1 = \dots = x_n$.
- s'il existe un seul $k \in [1;n]$ tel que $\alpha_k = a$, on a s = 0 donc $\forall i \in [1;n] \setminus \{k\}, \ x_i = -\frac{as}{\alpha_i a} = 0$ donc $x_k = s = 0$ et on a aussi $x_1 = \dots = x_n = 0$.

On a prouvé dans les deux cas de la question b. que X = 0 si ${}^{t}AAX = 0$ donc $Ker({}^{t}AA) = \{0\}$.

Quelle que soit la méthode, A^tA inversible donc $p = \operatorname{rang}(A^tA) \leqslant \operatorname{rang}(A) \leqslant n$.

Même si ce n'est pas explicitement demandé, il faut vérifier que $(f,g) \mapsto < f,g >$ est un produit scalaire sur $E = C^2([0;1], \mathbb{R})$. Pour $(f,g) \in E^2$, fg + f'g' est continue sur le segment [0;1] donc $< f,g >= \int_0^1 (fg + f'g')$ existe. De plus, pour $(f,g,h) \in E^3$ et $\lambda \in \mathbb{R}$, par linéarité de la dérivation et de l'intégrale, on a la relation $< f,g + \lambda h >= \int_0^1 (f(g + \lambda h) + f'(g' + \lambda h')) = \int_0^1 (fg + f'g') + \lambda \int_0^1 (fh + f'h') = < f,g > +\lambda < f,h > donc < .,. >$ est linéaire en la seconde variable. Comme le produit des réels est commutatif, la fonction < .,. > est aussi symétrique donc bilinéaire. De plus, si $f \in E$, alors $< f,f >= \int_0^1 (f^2 + f'^2) \ge 0$ car 0 < 1 et $f^2 + f'^2 \ge 0$. Enfin, si < f,f >= 0, comme la fonction $f^2 + f'^2$ est une fonction positive et continue, on déduit que $f^2 + f'^2 = 0$ du fait que $\int_0^1 (f^2 + f'^2) = 0$. Par conséquent, il vient $f^2 = 0$ donc f = 0.

Au final, < .,. > est une forme bilinéaire symétrique définie positive, en résumé un produit scalaire sur E.

- **a.** D'après le cours sur les équations différentielles linéaires du second ordre à coefficients constants, si $f_1: x \mapsto e^x$ et $f_2: x \mapsto e^{-x}$, on a $A = \text{Vect}(f_1, f_2)$ car l'équation caractéristique associée à cette équation est $z^2 1 = 0$ dont les solutions sont ± 1 . Mais $ch = \frac{f_1 + f_2}{2}$ et $sh = \frac{f_1 f_2}{2}$ d'où $f_1 = ch + sh$ et $f_2 = ch sh$ et on a aussi A = Vect(ch, sh). Comme la famille (ch, sh) est clairement libre, c'est une base de A.
- et on a aussi A = Vect(ch, sh). Comme la famille (ch, sh) est clairement libre, c'est une base de A. **b.** Soit $f \in A$ et $g \in E$ alors $< f, g >= \int_0^1 fg + \int_0^1 f'g' = \int_0^1 fg + [f'g]_0^1 - \int_0^1 f''g$ par une intégration par parties facile à justifier donc $< f, g >= \int_0^1 fg + [f'g]_0^1 - \int_0^1 fg = f'(1)g(1) - f'(0)g(0)$ car $f \in A$ donc f'' = f. Comme $(sh, ch) \in A^2$ et que ch' = sh et sh' = ch, la formule précédente nous permet de déterminer les valeurs de $< sh, ch >= ch^2(1) - 1 = sh^2(1)$ et $||ch||^2 = ||sh||^2 = sh(1)ch(1) = \frac{e^2 - e^{-2}}{4} = a^2$ avec a > 0.
- $\textbf{c.} \text{ La formule de } \textbf{b.} \text{ montre que si } f \in A \text{ et } g \in B \subset E, \\ < f, g >= f'(1)g(1) f'(0)g(0) = 0 \text{ car } g(0) = g(1) = 0.$
- $\begin{aligned} \mathbf{d.} \ \ \grave{\mathrm{A}} \ \ \mathrm{nouveau}, \ \mathrm{si} \ f \in H, \ \mathrm{comme} \ \mathrm{sh} \ \in A \ : \ < f, \mathrm{sh} \ > = < \mathrm{sh} \ , f > = \mathrm{sh} \ '(1) f(1) \mathrm{sh} \ '(0) f(0) = \mathrm{ch} \ (1) \mathrm{ch} \ (1) = 0. \end{aligned} \\ \mathrm{De} \ \ \mathrm{m\^{e}me}, \ \mathrm{si} \ f \in H, \ \mathrm{comme} \ \mathrm{ch} \ \in A \ : \ < f, \mathrm{ch} \ > = < \mathrm{ch} \ , f > = \mathrm{ch} \ '(1) f(1) \mathrm{ch} \ '(0) f(0) = \mathrm{sh} \ (1).$
- e. Le projeté orthogonal de $f \in H$ sur A = Vect(ch, sh) s'écrit $f_0 = \alpha ch + \beta sh$ avec $(\alpha, \beta) \in \mathbb{R}^2$. Il est caractérisé par les orthogonalités $\langle f f_0, ch \rangle = \langle f f_0, sh \rangle = 0$ ce qui donne, avec les questions **b.** et **e.**, les équations $\langle f f_0, sh \rangle = 0 = -\alpha \langle ch, sh \rangle \beta \langle sh, sh \rangle = -\alpha sh^2(1) \beta sh(1) ch(1)$ donc $\beta = -\alpha th(1)$ et $\langle f f_0, ch \rangle = 0 = sh(1) \alpha \langle ch, ch \rangle \beta \langle sh, ch \rangle = sh(1) \alpha sh(1) ch(1) \beta sh(1)^2$. Après calculs, on trouve $\alpha = ch(1)$ et $\beta = -sh(1)$ donc $f_0(t) = ch(1) ch(t) sh(1) sh(t) = ch(t-1)$.

On constate que ce projeté orthogonal de f sur A ne dépend pas de f. C'est normal car H est un sous-espace affine orthogonal à A : en effet, on sait déjà d'après c. que $A \perp B$ et, si $f \in E$, alors à l'équivalence suivante

 $f\in H\iff (f(1)=1,\ f(0)=\operatorname{ch}(1))\iff (f(1)=f_0(1),\ f(0)=f_0(0))\iff ((f-f_0)(0)=(f-f_0)(1)=0)\ \mathrm{qui}$ prouve que $f\in H\iff f-f_0\in B$ donc H est un espace affine de direction B passant par $f_0\in H\cap A$, ce qu'on écrit $H=f_0+B$. Si on note p la projection orthogonale sur A, ce qu'on peut définir d'après le cours car A est un sous-espace de dimension finie d'un espace préhilbertien, alors $p(H)=p(f_0)+p(B)=p(f_0)=f_0$ car $B\subset A^\perp$ et $f_0\in A$. C'est comme si on projetait une droite verticale sur le plan z=0, ça donne un point ! $\mathbf{f.}\ \ \text{Pour}\ f\in H,\ \text{en écrivant}\ f=f-f_0+f_0,\ \text{comme}\ f-f_0\in B\ \text{et}\ f_0\in A,\ \text{on a}< f-f_0,f_0>=0\ \text{donc},\ \text{par}$ $\text{PYTHAGORE}:\ ||f||^2=\int_0^1 \left(f(t)^2+f'(t)^2\right)\mathrm{d}t=||f-f_0||^2+||f_0||^2\geqslant ||f_0||^2\ \text{avec égalité uniquement si }f=f_0.$ Ainsi: $M=\inf_{f\in H}\int_0^1 \left(f(t)^2+f'(t)^2\right)\mathrm{d}t=\min_{f\in H}\int_0^1 \left(f(t)^2+f'(t)^2\right)\mathrm{d}t=||f_0||^2=\int_0^1 \left(\operatorname{ch}^2(t-1)+\operatorname{sh}^2(t-1)\right)\mathrm{d}t.$ Or $\operatorname{ch}^2(t-1)+\operatorname{sh}^2(t-1)=\operatorname{ch}(2(t-1))\ \text{donc}\ M=\int_0^1 \operatorname{ch}(2(t-1))\mathrm{d}t=\left[\frac{\operatorname{sh}(2(t-1))}{2}\right]_0^1=\frac{\operatorname{sh}(2)}{2}.$

 $\boxed{\textbf{15.3}} \text{ a. Supposons } (x_1,\ldots,x_n) \text{ libre et soit } (\lambda_1,\cdots,\lambda_n) \in \mathbb{R}^n \text{ tel que } \sum_{k=1}^n \lambda_k y_k = 0_E, \text{ alors par hypothèse}:$

$$||\sum_{k=1}^n \lambda_k y_k||^2 = \Big(\sum_{i=1}^n \lambda_i y_i \bigg|\sum_{j=1}^n \lambda_j y_j\Big) = \sum_{1\leqslant i,j\leqslant n} \lambda_i \lambda_j (y_i|y_j) = \sum_{1\leqslant i,j\leqslant n} \lambda_i \lambda_j (x_i|x_j) = ||\sum_{k=1}^n \lambda_k x_k||^2 = 0.$$

Ainsi, $\sum_{k=1}^{n} \lambda_k x_k = 0_E$ d'où $\lambda_1 = \cdots = \lambda_n = 0$ par liberté de (x_1, \dots, x_n) . Alors (y_1, \dots, y_n) est aussi libre.

Par symétrie entre les deux familles : (x_1, \dots, x_n) est libre si et seulement si (y_1, \dots, y_n) est libre.

b. Par exemple si $\dim(F) = r$, quitte à renuméroter les vecteurs, on peut supposer que (x_1, \dots, x_r) est une base de F (et donc que les vecteurs x_{r+1}, \dots, x_n sont engendrés par x_1, \dots, x_r). Alors on montre comme précédemment que (y_1, \dots, y_r) est libre donc que le sous-espace $G = \text{Vect}(y_1, \dots, y_n)$ est au moins de dimension r car il existe dans G une famille libre de cardinal r.

 $\mathrm{Ainsi},\ dim(G)\geqslant dim(F).\ \mathrm{Par}\ \mathrm{sym\acute{e}trie},\ dim(F)\geqslant dim(G)\ \mathrm{et}\ \mathrm{on}\ \mathrm{a}\ \mathrm{enfin}\ dim(F)=dim(G).$

15.4 a. Soit $(U, V, W) \in (M_n(\mathbb{R}))^3$ et $\lambda \in \mathbb{R}$, alors par linéarité de trace, θ est linéaire en la seconde variable car $\theta(U, V + \lambda W) = \text{Tr}\ ({}^t U(V + \lambda W)) = \text{Tr}\ ({}^t UV + \lambda {}^t UW) = \text{Tr}\ ({}^t UV) + \lambda \text{Tr}\ ({}^t UW) = \theta(U, V) + \lambda \theta(U, W)$. De plus, puisque $\theta(N, M) = \text{Tr}\ ({}^t NM) = \text{Tr}\ ({}^t NM)$

Soit $M=(\mathfrak{m}_{i,j})_{1\leqslant i,j\leqslant n}\in \mathfrak{M}_n(\mathbb{R})$, on calcule classiquement $\theta(M,M)=\sum\limits_{1\leqslant i,j\leqslant n}\mathfrak{m}_{i,j}^2$ donc $\theta(M,M)\geqslant 0$ et, comme une somme de termes positifs est nulle si ces termes sont tous nuls, on a l'équivalence suivante : $\theta(M,M)=0\Longleftrightarrow \forall (i,j)\in [\![1;n]\!]^2,\ \mathfrak{m}_{i,j}^2=0\Longleftrightarrow \forall (i,j)\in [\![1;n]\!]^2,\ \mathfrak{m}_{i,j}=0\Longleftrightarrow M=0.$ Ainsi, θ est définie positive. Au final, θ est bien un produit scalaire sur $\mathfrak{M}_n(\mathbb{R})$ (c'est le produit scalaire canonique car la base canonique est une base orthonormée pour ce produit scalaire).

b. La trace est une forme linéaire non nulle car $Tr(I_n) = n \neq 0$ donc H = Ker(Tr) est un hyperplan de $\mathcal{M}_n(\mathbb{R})$ donc un sous-espace vectoriel de dimension $n^2 - 1$.

 $\textbf{c.} \ \ H = \{M \in \mathfrak{M}_n(\mathbb{R}) \mid \theta(I_n, M) = 0\} \ \ \text{donc} \ \ H = \text{Vect}(I_n)^\perp \ \ \text{par definition. Or} \ \ \text{d}(J, H) = ||J - \mathfrak{p}(J)|| \ \ \text{d'après le cours si } \mathfrak{p} \ \text{désigne la projection orthogonale sur } H. \ \ \text{Or} \ J = J - \frac{\theta(J, I_n)}{||I_n||^2} I_n + \frac{\theta(J, I_n)}{||I_n||^2} I_n \ \text{avec} \ \frac{\theta(J, I_n)}{||I_n||^2} I_n \in \text{Vect}(I_n)$

$$\mathrm{et}\ J - \frac{\theta(J,I_{\mathbf{n}})}{||I_{\mathbf{n}}||^2}I_{\mathbf{n}} \in H\ \mathrm{donc}\ p(J) = J - \frac{\theta(J,I_{\mathbf{n}})}{||I_{\mathbf{n}}||^2}I_{\mathbf{n}}.\ \mathrm{Ainsi},\ d(J,H) = \left|\left|\frac{\theta(J,I_{\mathbf{n}})}{||I_{\mathbf{n}}||^2}I_{\mathbf{n}}\right|\right| = \frac{|Tr\ (J)|}{||I_{\mathbf{n}}||^2}Tr\ (I_{\mathbf{n}}) = \sqrt{n}.$$

(15.5) $(iii) \implies (ii)$ et $(iii) \implies (i)$ sont des formules du cours.

 $\underbrace{(\mathfrak{i}) \Longrightarrow (\mathfrak{i}\mathfrak{i}\mathfrak{i})} \text{ soit } F = Vect(\nu_1, \cdots, \nu_p) \text{ et } x \in F^\perp, \text{ alors d'après la relation (i) appliquée à ce } x, \text{ on a } ||x||^2 = 0 \\ \text{donc } x = 0_E. \text{ Par conséquent } F^\perp = \{0_E\} \text{ donc } F = (F^\perp)^\perp = E. \text{ Ainsi } (\nu_1, \cdots, \nu_p) \text{ est génératrice donc} \\ p \geqslant \dim(E). \text{ Comme } p \leqslant \dim(E) \text{ par hypothèse, il vient } p = \dim(E) \text{ et } (\nu_1, \cdots, \nu_p) \text{ est une base de } E. \text{ Soit } j \in \llbracket 1; p \rrbracket, \text{ alors } ||\nu_j||^2 = \sum\limits_{k=1}^p (\nu_j |\nu_k|^2 = ||\nu_j||^4 + \sum\limits_{k=1 \atop k \neq j}^p (\nu_j |\nu_k|^2 \geqslant ||\nu_j||^4 \text{ donc } ||\nu_j|| \leqslant 1. \text{ Soit aussi l'hyperplan } H_j = \underset{k \neq j}{\text{Vect}} (\nu_k) \text{ de } E \text{ et } n_j \text{ l'un des deux vecteurs unitaires dans la droite } H_j^\perp. \text{ Si on applique (i) à } n_j, \\ 1 = (n_j |\nu_j)^2. \text{ Or } 1 = (n_j |\nu_j|^2 \leqslant ||n_j||^2 ||\nu_j||^2 = ||\nu_j||^2 \leqslant 1 \text{ d'après CAUCHY-SCHWARZ donc } ||\nu_j|| = 1. \text{ On a donc } |(n_j |\nu_j)| = ||n_j||||\nu_j|| = 1 \text{ ce qui assure par le cas d'égalité dans CAUCHY-SCHWARZ que } \nu_j \text{ et } n_j \text{ sont colinéaires donc que } \nu_j \text{ est orthogonal à tous les autres vecteurs de la famille } (\nu_1, \cdots, \nu_p). \text{ Ceci est vrai pour tout } j \in \llbracket 1; p \rrbracket, (\nu_1, \cdots, \nu_p) \text{ est bien une base orthonormée de } E. \end{aligned}$

On pouvait aussi dire, une fois prouvé que $||v_j||=1$, en reprenant la formule ci-dessus, que $\sum\limits_{\substack{k=1\\k\neq j}}^p (v_j|v_k)^=0$ car $||v_j||^4=||v_j||^2=1$ donc que $\forall k\in [\![1;p]\!]\setminus\{j\}$, $(v_j|v_k)=0$ avec la même conclusion.

 $\underbrace{(\text{ii}) \Longrightarrow (\text{iii})} \text{ L'hypothèse (ii) nous apprend que } (\nu_1, \cdots, \nu_p) \text{ est génératrice dans } E \text{ donc } p \geqslant \text{dim}(E). \text{ Comme} \\ p \leqslant \text{dim}(E) \text{ par hypothèse, voici que } \mathcal{B} = (\nu_1, \cdots, \nu_p) \text{ est déjà une base de } E. \text{ Soit } j \in \llbracket 1; p \rrbracket, \text{ si on applique (ii)} \\ \grave{a} \nu_j, \nu_j = \sum_{k=1}^p (\nu_j | \nu_k) \nu_k \text{ ce qui donne, en identifiant dans la base } \mathcal{B} : ||\nu_j||^2 = 1 \text{ et } \forall k \in \llbracket 1; p \rrbracket \setminus \{j\}, \ (\nu_j | \nu_k) = 0. \\ \text{Comme ceci est vrai pour tout } j \in \llbracket 1; p \rrbracket, \ (\nu_1, \cdots, \nu_p) \text{ est bien une base orthonormée de } E.$

On a bien montré l'équivalence des trois assertions avec ce qui précède mais on pouvait aussi, plutôt que de démontrer que (ii) \Longrightarrow (iii), montrer que (ii) \Longrightarrow (i) de la manière suivante :

 $\underbrace{\text{(ii)} \Longrightarrow \text{(i)}}_{} \text{ Soit } x \in E, \text{ qu'on \'ecrit par hypoth\`ese } x = \sum_{k=1}^p (x|\nu_k)\nu_k \text{ alors, par lin\'earit\'e \`a gauche du produit scalaire, } ||x||^2 = (x|x) = \left(x \Big| \sum_{k=1}^p (x|\nu_k)\nu_k\right) = \sum_{k=1}^p (x|\nu_k)(x|\nu_k) \text{ , ce qui donne bien } ||x||^2 = \sum_{k=1}^p (x|\nu_k)^2.$

15.6) a. Soit E un espace préhilbertien réel, (e_1, \dots, e_n) une famille orthonormale de E et $x \in E$ un vecteur, alors l'inégalité de BESSEL stipule que $\sum_{k=1}^{n} (e_k | x)^2 \le ||x||^2$.

b. Si $(u,v) \in E^2$, la fonction uv est continue sur les segment [a;b] donc $\phi(u,v)$ existe et la fonction ϕ est donc bien définie. De plus, par linéarité de l'intégrale, on montre facilement la bilinéarité de ϕ . Comme uv = vu, $\phi(u,v) = \phi(v,u)$ donc ϕ est déjà une forme bilinéaire symétrique. Si $u \in E$, $\phi(u,u) = \int_a^b u^2(t) dt \geqslant 0$ car a < b par hypothèse. De plus, si $\phi(u,u)$, comme u^2 est positive et continue, un théorème du cours montre que $u^2 = 0$ sur [a;b] donc que u = 0. On a bien établi l'aspect défini positif.

En conclusion, φ est une forme bilinéaire symétrique défini positive : φ est un produit scalaire sur E.

c. Si $f \in E$ et $x \in [a; b]$, la fonction $h_x : y \mapsto K(x, y)f(y)$ est continue par produit sur le segment [a; b] car f et K sont continues sur leurs ensembles de définition. Ainsi, g(x) est bien défini : T est donc bien définie.

La linéarité de T provient à nouveau de la linéarité de l'intégrale. Reste à montrer que $g=T(f)\in E$, définissons donc $h:[a;b]^2\to\mathbb{R}$ par h(x,y)=K(x,y)f(y):

• $\forall y \in [a;b], x \mapsto h(x,y)$ est continue sur [a;b] par continuité de K sur [a;b].

- $\forall x \in [a;b], y \mapsto h(x,y) = h_x(y)$ est continue et intégrable su [a;b] (déjà vu).
- $\forall (x,y) \in [a;b]$, en notant $M_1 = \underset{[a;b]^2}{Max} |K|$ et $M_2 = \underset{[a;b]}{Max} |f|$ qui existent par les deux formes du théorème des bornes atteintes (fonction de une ou deux variable respectivement sur un segment de \mathbb{R} (pour f) ou un compact de \mathbb{R}^2 (pour K)), on a $|h(x,y)| = |K(x,y)| |f(y)| \leq M_1 M_2 = \phi(y)$ et ϕ est bien sûr intégrable sur [a;b].

On en conclut donc par le théorème de continuité sous le signe somme que g = T(f) est continue sur [a;b] donc que $T(f) \in E$. Ainsi, T est bien un endomorphisme de E.

 $\begin{array}{l} \textbf{d.} \ \underline{\text{M\'ethode 1}} : \ \text{il est logique d'appliquer l'in\'egalit\'e de Bessel. Soit } x \in [\mathfrak{a};\mathfrak{b}] \ \text{et } K_x : [\mathfrak{a};\mathfrak{b}] \to \mathbb{R} \ \text{telleque } K_x(y) = K(x,y). \ \text{Alors, } K_x \in E \ \text{car } K \ \text{est continue sur } [\mathfrak{a};\mathfrak{b}]^2 \ \text{et, d'après } \textbf{a., comme } (f_1,\cdots,f_p) \ \text{est orthonormale, } \sum_{k=1}^p (f_k|K_x)^2 \leqslant ||K_x||^2. \ \text{Or } (f_k|K_x) = \int_\mathfrak{a}^\mathfrak{b} f_k(y)K(x,y)dy = T(f_k)(x) = (\lambda f_k)(x) \ \text{car } f_k \in E_\lambda(T). \ \text{Ainsi, on parvient } \grave{a} \ \lambda^2 \sum_{k=1}^p f_k^2(x) \leqslant ||K_x||^2 = \int_\mathfrak{a}^\mathfrak{b} K(x,y)^2 dy \ \text{comme attendu.} \end{array}$

- \bullet si $\sum\limits_{i=1}^p f_i^2(x)=0,$ l'inégalité $\lambda^2\sum\limits_{i=1}^p f_i^2(x)\leqslant \int_{\alpha}^b K(x,y)^2dy$ est claire.
- si $\sum_{i=1}^{p} f_i^2(x) > 0$, on divise l'inégalité (1) par $\sum_{i=1}^{p} f_i^2(x)$ et on obtient $\lambda^2 \sum_{i=1}^{p} f_i^2(x) \leqslant \int_{\alpha}^{b} K(x,y)^2 dy$.

On a bien montré que $\forall x \in [a;b], \ \lambda^2 \sum_{i=1}^p (f_i(x))^2 \leqslant \int_a^b K(x,y)^2 dy.$

- **15.7** a. La fonction Φ est de classe C^{∞} sur \mathbb{R} par composition. Effectuons une récurrence sur $\mathfrak{n} \in \mathbb{N}$. Comme $\Phi'(x) = -2xe^{-x^2}$, $\Phi''(x) = (4x^2 2)e^{-x^2}$ et $\Phi'''(x) = (-8x^3 + 12x)e^{-x^2}$, on conjecture que $P_{\mathfrak{n}}$ est un polynôme de degré \mathfrak{n} et de coefficient dominant $(-2)^{\mathfrak{n}}$.
 - $\bullet \ \mathrm{Si} \ \mathfrak{n}=0, \ \Phi^{(0)}(x)=\Phi(x)=P_0(x)\Phi(x) \ \mathrm{avec} \ P_0=1 \ \mathrm{et} \ deg(P_0)=0 \ \mathrm{et} \ dom(P_0)=1.$
 - Soit un entier naturel n tel que $\Phi^{(n)}(x) = P_n(x)\Phi(x)$ avec un polynôme P_n de degré n et de coefficient dominant $(-2)^n$. Comme $\Phi'(x) = -2x\Phi(x)$ et que $\Phi^{(n+1)}(x) = (\Phi^{(n)}(x))'$, en posant $P_{n+1} = P'_n 2XP_n$, il vient $\Phi^{(n+1)}(x) = (P_n(x)\Phi(x))' = P'_n(x)\Phi(x) 2xP_n(x)\Phi(x) = (P'_n(x) 2xP_n(x))\Phi(x) = P_{n+1}(x)\Phi(x)$. Comme $\deg(P'_n) < n$ et $\deg(XP_n) = n+1$, on a donc $\deg(P_{n+1}) = n+1$ et $\deg(P_{n+1}) = -2\deg(P_n) = (-2)^{n+1}$. Par principe de récurrence, $\forall n \in \mathbb{N}, \ \exists P_n \in \mathbb{R}[X], \ \Phi^{(n)} = P_n\Phi$ avec $\deg(P_n) = n$ et $\deg(P_n) = (-2)^n$. On peut aussi montrer par récurrence que le polynôme P_n a la parité de n.

b. L'application $(.|.): (\mathbb{R}[X])^2 \to \mathbb{R}$ définie par $\forall (P,Q) \in (\mathbb{R}[X])^2$, $(P|Q) = \int_{-\infty}^{+\infty} P(x)Q(x)e^{-x^2} dx$ est bien définie car la fonction $f: x \mapsto P(x)Q(x)e^{-x^2}$ est continue sur \mathbb{R} pour $(P,Q) \in (\mathbb{R}[X])^2$ et que, par croissances

comparées, on a $f(x) = o\left(\frac{1}{x^2}\right)$. En effet, c'est clair si PQ = 0. De plus, si $PQ \neq 0$, en notant r = deg(PQ), on a $P(x)Q(x) = O(x^r)$ et on sait que $\lim_{x \to \pm \infty} x^{r+2}e^{-x^2} = 0$. Cette application (.|.) est clairement bilinéaire (par linéarité de l'intégrale), symétrique (par symétrie du produit dans \mathbb{R}) et positive (par positivité de l'intégrale) car $x \mapsto P^2(x)e^{-x^2}$ est positive sur \mathbb{R} pour $P \in \mathbb{R}[X]$. De plus, si $P \in \mathbb{R}[X]$ tel que (P|P) = 0, la fonction $g: x \mapsto P^2(x)e^{-x^2}$ est continue et positive sur \mathbb{R} , ainsi $\int_{-\infty}^{+\infty} g(x)dx = 0$ implique g = 0 sur \mathbb{R} ce qui prouve que tous les réels x sont racines de P car $e^{-x^2} > 0$. Alors, P = 0.

Ainsi, (.|.) est une forme bilinéaire symétrique définie positive, donc un produit scalaire sur $\mathbb{R}[X]$.

c. Soit $(n,m) \in \mathbb{N}^2$ tel que n < m. $(P_n|P_m) = \int_{-\infty}^{+\infty} P_n(t) P_m(t) e^{-t^2} dt = \int_{-\infty}^{+\infty} P_n(t) \Phi^{(m)}(t) dt$. On effectue une première intégration par parties en posant $u = P_n$ et $v : t \mapsto \Phi^{(m-1)}(t) = P_{m-1}(t) e^{-t^2} (car \ m \geqslant 1)$ qui sont de classe C^1 sur \mathbb{R} qui vérifient $\lim_{t \to \pm \infty} u(t) v(t) = \lim_{t \to \pm \infty} P_n(t) P_{m-1}(t) e^{-t^2} = 0$ par croissances comparées, ainsi $(P_n|P_m) = -\int_{-\infty}^{+\infty} P_n'(t) \Phi^{(m-1)}(t) dt$. On continue pour montrer par récurrence que $\forall k \in [\![0;n]\!]$, $(P_n|P_m) = (-1)^k \int_{-\infty}^{+\infty} P_n^{(k)}(t) \Phi^{(m-k)}(t) dt$. Ainsi, en prenant k = n, on obtient la relation $(P_n|P_m) = (-1)^n \int_{-\infty}^{+\infty} P_n^{(n)}(t) \Phi^{(m-n)}(t) dt$. Or P_n étant de degré n et de coefficient dominant $(-2)^n$, on a $P_n^{(n)} = (-2)^n n!$ ce qui donne $(P_n|P_m) = 2^n n! \int_{-\infty}^{+\infty} \Phi^{(m-n)}(t) dt = 2^n n! [\Phi^{(m-n-1)}(t)]_{-\infty}^{+\infty} = 0$ car $n+1 \leqslant m$ et $\lim_{t \to \pm \infty} \Phi^{(m-n-1)}(t) = \lim_{t \to \pm \infty} P_{m-n-1}(t) e^{-t^2} = 0$ par croissances comparées. Ainsi, la famille $(P_n)_{n \in \mathbb{N}}$ est orthogonale. On peut faire mieux, avec les mêmes calculs, pour $n = m \in \mathbb{N}$, on a $||P_n||^2 = (P_n|P_n) = 2^n n! \int_{-\infty}^{+\infty} \Phi^{(n-n)}(t) dt = 2^n n! \int_{-\infty}^{+\infty} e^{-t^2} dt = 2^n n! \sqrt{\pi}$ donc $||P_n|| = \sqrt{2^n n! \sqrt{\pi}}$

on a $||P_n||^2 = (P_n|P_n) = 2^n n! \int_{-\infty}^{+\infty} \Phi^{(n-n)}(t) dt = 2^n n! \int_{-\infty}^{+\infty} e^{-t^2} dt = 2^n n! \sqrt{\pi} \text{ donc } ||P_n|| = \sqrt{2^n n!} e^{-t^2} dt$ (classique intégrale de Gauss) donc la famille $\left(\frac{P_n}{\sqrt{2^n n!} \sqrt{\pi}}\right)_{n \in \mathbb{N}}$ est une base orthonormale de $\mathbb{R}[X]$.

d. Méthode 1: soit r le nombre de racines réelles distinctes de P_n ayant une multiplicité impaire dans P_n et $\alpha_1 < \cdots < \alpha_r$ ces racines. On pose $Q_n = \prod_{k=1}^r (X - \alpha_k)$. Supposons que $Q_n \in \mathbb{R}_{n-1}[X]$. La famille (P_0, \cdots, P_{n-1}) est une famille de polynômes de $\mathbb{R}_{n-1}[X]$ de degré échelonnés, elle est donc libre donc c'est une base de $\mathbb{R}_{n-1}[X]$. Ainsi, on aurait $Q_n = \sum_{k=0}^{n-1} \lambda_k P_k$ d'où $(P_n|Q_n) = \left(P_n \Big|\sum_{k=0}^{n-1} \lambda_k P_k\right) = \sum_{k=0}^{n-1} \lambda_k (P_n|P_k) = 0$ d'après c. Par construction, les racines de P_nQ_n sont complexes ou réelles de multiplicité paire (car on a rajouté 1 à la multiplicité de α_k dans P_n en multipliant par Q_n et on n'a rien changé à la multiplicité des autres racines). Ainsi, le polynôme P_nQ_n garde un signe constant sur \mathbb{R} et il n'est pas nul, ainsi la fonction $t\mapsto P_n(t)Q_n(t)e^{-t^2}$ est continue, positive et non nulle sur \mathbb{R} . On sait d'après le cours qu'alors on a $(P_n|Q_n) = \int_{-\infty}^{+\infty} P_n(t)Q_n(t)e^{-t^2} dt > 0$: c'est absurde! On en déduit que $\deg(Q_n) = n$. Comme les n racines de Q_n sont racines de P_n et que $\deg(P_n) = n$, d'après le cours, $P_n = (-2)^nQ_n$.

Ainsi, comme attendu, P_n n'admet que des racines réelles simples!

 $\underline{\text{M\'ethode 2}}$: pour montrer que P_n n'admet que des racines réelles simples, on va éliminer les autres cas :

- si P_n admet une racine réelle α de multiplicité paire $2p \geqslant 2$ ou impaire $2p+1 \geqslant 3$, on définit U_n par $P_n = (X-\alpha)^{2p}U_n$. Comme pour la méthode 1, puisque $deg(U_n) = n-2p \leqslant n-1$, on a $(P_n|U_n) = 0$. Or $P_nU_n = (X-\alpha)^{2p}U_n^2$ donc $(P_n|U_n) = \int_{-\infty}^{+\infty} (t-\alpha)^{2p}U_n(t)^2 e^{-t^2} dt > 0$ car $t \mapsto (t-\alpha)^{2p}U_n(t)^2 e^{-t^2}$ est continue, positive et non nulle. NON!
- si P_n admet un facteur irréductible de degré 2 dans $\mathbb{R}[X]$, de la forme $X^2 + aX + b$ avec a et b

réels et $\mathfrak{a}^2-4\mathfrak{b}<0$, on définit V_n par $P_n=(X^2+\mathfrak{a}X+\mathfrak{b})V_n$. Comme avant $(P_n|V_n)=0$ car on a $deg(V_n)=n-2\leqslant n-1$. Mais $\forall x\in\mathbb{R},\ x^2+\mathfrak{a}x+\mathfrak{b}>0$ et $(P_n|V_n)=\int_{-\infty}^{+\infty}(t^2+\mathfrak{a}t+\mathfrak{b})^sV_n(t)^2e^{-t^2}dt>0$ car $t\mapsto (t^2+\mathfrak{a}t+\mathfrak{b})^sV_n(t)^2e^{-t^2}$ est continue, positive et non nulle. NON!

Ainsi, $P_{\mathfrak{n}}$ n'a que des racines réelles simples comme annoncé.

La famille des fonctions $(\psi_n)_{n\in\mathbb{N}}$ où $\psi_n: t\mapsto \frac{P_n}{\sqrt{2^n n! \sqrt{\pi}}}e^{-t^2/2}$ est utilisée en physique quantique comme étant la famille des fonctions d'onde des états propres de l'oscillateur harmonique quantique.

$$p, \text{ on a } D = \operatorname{Mat}_{\mathcal{B}}(p) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \text{ Si on note } O = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \text{ la matrice de passage de la}$$

base canonique $can = (e_1, e_2, e_3)$ à la base \mathfrak{B} , on sait que la matrice de A de p dans la base canonique vaut $A = \operatorname{Mat}_{can}(p) = O^{-1}DO$. Mais comme O est la matrice de passage entre deux bases orthonormées, on a

O orthogonale donc
$$O^{-1}={}^tO$$
. Ainsi, $A={}^tODO=\frac{1}{3}\begin{pmatrix}2&-1&-1\\-1&2&-1\\-1&-1&2\end{pmatrix}$ après calculs.

Méthode 2 : soit $q: v \mapsto v - (v|n)n$ avec n un vecteur normal unitaire de P. Alors $q(n) = n - ||n||^2 n = 0$ et q(v) = v si $v \perp n$. Ainsi, comme q est linéaire par bilinéarité du produit scalaire et coïncide avec p sur P et en $n = v_3$, on en conclut que p = q. Comme $p(e_1) = e_1 - (e_1|v_3)v_3 = (1,0,0) - \frac{1}{3}(1,1,1) = \frac{1}{3}(2,-1,-1)$, $p(e_2) = e_2 - (e_2|v_3)v_3 = (0,1,0) - \frac{1}{3}(1,1,1) = \frac{1}{3}(-1,2,-1)$ et $p(e_3) = e_3 - (e_3|v_3)v_3 = \frac{1}{3}(-1,-1,2)$ de même,

on en déduit à nouveau que $A=\operatorname{Mat}_{\operatorname{\mathtt{can}}}(p)=\frac{1}{3}\begin{pmatrix}2&-1&-1\\-1&2&-1\\-1&-1&2\end{pmatrix}.$

$$\begin{split} & \underline{\mathrm{Bilin\acute{e}arit\acute{e}}} : <\lambda P + \mu Q, R> = \sum_{k=0}^{+\infty} (\lambda P + \mu Q)^{(k)}(1) R^{(k)}(1) = \sum_{k=0}^{+\infty} (\lambda P^{(k)}(1) + \mu Q^{(k)}(1)) R^{(k)}(1) \text{ par lin\acute{e}arit\acute{e} de la} \\ & \mathrm{d\acute{e}rivation, d'o\grave{u}} <\lambda P + \mu Q, R> = \lambda \sum_{k=0}^{+\infty} P^{(k)}(1) R^{(k)}(1) + \mu \sum_{k=0}^{+\infty} Q^{(k)}(1) R^{(k)}(1) = \lambda < P, R> + \mu < Q, R> \mathrm{donc} \\ & <.,.> \mathrm{est lin\acute{e}aire en la première variable donc, par symétrie, aussi en la seconde.} \end{split}$$

 $\frac{\text{Aspect d\'efini positif}}{\text{common positif}}: < P, P > = \sum_{k=0}^{+\infty} \left(P^{(k)}(1)\right)^2 \geqslant 0 \text{ et, si} < P, P > = 0, \text{ common la somme d'une somme de quantités positives n'est nulle que s'ils sont tous nuls, on a } \forall k \in \mathbb{N}, \ P^{(k)}(1) = 0 \text{ donc, avec la formule de Taylor, } P = \sum_{n=0}^{+\infty} \frac{P^{(k)}(1)}{k!} (X-1)^k = 0.$

Par conséquent, <...> définit bien un produit scalaire sur $\mathbb{R}[X]$.

b. Si on pose
$$P_p = (X - 1)^p$$
 pour $p \in \mathbb{N}$, on a $P_p^{(k)} = 0$ si $k > p$ et $P_p^{(k)} = \frac{p!}{(p - k)!}(X - 1)^{p - k}$ si $k \in [0; p]$.

Ainsi, si $(p,q) \in \mathbb{N}^2$ et p < q, on a $< P_p, P_q > = \sum_{k=0}^{+\infty} P_p^{(k)}(1) P_q^{(k)}(1) = P_p^{(p)}(1) P_q^{(p)}(1) + P_p^{(q)}(1) P_q^{(q)}(1) = 0$ car $P_q^{(p)}(1) = P_p^{(q)}(1) = 0$. Ceci montre que la famille $(P_p)_{p \in \mathbb{N}}$ est une famille orthogonale de $\mathbb{R}[X]$. En particulier, $\mathcal{B} = (P_0, \cdots, P_n)$ est une famille orthogonale de $\mathbb{R}_n[X]$ donc elle est libre car elle ne contient par le polynôme nul. De plus, comme son cardinal vaut $n+1 = \dim(\mathbb{R}_n[X])$, on en déduit que $\mathcal{B} = (1, X-1, \cdots, (X-1)^n)$ est une base orthogonale de $\mathbb{R}_n[X]$.

- c. Comme $\mathbb{R}_n[X]$ est un sous-espace de dimension finie dans l'espace préhilbertien $\mathbb{R}[X]$ muni du produit scalaire <.,.>, ce sous-espace admet un supplémentaire d'après le cours.
- $(\subset) \ \mathrm{Soit} \ P = \sum_{\mathfrak{p}=\mathfrak{n}+1}^{+\infty} \alpha_{\mathfrak{p}} (X-1)^{\mathfrak{p}}, \ \mathrm{comme} \ \forall k \in \llbracket 0;\mathfrak{n} \rrbracket, \ \forall \mathfrak{p} \geqslant \mathfrak{n}+1, \ < (X-1)^{k}, (X-1)^{\mathfrak{p}} >= 0, \ \mathrm{on} \ \mathrm{a} \ \mathrm{donc} < P, (X-1)^{k} >= 0 \ \mathrm{par} \ \mathrm{linéarit\'e} \ \mathrm{du} \ \mathrm{produit} \ \mathrm{scalaire} \ \mathrm{selon} \ \mathrm{la} \ \mathrm{premi\`ere} \ \mathrm{variable} \ \mathrm{donc} \ P \in (\mathbb{R}_{\mathfrak{n}}[X])^{\perp}. \ \mathrm{Ainsi}, \ \mathrm{on} \ \mathrm{a} \ \mathrm{l'inclusion} \ \mathrm{Vect} \big((X-1)^{k} \mid k > \mathfrak{n} \big) \subset (\mathbb{R}_{\mathfrak{n}}[X])^{\perp}.$
- $(\supset) \text{ R\'eciproquement, soit } P \in (\mathbb{R}_n[X])^\perp \text{ qu'on \'ecrit } P = \sum_{p=0}^{+\infty} \alpha_p (X-1)^p \text{ avec } \alpha_p = \frac{P^{(p)}(1)}{p!} \text{ d'après la formule de Taylor. Puisque } \forall k \in [\![0;n]\!], < (X-1)^k, P>=0 = \alpha_k ||(X-1)^k||^2, \text{ ceci impose } \alpha_k = 0 \text{ donc } P = \sum_{p=n+1}^{+\infty} \alpha_p (X-1)^p. \text{ Ainsi, on a l'inclusion } (\mathbb{R}_n[X])^\perp = \text{Vect} \big((X-1)^k \mid k > n \big).$

Par double inclusion, on a $Vect ((X-1)^k \mid k > n) = (\mathbb{R}_n[X])^{\perp}.$

 $\begin{aligned} & \mathrm{Ainsi}, \, \mathrm{si} \, P \in \, \mathbb{R}[X], \, \mathrm{on} \, \mathrm{a} \, P = \sum_{k=0}^{+\infty} \frac{P^{(k)}(1)}{k!} (X-1)^k = \sum_{k=0}^n \frac{P^{(k)}(1)}{k!} (X-1)^k + \sum_{k=n+1}^{+\infty} \frac{P^{(k)}(1)}{k!} (X-1)^k = Q + R \, \mathrm{d'après} \\ & \mathrm{la} \, \mathrm{formule} \, \mathrm{de} \, \mathrm{Taylor} \, \mathrm{si} \, \mathrm{on} \, \mathrm{d\'efinit} \, Q = \sum_{k=0}^n \frac{P^{(k)}(1)}{k!} (X-1)^k \in \, \mathbb{R}_n[X] \, \mathrm{et} \, R = \sum_{k=n+1}^{+\infty} \frac{P^{(k)}(1)}{k!} (X-1)^k \in (\, \mathbb{R}_n[X])^\perp. \end{aligned}$

- 15.10 a. L'équation AX = B d'inconnue $X \in \mathcal{M}_{3,1}(\mathbb{R})$ admet une solution si et seulement si $b \in \text{Im}(\mathfrak{u})$ car AX = B équivaut à $\mathfrak{u}(x) = b$. La matrice A est clairement de rang 2 car ses deux premières colonnes sont non colinéaires et la troisième est l'opposé de la deuxième. Ainsi, $\text{Im}(\mathfrak{u}) = \text{Vect}(\nu_1, \nu_2)$ avec $\nu_1 = (-1, 0, 1)$ et $\nu_2 = (1, -1, 0)$ car d'après le cours $\text{Im}(\mathfrak{u}) = \text{Vect}(\mathfrak{u}(e_1), \mathfrak{u}(e_2), \mathfrak{u}(e_3))$ où (e_1, e_2, e_3) est la base canonique de \mathbb{R}^3 et b n'est pas combinaison linéaire de $\mathfrak{u}(e_1)$ et $\mathfrak{u}(e_2)$. L'équation AX = B d'inconnue $X \in \mathcal{M}_{3,1}(\mathbb{R})$ n'admet pas de solution.
 - **b.** Quand x parcourt \mathbb{R}^3 , $\mathfrak{u}(x)$ parcourt $\mathrm{Im}(\mathfrak{u})$ par définition donc $\inf_{x\in\mathbb{R}^3}||\mathfrak{u}(x)-\mathfrak{b}||$ est la distance de \mathfrak{b} à $\mathrm{Im}(\mathfrak{u})$ et, d'après le cours, cette quantité est un minimum atteint quand $\mathfrak{u}(x)$ est le projeté orthogonal de \mathfrak{b} sur $\mathrm{Im}(\mathfrak{u})$, noté $\mathfrak{p}(\mathfrak{b})$. Ainsi, \mathfrak{f} admet un minimum sur \mathbb{R}^3 qui vaut $||\mathfrak{p}(\mathfrak{b})-\mathfrak{b}||^2$.
 - c. D'après ce qui précède, ce minimum est atteint dès que u(x) = p(b). Comme $p(b) \in \text{Im}(u)$ par construction, il existe un vecteur $x_0 \in \mathbb{R}^3$ tel que $u(x_0) = p(b)$. Alors, pour $x \in \mathbb{R}^3$, on a l'équivalence $u(x) = p(b) \iff u(x) = u(x_0) \iff u(x x_0) = 0 \iff x x_0 \in \text{Ker}(u)$. Comme Ker(u) est clairement la droite Ker(u) = Vect((0,1,1)), il y a donc une infinité de vecteurs x dans \mathbb{R}^3 tels que Min(f) = f(x).
 - $\begin{aligned} \mathbf{d.} & \ \underline{(i)} \Longrightarrow \underline{(ii)} \ \mathrm{Supposons} \ \mathrm{que} \ u(x) b \in (\mathrm{Im}\,(u))^{\perp}, \ \mathrm{alors} \ \forall y \in \mathbb{R}^3, \ u(y) \in \mathrm{Im}\,(u) \ \mathrm{et} \ (u(x) b|u(y)) = 0, \ \mathrm{ce} \\ \mathrm{qui} \ \mathrm{donne} \ \mathrm{matriciellement} \ (AX B)^{\mathsf{T}}(AY) = ((AX B)^{\mathsf{T}}A)Y = 0. \ \mathrm{Comme} \ \mathrm{ceci} \ \mathrm{est} \ \mathrm{vrai} \ \mathrm{pour} \ \mathrm{tout} \ Y \in \mathfrak{M}_{3,1}(\mathbb{R}), \\ \mathrm{on} \ \mathrm{a} \ \mathrm{donc} \ (AX B)^{\mathsf{T}}A = 0 \ \mathrm{donc} \ A^{\mathsf{T}}(AX B) = 0 \ \mathrm{en} \ \mathrm{transposant} \ \mathrm{et} \ A^{\mathsf{T}}AX = A^{\mathsf{T}}B. \end{aligned}$
 - $(ii) \Longrightarrow (i)$ Supposons $A^TAX = A^TB$, c'est-à-dire $(AX B)^TA = 0$, alors pour $y \in \mathbb{R}^3$, $(AX B)^TAY = 0$ ce

qui se traduit par (u(x) - b|u(y)) = 0. Ceci étant vrai pour tout $y \in \mathbb{R}^3$, $u(x) - b \in (\operatorname{Im}(u))^{\perp}$. Par double implication, pour $x \in \mathbb{R}^3$, on a donc $u(x) - b \in (\operatorname{Im}(u))^{\perp} \iff A^TAX = A^TB$.

- e. On a vu en question c. que f admet son minimum absolu en $x \in \mathbb{R}^3$ si et seulement si u(x) = p(b) où p est la projection orthogonale sur Im (u). Par construction, $p(b) \in \text{Im }(u)$ donc il existe α_1, α_2 deux réels tels que $p(b) = \alpha_1 v_1 + \alpha_2 v_2 = (\alpha_2 \alpha_1, -\alpha_2, \alpha_1)$ et $p(b) b \in \text{Im }(u)^{\perp}$ donc $(p(b) b|v_1) = (p(b) b|v_2) = 0$ ce qui montre que $\alpha_1 \alpha_2 + 1 + \alpha_1 1 = \alpha_2 \alpha_1 1 + 1 + \alpha_2 = 0$ d'où $\alpha_1 = \alpha_2 = 0$. Par conséquent, p(b) = 0. f admet donc son minimum absolu en x si et seulement si u(x) = 0 donc si et seulement si $x \in \text{Ker}(u) = \text{Vect}((0, 1, 1))$. Ce minimum vaut donc $\min_{x \in \mathbb{R}^3} |a_x| = |a_x| = 0$.
- **15.11 a.** C'est une question de cours ; en général même, $\varphi: \mathcal{M}_n(\mathbb{R})^2 \to \mathbb{R}$ définie par $\varphi(A,B) = \text{Tr }(A^TB)$ un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$. En effet, la linéarité de la trace montre la linéarité en la seconde variable de φ . De plus, $\varphi(B,A) = \text{Tr }(B^TA) = \text{Tr }((B^TA)^T) = \text{Tr }(A^TB) = \varphi(A,B)$ donc φ est symétrique et donc aussi linéaire en la première variable. Ainsi, φ est déjà bilinéaire symétrique. Par le calcul, en notant $A = (a_{i,j})_{1 \le i,j \le n}$, on a $\varphi(A,A) = \text{Tr }(A^TA) = \sum_{1 \le i,j \le n} a_{i,j}^2 \ge 0$. Si $\varphi(A,A) = 0$, comme une somme de termes positifs n'est nulle que si tous ses termes sont nuls, on a $\forall (i,j) \in [1;n]^2$, $a_{i,j} = 0$ donc A = 0. φ est donc bilinéaire symétrique définie positive : c'est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
 - **b.** Par définition, $M \in \Sigma \iff (\exists (a,b) \in \mathbb{R}^2, \ M = aI_2 + bJ) \text{ avec } J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Ainsi, $\Sigma = \text{Vect}(I_2,J)$ est bien un sous-espace vectoriel de $\mathfrak{M}_2(\mathbb{R})$ de comme la famille (I_2,J) est libre, c'est une base de Σ .

 $\Sigma^{\perp} \text{ \'etant un suppl\'ementaire du plan } \Sigma \text{ dans } M_2(\mathbb{R}) \text{ de dimension 4, on a aussi } \dim(\Sigma^{\perp}) = 4 - 2 = 2.$ $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Sigma^{\perp} \iff (M \perp I_2 \text{ et } M \perp J) \text{ donc, après calculs, } M \in \Sigma^{\perp} \iff (a+d=b-c=0). \text{ Les matrices de } \Sigma^{\perp} \text{ sont donc celles de la forme } M = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}, \text{ d'où } \Sigma^{\perp} = \text{Vect}(K,L) \text{ avec } K = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ et } L = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \text{ Or } K^TL = KL = J \text{ donc } \phi(K,L) = \text{Tr } (J) = 0. \text{ Il suffit donc de normer ces matrices pour avoir } \mathcal{B}_2 = \left(\frac{K}{\sqrt{2}}, \frac{L}{\sqrt{2}}\right) \text{ comme base orthonormale de } \Sigma^{\perp}. \text{ De même, } \mathcal{B}_2 = \left(\frac{I_2}{\sqrt{2}}, \frac{J}{\sqrt{2}}\right) \text{ en est une de } \Sigma.$

- c. D'après un théorème du cours, cette distance d_2 vérifie $d_2=d(M,\Sigma^\perp)=||M-p_2(M)||$ où p_2 est la projection orthogonale sur Σ^\perp . Or on sait que $p_2(M)=\phi\left(M,\frac{K}{\sqrt{2}}\right)\frac{K}{\sqrt{2}}+\phi\left(M,\frac{L}{\sqrt{2}}\right)\frac{L}{\sqrt{2}}$ car \mathcal{B}_2 est une base orthonormale de Σ^\perp . Ainsi, $p_2(M)=0$. $\frac{K}{\sqrt{2}}+\sqrt{2}\frac{L}{\sqrt{2}}=L$ d'où $d=||M-L||=||I_2||=\sqrt{2}$. On peut faire de même avec \mathcal{B}_1 ou, en notant p_1 la projection orthogonale sur Σ et en notant d_1 la distance de M à Σ , se rendre compte que $d_1=||M-p_1(M)||=||p_2(M)||$ car $p_1+p_2=\operatorname{id}_{\mathcal{M}_2(\mathbb{R})}$. Puisque $d_2=||M-p_2(M)||=||p_1(M)||$ et par Pythagore, $||M||^2=||p_1(M)||^2+||p_2(M)||^2=d_1^2+d_2^2=2$. Ainsi, on a aussi $d_1=\sqrt{2}$.
- $\begin{array}{l} \textbf{[15.12] a. D'après l'énoncé}, \ I_0 = \sqrt{\pi}. \ \ De \ plus, \ I_1 = \int_{-\infty}^{+\infty} t e^{-t^2} dt = \left[-\frac{e^{-t^2}}{2} \right]_{-\infty}^{+\infty} = 0. \ \ Soit \ n \in \mathbb{N}, \ l'application \\ f_n: t \mapsto t^n e^{-t^2} \ \ \text{est continue sur } \mathbb{R}, \ \text{paire ou impaire selon la parité de } n, \ \text{et } f_n(t) = o\left(\frac{1}{t^2}\right) \ \text{par croissances} \\ \text{comparées, ce qui fait que } f_n \ \ \text{est intégrable sur } \mathbb{R} \ d'après \ \text{RIEMANN}: I_n \ \ \text{existe}. \\ \text{Pour } n \in \mathbb{N}, \ I_{n+2} = \int_{-\infty}^{+\infty} t^{n+2} e^{-t^2} dt = \int_{-\infty}^{+\infty} t^{n+1} (t e^{-t^2}) dt. \ \ \text{Si on pose } u: t \mapsto t^{n+1} \ \ \text{et } v: t \mapsto -\frac{e^{-t^2}}{2}, \\ \text{alors } u \ \ \text{et } v \ \ \text{sont de classe } C^1 \ \ \text{sur } \mathbb{R} \ \ \text{et, par croissances comparées, } \lim_{t \to \pm \infty} u(t) v(t) = 0. \ \ \text{Ainsi, par intégration} \\ \end{array}$

 $\mathrm{par} \ \mathrm{parties}, \ I_{n+2} = 0 + \frac{n+1}{2} \int_{-\infty}^{+\infty} t^n e^{-t^2} \, dt = \frac{n+1}{2} I_n.$

Si n impair, comme $t\mapsto t^n\varepsilon^{-t^2}$ est impaire, on a $I_n=0$ (ou alors avec $I_1=0$ et la relation précédente). Si n=2p est pair, alors $I_{2p}=\frac{2p-1}{2}I_{2p-2}=\cdots=\frac{(2p-1)(2p-3)\cdots 1}{2^p}I_0=\frac{(2p)!}{4^pp!}\sqrt{\pi}=\frac{n!}{2^n(n/2)!}\sqrt{\pi}.$

b. À nouveau, pour $(P,Q) \in \mathbb{R}[X]^2$, $g: t \mapsto P(t)Q(t)e^{-t^2}$ est continue sur \mathbb{R} et, par croissances comparées, $g(t) \underset{-\infty}{=} o\left(\frac{1}{t^2}\right)$ et $g(t) \underset{+\infty}{=} o\left(\frac{1}{t^2}\right)$ donc g est intégrable sur \mathbb{R} . L'application ϕ est donc bien définie.

Par linéarité de l'intégrale, ϕ est bilinéaire et symétrique car PQ=QP. $\phi(P,P)=\frac{1}{\sqrt{\pi}}\int_{-\infty}^{+\infty}P^2(t)e^{-t}dt\geqslant 0$ et, comme $t\mapsto P^2(t)e^{-t}$ est continue et positive sur \mathbb{R} , $\int_{-\infty}^{+\infty}P^2(t)e^{-t}dt=0\iff\forall t\in\mathbb{R}$, $P^2(t)e^{-t}=0$ ainsi P est nulle sur \mathbb{R} . Mais si P s'annule sur \mathbb{R} , P admet une infinité de racines donc P=0. Ainsi, $(P|P)=0\iff P=0$. (.|.) est une forme bilinéaire symétrique définie positive : un produit scalaire sur $\mathbb{R}[X]$. c. D'après le cours, $d(X^3,\mathbb{R}_2[X])=||X^3-p(X^3)||$ si P est la projection orthogonale sur $\mathbb{R}_2[X]=Vect(1,X,X^2)$, sous-espace de dimension finie d'un espace préhilbertien réel. Ainsi, il existe un triplet $(a,b,c)\in\mathbb{R}^3$ tel que $p(X^3)=a+bX+cX^2$. On a donc $(X^3-p(X^3)|1)=(X^3-p(X^3)|X)=(X^3-p(X^3)|X^2)=0$ ce qui donne le système 3 équations 3 inconnues suivant : $aI_0+cI_2=aI_2+cI_4=bI_2-I_4=0$. On en déduit que a=c=0 et b=3/2, donc que $d(X^3,\mathbb{R}_2[X])=||X^3-(3/2)X||=\sqrt{\frac{I_6-3I_4+(9/4)I_2}{\pi}}=\frac{\sqrt{3}}{2}\sim 0,87$ (après calculs).

15.13 a. Pour $\lambda \in \mathbb{R}$ et $(P, Q, R) \in (\mathbb{R}_n[X])^2$, si $P = \sum_{k=0}^n a_k X^k$, $Q = \sum_{k=0}^n b_k X^k$ et $R = \sum_{k=0}^n c_k X^k$:

Symétrie : on a $(P|Q) = \sum_{k=0}^{n} a_k b_k = \sum_{k=0}^{n} a_k b_k = (Q|P)$ donc (.|.) est symétrique.

b. Soit $\varphi: \mathbb{R}_n[X] \to \mathbb{R}$ définie par $\varphi(P) = P(1)$, alors φ est une forme linéaire non nulle sur $\mathbb{R}_n[X]$ car $\varphi(1) = 1$ donc $H = Ker(\varphi)$ est un hyperplan $\mathbb{R}_n[X]$. Alors, d'après le cours, d(1,H) est bien définie comme la distance d'un vecteur à un sous-espace vectoriel d'un espace euclidien et on sait que $d(1,H) = ||1 - p_H(1)||$ où p_H est la projection orthogonale sur H. Plus précisément, comme $P(1) = \sum_{k=0}^n \alpha_k$ on a l'équivalence $P(1) = \sum_{k=0}^n \alpha_k = 0 \iff (P|1) = 0$ donc P(1) = Vect(1). Comme P(1) = Vect(1) est un droite, on sait d'après P(1) = Vect(1) est un droite P(1) = Vect(1) est un droi

 $\mathrm{le\,cours\,qu'alors\,} \forall P \in \, \mathbb{R}_{n}[X], \, p_{H^{\perp}}(P) = \frac{(P|1)}{||1||^{2}} 1 \, \mathrm{donc\,} d(1,H) = ||1-p_{H}(1)|| = ||p_{H^{\perp}}(1)|| = \frac{\left|\left(\frac{P|1)}{1}\right|}{||1||} = \frac{\left|\left(\frac{1}{n}\right)^{n} a_{k}\right|}{\sqrt{n}}.$