CHAPITRE 13 ÉQUATIONS DIFFÉRENTIELLES

PARTIE 13.1 : ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES SCALAIRES

DÉFINITION 13.1:

Soit α , β , γ trois applications continues sur un intervalle I et à valeurs dans \mathbb{K} .

- (i) L'équation (E) : $\alpha y' + \beta y = \gamma$ est une équation différentielle linéaire scalaire d'ordre 1.
- (ii) Une solution de (E) est $y: I \to \mathbb{K}$ dérivable sur I telle que $\forall t \in I$, $\alpha(t)y'(t) + \beta(t)y(t) = \gamma(t)$.
- (iii) L'équation (E_0) : $\alpha y' + \beta y = 0$ est l'équation homogène associée à (E).

<u>REMARQUE 13.1</u>: On peut considérer des solutions $y: J \to \mathbb{K}$ de (E) où $J \subset I$.

PROPOSITION 13.1:

L'ensemble S_0 des solutions de (E_0) est un sous-espace vectoriel de $C^0(I, \mathbb{K})$.

Si y_p est une solution particulière de l'équation (E) alors l'ensemble S des solutions de (E) est $S = y_p + S_0$: c'est un sous-espace affine de $C^0(I, \mathbb{K})$.

<u>REMARQUE 13.2</u>: Si la fonction α ne s'annule pas sur I, y est solution de $\alpha y' + \beta y = \gamma$ si et seulement si y est solution de $y' - \alpha y = b$ avec $\alpha = -\frac{\beta}{\alpha}$ et $b = \frac{\gamma}{\alpha}$; α et β sont alors continues sur I: on dit alors que l'équation est mise sous forme **résolue**.

PROPOSITION 13.2:

Soit a et b deux fonctions continues sur un intervalle I et à valeurs dans K.

- (i) Les solutions de l'équation homogène $(E_0): y'-\alpha y=0$ sont les fonctions y_λ définies sur I par $\forall t\in I,\ y_\lambda(t)=\lambda e^{A(t)}$ où $\lambda\in\mathbb{K}$ et λ est une primitive de α sur I.
- (ii) S_0 est la droite vectorielle engendrée par $t \mapsto e^{A(t)}$: $S_0 = Vect(e^A)$.

REMARQUE 13.3 : Méthode de la variation de la constante :

- Soit $a,b:I\to\mathbb{K}$ continues et y_0 une solution non nulle de l'équation homogène y'-ay=0 alors il existe une solution de l'équation y'-ay=b de la forme $y=\lambda y_0$, où λ est une fonction dérivable sur I.
- y solution de $(E) \iff \lambda' = \frac{b}{y_0}$ ce qui permet de trouver (en intégrant) une solution particulière.

THÉORÈME 13.3:

Si a et b sont continues sur I, les solutions de y'-ay=b sont les fonctions y_λ définies par $\forall t \in I, \ y(t)=\lambda e^{A(t)}+e^{A(t)}\int_{t_0}^t b(u)e^{-A(u)}du$ où A est une primitive de a sur I, $\lambda \in \mathbb{K}$ et $t_0 \in I$.

THÉORÈME ÉNORME 13.4 :

Soit a et b deux fonctions continues sur un intervalle I et $(t_0, y_0) \in I \times K$, le problème de Cauchy $\begin{cases} y' = a(t).y + b(t) \\ y(t_0) = y_0 \end{cases}$ admet une unique solution y définie sur I en entier.

 $\underline{\textit{REMARQUE 13.4}} : \bullet \text{ Sous ces conditions, } \phi : S_0 \to \mathbb{K} \text{ définie par } \phi(y) = y(t_0) \text{ est un isomorphisme.}$

- L'espace vectoriel des solutions de (E₀) sur un intervalle I où l'équation est résolue est une droite.
- Si l'équation n'est pas sous forme résolue sur I, on la résout sur tous les intervalles où α ne s'annule pas et on essaie de raccorder les solutions en les points singuliers.
- Il peut y avoir sur I une infinité de solutions, une seule ou aucune.

DÉFINITION 13.2:

Soit α , β , γ et δ quatre applications continues sur I et à valeurs dans \mathbb{K} .

- (i) (E) : $\alpha y'' + \beta y' + \gamma y = \delta$ est une équation différentielle linéaire scalaire d'ordre 2.
- (ii) $y: I \to \mathbb{K}$ deux fois dérivable est solution de (E) si $\forall t \in I$, $\alpha(t)y''(t) + \beta(t)y'(t) + \gamma(t)y(t) = \delta(t)$.
- (iii) L'équation (E_0) : $\alpha y'' + \beta y' + \gamma y = 0$ est l'équation homogène associée à (E).

REMARQUE 13.5:

- Si la fonction α ne s'annule pas sur I, y est solution de $\alpha y'' + \beta y' + \gamma y = \delta$ si et seulement si y est solution de $y'' \alpha y' by = c$ avec $\alpha = -\frac{\beta}{\alpha}$, $b = -\frac{\gamma}{\alpha}$ et $c = \frac{\delta}{\alpha}$; α , b et c sont alors continues sur I.
- $\bullet \ \text{En posant} \ X = \begin{pmatrix} y \\ y' \end{pmatrix}, \ y'' \alpha y' b y = c \Longleftrightarrow X' = \begin{pmatrix} 0 & 1 \\ b(t) & \alpha(t) \end{pmatrix} X + \begin{pmatrix} 0 \\ c(t) \end{pmatrix}.$

THÉORÈME ÉNORME 13.5:

Soit a, b et c trois applications continues sur un intervalle I et $(t_0, y_0, y_0') \in I \times \mathbb{K}^2$, le problème

de Cauchy
$$\begin{cases} y'' &= ay' + by + c \\ y(t_0) &= y_0 \\ y'(t_0) &= y'_0 \end{cases}$$
 admet une unique solution définie sur I en entier.

PROPOSITION 13.6:

Soit a et b deux applications continues sur un intervalle I.

- (i) L'ensemble S_0 des solutions de (E_0) : y'' ay' by = 0 est un espace de dimension 2.
- (ii) Deux solutions y₁ et y₂ de (E₀) linéairement indépendantes forment une base de S₀.
- (iii) $y = \alpha y_0$ est solution de (E_0) si et seulement si α' est solution d'une équation différentielle linéaire d'ordre 1 homogène (méthode de LAGRANGE).
- (iv) Il existe une base de S_0 de la forme $(y_0, \alpha y_0)$, où α est de classe C^2 sur I.

THÉORÈME 13.7:

Soit $(a,b,c) \in \mathbb{C}^* \times \mathbb{C}^2$, alors les solutions de (E_0) : ay'' + by' + cy = 0 sont :

- (i) $y = \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$ avec $(\alpha_1, \alpha_2) \in \mathbb{C}^2$ si $\lambda_1 \neq \lambda_2$ sont les racines de $aX^2 + bX + c$.
- $\text{(ii)} \ \ y=(\alpha_1t+\alpha_2)e^{\lambda_1\,t} \ \ \text{avec} \ \ (\alpha_1,\alpha_2)\in \mathbb{C}^2 \ \ \text{si} \ \ \lambda_1 \ \ \text{est la racine double de} \ \ aX^2+bX+c.$

<u>REMARQUE 13.6</u>: • L'équation (C): $az^2 + bz + c = 0$ s'appelle l'équation caractéristique de (E).

- La matrice associée à cette équation dans le système Y' = AY où $Y = \begin{pmatrix} y \\ y' \end{pmatrix}$ est $A = \begin{pmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{pmatrix}$ et son polynôme caractéristique vérifie $aX^2 + bX + c = a\chi_A$: cohérent!
- Le cas (i) est le cas où A est diagonalisable et (ii) celui où elle est seulement trigonalisable.

 $\underline{\mathit{REMARQUE\ HP\ 13.7}}:\ Si\ (a,b,c)\in\mathbb{C}^*\times\mathbb{C}^2,\ P\in\mathbb{C}[X]\ et\ \mathfrak{m}\in\mathbb{C},\ il\ existe\ une\ solution\ particulière\ de$

(E): $ay'' + by' + cy = P(t)e^{mt}$ de la forme $y: t \mapsto t^{\alpha}Q(t)e^{mt}$ avec $Q \in \mathbb{C}[X]$, deg(Q) = deg(P) et:

- (i) $\alpha = 0$ si m n'est pas racine de $aX^2 + bX + c$.
- (ii) $\alpha = 1$ si m est racine simple (et $\Delta = b^2 4ac \neq 0$) de $aX^2 + bX + c$.
- (iii) $\alpha = 2$ si m est racine double ($\Delta = 0$) de $aX^2 + bX + c$.

ANNEXES _______ 55

THÉORÈME 13.8:

Soit $(a, b, c) \in \mathbb{R}^* \times \mathbb{R}^2$, les solutions réelles de (E_0) : ay'' + by' + cy = 0 sont $(\Delta = b^2 - 4ac)$:

- (i) $y = \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$ avec $(\alpha_1, \alpha_2) \in \mathbb{R}^2$ si $\lambda_1 \neq \lambda_2$ racines réelles de $aX^2 + bX + c$ et $\Delta > 0$.
- $\text{(i)} \ \ y=(\alpha_1t+\alpha_2)e^{\lambda_1t} \ \ \text{avec} \ \ (\alpha_1,\alpha_2)\in \mathbb{R}^2 \ \ \text{si} \ \ \lambda_1=-\frac{b}{2a} \ \ \text{racine double de} \ \ aX^2+bX+c \ \ \text{et} \ \ \Delta=0.$
- $\begin{array}{ll} \mbox{(iii)} \;\; y = \left(\alpha_1\cos(\beta t) + \alpha_2\sin(\beta t)\right)e^{\alpha t} \;\; \mbox{avec} \;\; (\alpha_1,\alpha_2) \in \mathbb{R}^2 \;\; \mbox{si} \;\; z_1 = \alpha + \mathrm{i}\beta \in \mathbb{C} \;\; \mbox{et} \;\; z_2 = \alpha \mathrm{i}\beta \;\; \mbox{(}(\alpha,\beta) \in \mathbb{R}^2\mbox{)} \\ \mbox{sont les racines complexes de} \;\; aX^2 + bX + c \;\; \mbox{quand} \;\; \Delta < 0. \end{array}$

PARTIE 13.2: ANNEXES

13.2.1 : Systèmes différentiels

DÉFINITION 13.3:

Soit $n \geqslant 1$, deux applications $A: I \to \mathfrak{M}_n(\mathbb{K})$ et $B: I \to \mathfrak{M}_{n,1}(\mathbb{K})$ continues sur I.

- (i) Un système différentiel linéaire d'ordre 1 est de la forme (E) : X' = A(t)X + B(t).
- $\textit{(ii) Une solution de } (E) \textit{ est } X: I \rightarrow \mathfrak{M}_{n,1}(\mathbb{K}) \textit{ dérivable sur } I \textit{ telle que } \forall t \in I, \ X'(t) = A(t)X(t) + B(t).$
- (iii) Le système homogène associée à (E) est le système (E₀) : X' = A(t)X.

<u>REMARQUE 13.8</u> : Écriture du système différentiel :

$$\text{Si on note, pour } t \in I, \, B(t) = \left(\, b_1(t) \, \right. \, \cdots \, \left. \, b_n(t) \, \right)^T \in \mathfrak{M}_{n,1}(\, \mathbb{K}) \, \text{ et } A(t) = \left(a_{i,j}(t) \right)_{1 \leqslant i,j \leqslant n} \in \mathfrak{M}_n(\, \mathbb{K}),$$

le système (E) est équivalent à
$$\begin{cases} x_1' &= a_{1,1}(t)x_1 + \cdots + a_{1,n}(t)x_n + b_1(t) \\ \vdots &\vdots &\vdots \\ x_n' &= a_{n,1}(t)x_1 + \cdots + a_{n,n}(t)x_n + b_n(t) \end{cases}$$

 $\mathit{que}: X \; \mathit{est \; solution} \; \mathit{de} \; (E) \Longleftrightarrow \forall t \in I, \; \forall i \in [\![1;n]\!], \; x_i'(t) = \sum_{j=1}^n \alpha_{i,j}(t) x_j(t) + b_i(t).$

<u>REMARQUE 13.9</u>: Une équation différentielle linéaire scalaire d'ordre $\mathfrak n$, c'est-à-dire une équation différentielle du type $y^{(\mathfrak n)} - \mathfrak a_{\mathfrak n-1}(t)y^{(\mathfrak n-1)} - \cdots - \mathfrak a_0(t)y = \mathfrak b(t)$ avec $y:I \to \mathbb K$ $\mathfrak n$ fois dérivable et les fonctions $\mathfrak a_0, \cdots, \mathfrak a_{\mathfrak n-1}, \mathfrak b$ continues sur I, peut se traduire par un système différentiel d'ordre 1.

PROPOSITION 13.9:

Soit (E): X' = A(t)X + B(t) un système différentiel linéaire d'ordre 1, S l'ensemble des solutions sur I de (E) et S_0 l'ensemble des solutions sur I du système homogène (E_0) .

- (i) S_0 est un sous-espace vectoriel de $C^1(I, \mathcal{M}_{n,1}(\mathbb{K}))$.
- (ii) Pour tout $t_0 \in I$, $\phi_{t_0} : S_0 \to \mathfrak{M}_{n,1}(\mathbb{K})$ définie par $\phi_{t_0}(X) = X(t_0)$ est un isomorphisme donc S_0 est un espace de dimension n.
- (iii) Les solutions non nulles de (E_0) ne s'annulent pas sur I.
- (iv) Si $X_p \in S$ (solution particulière) alors $S = X_p + S_0$ (sous-espace affine).

⊙ On se limite à des systèmes (E) : X' = AX + B(t) où $A \in \mathcal{M}_n(\mathbb{K})$ et $B : I \to \mathcal{M}_{n,1}(\mathbb{K})$ est continue sur I. <u>REMARQUE 13.11</u> : Soit $A \in \mathcal{M}_n(\mathbb{R})$ réelle et les équations $(E_0) : X' = AX$ (réel) et $(E'_0) : Z' = AZ$ (complexe). Une fonction $X : I \to \mathcal{M}_{n,1}(\mathbb{R})$ est solution réelle de (E_0) si et seulement s'il existe une fonction $Z : I \to \mathcal{M}_{n,1}(\mathbb{C})$ solution complexe de (E'_0) telle que X = Re(Z). Cela signifie que pour déterminer les solutions réelles de X' = AX où A est réelle, on peut commencer par déterminer les solutions complexes dont on prendra les parties réelles.

PROPOSITION 13.10:

Si A est diagonalisable (sur \mathbb{K}), il existe $P \in GL_n(\mathbb{K})$ et $D = diag(\lambda_1, \cdots, \lambda_n)$ diagonale telles que $A = PDP^{-1}$ donc le système X' = AX équivaut à $Y'_T = DY$ où on a posé X = PY.

De plus, si on pose $Y(t) = \begin{pmatrix} y_1(t) & \cdots & y_n(t) \end{pmatrix}^T$ alors Y' = DY si et seulement si pour tout $k \in [1;n]$, il existe une constante $\alpha_k \in \mathbb{K}$ telle que $y_k : t \mapsto \alpha_k e^{\lambda_k t}$.

<u>REMARQUE 13.12</u>: Le calcul de la matrice P^{-1} n'est pas nécessaire pour la résolution de X' = AX.

PROPOSITION 13.11:

Si A n'est que trigonalisable (sur \mathbb{K}), on pose encore X = PY avec $P \in GL_n(\mathbb{C})$ telle que $A = PTP^{-1}$ et T triangulaire supérieure et on a de nouveau X' = AX si et seulement si Y' = TY. Ce système Y' = TY est un système différentiel qui se résout en partant de la dernière ligne et en remontant en reportant les résultats intermédiaires.

REMARQUE 13.13 : Cette méthode fonctionne encore si A n'est pas constante mais si P l'est.

13.2.2 : Équations classiques (HP)

<u>REMARQUE 13.14</u>: Équations à variables séparables : ce sont des équations du premier ordre de la forme (E): y'f(y) = g(t) où f et g sont des fonctions continues de I dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Si F (resp. G) est une primitive de f (resp. g) sur des bons intervalles, une solution y de (E) sur $J \subset I$ vérifie F(y) = G(t) + k avec $k \in \mathbb{K}$; il faut espérer ensuite que F soit bijective pour qu'on puisse écrire $y = F^{-1}(G(t) + k)$ qu'il faut ensuite tracer. Les **solutions maximales** ne sont pas forcément définies sur les mêmes intervalles comme c'était le cas pour les équations linéaires.

<u>REMARQUE 13.15</u>: Équations de Bernoulli : ce sont des équations du type (E) : $ay' + by + cy^{\alpha} = 0$ où a, b et c sont des fonctions de I dans \mathbb{R} et $\alpha \in \mathbb{R} \setminus \{0,1\}$. Sur des intervalles où ni a ni y ne s'annule, on pose $z = y^{1-\alpha}$ si y solution de (E) et y n'est pas la fonction nulle, on trouve alors $z' = (\alpha - 1)\frac{bz + c}{a}$ qu'on sait de nouveau résoudre.

<u>REMARQUE 13.16</u>: Équations de RICCATI: ce sont des équations de la forme (E): $ay' + by + cy^2 = d$ où a, b, c et d sont des fonctions de I dans \mathbb{R} . Si on trouve une solution particulière y_0 de (E) alors en posant $z = y - y_0$, la fonction z vérifie une équation de BERNOULLI qu'on sait maintenant résoudre.