Problème : espaces euclidiens

(Extrait de CCP MP 2014 maths 2)

Partie I : Questions préliminaires

1. <u>Version vectorielle</u>: soit E un espace euclidien et u un endomorphisme auto-adjoint de E, alors χ_u est scindé sur \mathbb{R} et il existe une base orthonormée de E formée de vecteurs propres de u. En d'autres termes, E est la somme directe orthogonale des sous-espaces propres de u.

<u>Version matricielle</u>: soit un entier $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique à coefficients réels, il existe une matrice orthogonale $P \in \mathcal{O}_n(\mathbb{R})$ et une matrice $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telles que $A = PDP^T$.

2. a) Si
$$x = \sum_{i=1}^{n} x_i \varepsilon_i$$
, on a $s(x) = \sum_{i=1}^{n} \lambda_i x_i \varepsilon_i$ donc comme β est orthonormale, on a $R_s(x) = \sum_{i=1}^{n} \lambda_i x_i^2$

b) Si
$$||x|| = 1$$
 alors $\sum_{i=1}^{n} x_i^2 = 1$ et comme $\lambda_1 \leqslant \lambda_i \leqslant \lambda_n$, on a $\lambda_1 \sum_{i=1}^{n} x_i^2 \leqslant R_s(x) \leqslant \lambda_n \sum_{i=1}^{n} x_i^2$, ce qui donne bien $||x||^2 \leqslant R_s(x) \leqslant \lambda_n ||x||^2$ car β est orthonormale donc $||x||^2 = \sum_{i=1}^{n} x_i^2$.

- c) f est continue sur $[0; \pi/2]$ car $f(t) = \langle \cos(t)\lambda_1\varepsilon_1 + \lambda_n\sin(t)\varepsilon_n | \cos(t)\varepsilon_1 + \sin(t)\varepsilon_n \rangle = \lambda_1\cos^2(t) + \lambda_n\sin^2(t)$ car $\varepsilon_1 \perp \varepsilon_n$ sont unitaires. Comme $f(0) = \lambda_1$ et $f(\pi/2) = \lambda_n$, le TVI montre qu'il existe $t \in [0; \pi/2]$ tel que $x = \cos(t)\varepsilon_1 + \sin(t)\varepsilon_n$ vérifie $R_s(x) = \lambda = \lambda ||x||^2$ car $||x||^2 = \cos^2(t) + \sin^2(t) = 1$ par Pythagore.
- 3. a) Si s est autoadjoint positif, soit λ une valeur propre de s, il existe donc un vecteur non nul $x \in E$ tel que $s(x) = \lambda x$. Alors $\langle s(x)|x\rangle = \langle \lambda x|x\rangle = \lambda \langle x|x\rangle = \lambda ||x||^2 \geqslant 0$ par bilinéarité du produit scalaire donc, comme $||x||^2 > 0$ car $x \neq 0_E$, on a $\lambda = \frac{\langle s(x)|x\rangle}{||x||^2} \geqslant 0$.

Si s est autoadjoint défini positif, soit λ une valeur propre de s, il existe donc un vecteur non nul $x \in E$ tel que $s(x) = \lambda x$. Alors $\langle s(x)|x \rangle = \langle \lambda x|x \rangle = \lambda \langle x|x \rangle = \lambda ||x||^2 > 0$ par bilinéarité du produit scalaire donc, comme $||x||^2 > 0$ car $x \neq 0_E$, on a $\lambda = \frac{\langle s(x)|x \rangle}{||x||^2} > 0$.

Si s n'admet que des valeurs propres positives, soit $\beta=(\epsilon_1,\cdots,\epsilon_n)$ une base orthonormée de E telle que, pour tout $i\in\{1,\cdots,n\}$, ϵ_i est un vecteur propre de s associé à la valeur propre λ_i . Soit x un vecteur de E qu'on décompose $x=\sum_{k=1}^n x_k \epsilon_k$, alors $s(x)=\sum_{k=1}^n \lambda_k x_k \epsilon_k$ par linéarité de s donc $\langle s(x)|x\rangle=\sum_{k=1}^n \lambda_k x_k^2\geqslant 0$ car β est une base orthonormée de E.

Si s n'admet que des valeurs propres strictement positives, soit $\beta=(\epsilon_1,\cdots,\epsilon_n)$ une base orthonormée de E telle que, pour tout $i\in\{1,\cdots,n\}$, ϵ_i est un vecteur propre de s associé à la valeur propre λ_i . Soit x un vecteur non nul de E qu'on décompose $x=\sum_{k=1}^n x_k \epsilon_k$, alors $s(x)=\sum_{k=1}^n \lambda_k x_k \epsilon_k$ par linéarité de s donc

 $\langle s(x)|x\rangle=\sum_{k=1}^n\lambda_kx_k^2\geqslant 0$ car β est une base orthonormée de E. De plus, l'un des x_k est non nul car x est non nul donc l'un des $\lambda_kx_k^2$ est strictement positif donc, par somme, $\langle s(x)|x\rangle>0$.

Par double implication, on a montré que s est autoadjoint positif (respectivement autoadjoint défini positif) si et seulement si les valeurs propres de s sont toutes positives (respectivement strictement positives).

b) On a $s_{i,j} = \langle e_i | s(e_j) \rangle$ car la base canonique (e_1, \dots, e_n) est orthonormale donc $s_{i,i} = \langle e_i | s(e_i) \rangle = R_s(e_i)$. Comme le vecteur e_i est unitaire, on en déduit avec **2.b** que $\lambda_1 \leqslant s_{i,i} \leqslant \lambda_n$

Partie II

- 1. On a $||C_j||^2 = \sum_{i=1}^n a_{i,j}^2 = 1$ car le j-ième vecteur colonne C_j de A est unitaire, on en déduit que $a_{i,j}^2 \le ||C_j||^2 = 1$ donc, en passant à la racine : $||a_{i,j}|| \le 1$
- 2. a) Il existe d'après le théorème spectral (version matricielle) une matrice $P \in \mathcal{O}_n(\mathbb{R})$ telle que $S = P\Delta P^T$. On a alors $T(A) = \operatorname{Tr}(P^TAP\Delta)$ et $B = P^TAP \in \mathcal{O}_n(\mathbb{R})$ car $B^TB = P^TA^TAP = P^TI_nP = P^TP = I_n$. Ainsi, on en déduit l'existence souhaitée : $B = P^TAP \in \mathcal{O}_n(\mathbb{R})$ vérifie $T(A) = \operatorname{Tr}(B\Delta)$
 - b) Si $B = (b_{i,j})$ alors $\operatorname{Tr}(B\Delta) = \sum_{i=1}^n \lambda_i b_{i,i} \leqslant \left| \sum_{i=1}^n \lambda_i b_{i,i} \right| \leqslant \sum_{i=1}^n \lambda_i |b_{i,i}| \leqslant \sum_{i=1}^n \lambda_i = \operatorname{Tr}(S)$ d'après **II.1**. Comme $\operatorname{Tr}(S) = T(I_n)$ et $I_n \in \mathcal{O}_n(\mathbb{R})$, on a $\max_{A \in \mathcal{O}_n(\mathbb{R})} T(A) = \operatorname{Tr}(S)$

Partie III

- 1. On a $\det(S) = \prod_{i=1}^n \lambda_i \leqslant \left(\frac{1}{n} \sum_{i=1}^n \lambda_i\right)^n$ d'après l'inégalité arithmético-géométrique (avec $\lambda_i \geqslant 0$) ce qui donne bien $\det(S) \leqslant \left(\frac{1}{n} \operatorname{Tr}(S)\right)^n$
- **2.** On a $S_{\alpha}^T = D^T S^T D = S_{\alpha}$ car S est symétrique et si $X \in \mathcal{M}_{n,1}(\mathbb{R})$ alors $X^T S_{\alpha} X = (DX)^T S(DX) \geqslant 0$ car $S \in \mathcal{S}_n^+(\mathbb{R})$ donc $S_{\alpha} \in \mathcal{S}_n^+(\mathbb{R})$

On vérifie que les coefficients diagonaux de S_{α} sont $\alpha_i^2 s_{i,i}$ donc $\text{Tr}(S_{\alpha}) = \sum_{i=1}^n \alpha_i^2 s_{i,i}$

- 3. Pour cette valeur de α , on a $\operatorname{Tr}(S_{\alpha}) = n$ et $\det(S_{\alpha}) = \det(D)^2 \det(S) = \det(S) \prod_{i=1}^n \frac{1}{s_{i,i}}$. En appliquant III.1 à la matrice S_{α} , on a $\det(S) \prod_{i=1}^n \frac{1}{s_{i,i}} \leqslant 1^n \operatorname{donc} \left[\det(S) \leqslant \prod_{i=1}^n s_{i,i} \right]$
- **4.** Il s'agit de montrer que $\det(S) = 0$ s'il existe un indice i tel que $s_{i,i} = 0$; or d'après **I.3.b**, s'il existe i tel que $s_{i,i} = 0$ alors $\lambda_1 \leq 0$, on en déduit $\lambda_1 = 0$ donc 0 est valeur propre de S et $\det(S) = 0$.
- 5. L'inégalité d'Hadamard s'obtient directement en remarquant que $\det(S) = \prod_{i=1}^{n} \lambda_i$ car, puisque S est symétrique réelle, elle est diagonalisable donc semble à la matrice diagonale $\operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

Partie IV

- 1. On vérifie $B^T=B$ car $A^T=A$, et si $X\neq 0$ alors $X^TBX=(\Omega X)^TA(\Omega X)>0$ car comme Ω est inversible, on a $\Omega X\neq 0$. On a donc $B\in \mathcal{S}_n^{++}(\mathbb{R})$; enfin, $\det(B)=\det(\Omega)^2\det(A)=1^3$ donc $B\in \mathcal{U}$ Pour finir, on a $\operatorname{Tr}(AS)=\operatorname{Tr}(A\Omega\Delta\Omega^T)=\operatorname{Tr}(\Omega^TA\Omega\Delta)=\operatorname{Tr}(B\Delta)$
- 2. D'après la question précédente, l'application $A \mapsto \Omega^T A \Omega$ est une bijection de \mathcal{U} sur lui-même (dont la bijection réciproque est $B \mapsto \Omega B \Omega^T$) donc $\left[\{ \operatorname{Tr}(AS), A \in \mathcal{U} \} = \{ \operatorname{Tr}(B\Delta), B \in \mathcal{U} \} \right]$

Comme $B \in \mathcal{S}_n^+(\mathbb{R})$, ses coefficients diagonaux sont positifs donc ceux de $B\Delta$ aussi et $\operatorname{Tr}(B\Delta) \geqslant 0$. On en déduit que $\{\operatorname{Tr}(B\Delta, B \in \mathcal{U}\} \text{ est une partie de } \mathbb{R}, \text{ non vide (car } I_n \in \mathcal{U} \text{ donc } \operatorname{Tr}(\Delta) \text{ appartient à cet ensemble) et minorée par <math>0$ donc $m = \inf\{\operatorname{Tr}(AS), A \in \mathcal{U}\}$ existe

- 3. On a $\text{Tr}(B\Delta) = \sum_{i=1}^n \lambda_i b_{i,i} \geqslant n \left(\prod_{i=1}^n \lambda_i b_{i,i}\right)^{1/n}$ d'après l'inégalité arithmético-géométrique $(\lambda_i b_{i,i} \geqslant 0)$.
- 4. On a $\det(S) = \prod_{i=1}^{n} \lambda_i$ et, en appliquant l'inégalité d'Hadamard à B, on a $\prod_{i=1}^{n} b_{i,i} \geqslant \det(B) = 1$. On a donc bien $\boxed{\operatorname{Tr}(B\Delta) \geqslant n(\det(S))^{1/n}}$
- 5. On a déjà $m \ge n(\det(S))^{1/n}$. On vérifie que $D \in \mathcal{S}_n^{++}(\mathbb{R})$ et $\det(D) = \det(S) \prod_{i=1}^n \frac{1}{\lambda_i} = 1$ donc $D \in \mathcal{U}$ et $m \le \text{Tr}(D\Delta) = \text{Tr}\left((\det(S))^{1/n}I_n\right) = n(\det(S))^{1/n}$. On en déduit $\boxed{m = n(\det(S))^{1/n}}$