TD 22: TOPOLOGIE ET CONTINUITÉ

PSI 1 2024-2025

vendredi 21 mars 2025

22.1 a. Si $f \in E$, par composition et somme, la fonction $x \mapsto f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right)$ est aussi continue sur [0;1] car $x \mapsto x$ et $x \mapsto \frac{x+1}{2}$ envoient [0;1] dans [0;1] donc l'application T va bien de E dans E. Soit $(f,g) \in E^2$ et $\lambda \in \mathbb{R}$, pour $x \in [0;1]$, on a $T(\lambda f + g)(x) = (\lambda f + g)\left(\frac{x}{2}\right) + (\lambda f + g)f\left(\frac{x+1}{2}\right) = \lambda\left(f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right)\right) + g\left(\frac{x}{2}\right) + g\left(\frac{x+1}{2}\right)$ donc $T(\lambda f + g)(x) = \lambda T(f)(x) + T(g)(x)$ et on en déduit donc que $T(\lambda f + g) = \lambda T(f) + T(g)$ ce qui montre la linéarité de T: T est donc un endomorphisme de E.

Soit $x \in [0;1]$ et $f \in E$, alors $|T(f)(x)| = \left|f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right)\right| \le \left|f\left(\frac{x}{2}\right)\right| + \left|f\left(\frac{x+1}{2}\right)\right| \le ||f||_{\infty} + ||f||_{\infty} = 2||f||_{\infty}$. En passant à la borne supérieure, on en déduit que $||T(f)||_{\infty} \le 2||f||_{\infty}$. Ainsi, si $(f,g) \in E^2$, par linéarité de T et ce qui précède, on a $||T(f) - T(g)||_{\infty} = ||T(f-g)||_{\infty} \le 2||f-g||_{\infty}$. Ceci prouve que T est 2-lipschitzienne donc continue sur E. La constante $\alpha = 2$ convient dans l'inégalité $\forall f \in E$, $||T(f)||_{\infty} \le \alpha ||f||_{\infty}$. Autrement dit, $|||T||| = \sup_{f \in E, \ f \neq 0} \frac{||T(f)||_{\infty}}{||f||_{\infty}} \le 2$ (norme subordonnée). Si on prend pour u la fonction constante égale à

1, alors T(u)=2u est constante égale à 2 donc $\alpha=2$ est optimale (en fait minimale). En effet, si on avait $\forall f\in E,\ ||T(f)||_{\infty}\leqslant \beta||f||_{\infty}$ avec $\beta<2$, comme $u\in E$, on aurait $2=||T(u)||_{\infty}\leqslant \beta||u||_{\infty}=\beta$ ce qui est absurde. Ainsi, $\alpha=2$ est la plus petite constante telle que $\forall f\in E,\ ||T(f)||_{\infty}\leqslant \alpha||f||_{\infty}:\ |||T|||=2$.

b. Comme |f| est continue sur le segment [0;1], par le théorème des bornes atteintes, il existe $c \in [0;1]$ tel que $|f(c)| = ||f||_{\infty}$; c ne peut pas être nul car f est non nulle donc $||f||_{\infty} > 0$ alors que f(0) = 0 par hypothèse. Posons $A = \{x \in [0;1], |f(x)| = ||f||_{\infty}\}$. Alors $A \subset]0;1]$, $A \neq \emptyset$ car $c \in A$ et A est minoré par 0. On peut donc poser $x_0 = Inf(A) \in [0;1]$. Par caractérisation de la borne inférieure, il existe une suite $(a_n)_{n \in \mathbb{N}}$ d'éléments de A qui tend vers x_0 , alors comme $\forall n \in \mathbb{N}, |f(a_n)| = ||f||_{\infty}$, en passant à la limite, on obtient par continuité de f la relation $|f(x_0)| = ||f||_{\infty}$ ce qui montre que $x_0 > 0$ car $|f(0)| = 0 < ||f||_{\infty}$. Soit $x \in]0; x_0]$, alors $x \notin A$ car x < Inf(A) donc $|f(x)| \neq ||f||_{\infty}$. Mais comme on a $|f(x)| \leq ||f||_{\infty}$ par définition de la norme infinie, on en déduit qu'on a bien $|f(x)| < ||f||_{\infty}$.

c. On a vu en \mathbf{a} , que \mathbf{u} est un vecteur propre associé à la valeur propre 2. La question est donc de montrer que $E_1(T) = \text{Vect}(\mathbf{u})$. Soit g un vecteur propre de T associé à la valeur propre 2, alors T(g) = 2g. Posons $f = g - g(0)\mathbf{u}$. Comme $E_2(T)$ est un sous-espace vectoriel de E, $f \in E_2(T)$ de sorte que T(f) = 2f. Supposons que f n'est pas la fonction nulle, d'après la question précédente, $\exists x_0 \in]0;1]$, $\forall x \in [0;x_0[, |f(x)| < |f(x_0)| = ||f||_{\infty}$. Comme $\frac{x_0}{2} \in [0;x_0[, \text{ on a } \left|f\left(\frac{x_0}{2}\right)\right| < |f(x_0)|$ et, par définition de la norme infinie, $\left|f\left(\frac{x_0+1}{2}\right)\right| \leq |f(x_0)|$. On a donc $\left|f\left(\frac{x_0}{2}\right) + f\left(\frac{x_0+1}{2}\right)\right| \leq |f\left(\frac{x_0}{2}\right)| + |f\left(\frac{x_0+1}{2}\right)| < 2f(x_0)$ par inégalité triangulaire. Mais ceci vient contredire le fait que $T(f)(x_0) = 2f(x_0)$, c'est-à-dire $f\left(\frac{x_0}{2}\right) + f\left(\frac{x_0+1}{2}\right) = 2f(x_0)$.

On conclut ce raisonnement par l'absurde par f = g - g(0)u = 0 donc $g \in Vect(u)$. Ainsi $E_2(T) = Vect(u)$ et le sous-espace propre de T associé à la valeur propre 2 est bien de dimension 1.

22.2) a. Pour $P \in \mathbb{R}[X]$, la fonction positive $t \mapsto |P(t)|$ est continue sur le segment [-1;1] donc elle y est bornée et y atteint ses bornes, ce qui justifie la définition de $||P||_1$. Ainsi, $||.||_1$ va bien de $\mathbb{R}[X]$ dans \mathbb{R}_+ .

En fait, la norme $||.||_1$ est la norme $||.||_{\infty,[-1;1]}$ pour laquelle on a déjà vu dans le cours qu'elle vérifiait l'inégalité triangulaire et l'homogénéité. Si $P \in \mathbb{R}[X]$ et $||P||_1 = 0$, puisque $||.||_{\infty,[-1;1]}$ est une norme, la fonction polynomiale P s'annule sur le segment [-1;1] et le polynôme P admet donc une infinité de racines ce qui montre bien que P = 0. On vient d'établir la séparation de $||.||_1 : ||.||_1$ est une norme sur E.

Pour $n \in \mathbb{N}^*$, si on pose $P_n = 1 + X + \dots + X^n$, on a $||P_n||_{\infty} = 1$ et $||P_n||_1 = P_n(1) = n + 1$ car, par inégalité triangulaire, $\forall t \in [-1;1], \ |P_n(t)| \leqslant 1 + |t| + \dots + |t|^n \leqslant n + 1 = P_n(1)$. Ainsi, $\lim_{n \to +\infty} \frac{||P_n||_1}{||P_n||_{\infty}} = +\infty$ ce qui interdit à $||.||_{\infty}$ de dominer $||.||_1$: ces deux normes ne sont pas équivalentes.

b. f_n est linéaire en tant que restriction à E_n de f qui l'est. Comme E_n est de dimension finie, d'après le cours, f_n est lipschitzienne donc continue : ceci justifie l'existence du réel $u_n = |||f_n|||_{\infty} = \sup_{P \in E_n, ||P||_{\infty} = 1} |f_n(P)|$.

Ici, pas besoin de ce théorème puisque si $P = \sum_{k=0}^n \alpha_k X^k \in E_n$ et $||P||_{\infty} = 1$, alors $\forall k \in [0; n]$, $|\alpha_k| \le 1$ et on a donc $|f_n(P)| = |P(x_0)| = \Big|\sum_{k=0}^n \alpha_k x_0^k\Big| \le \sum_{k=0}^n |\alpha_k||x_0|^k \le \sum_{k=0}^n |x_0|^k$ donc u_n existe (on le savait déjà mais là on a une majoration effective) et $u_n \le \sum_{k=0}^n |x_0|^k$.

 $\bullet \operatorname{Si} x_0 \geqslant 0, \text{ en prenant } P = P_n = 1 + X + \dots + X^n, \text{ on a bien } P \in E_n \text{ et } ||P||_{\infty} = 1 \text{ et } |f_n(P)| = \sum_{k=0}^n x_0^k = \sum_{k=0}^n |x_0|^k \\ \operatorname{donc le majorant trouv\'e pr\'ec\'edemment est en fait un \'el\'ement de l'ensemble à majorer et on en d\'eduit que \\ u_n = |||f_n|||_{\infty} = \sup_{P \in E_n, ||P||_{\infty} = 1} |f_n(P)| = \max_{P \in E_n, ||P||_{\infty} = 1} |f_n(P)| = \sum_{k=0}^n |x_0|^k.$

 $\bullet \text{ Si } x_0 \leqslant 0, \text{ avec } P = Q_n = 1 - X + \dots + (-1)^n X^n, \ P \in E_n \text{ et } ||P||_\infty = 1 \text{ et } |f_n(P)| = \sum_{k=0}^n (-1)^k x_0^k = \sum_{k=0}^n |x_0|^k \\ \text{donc le majorant trouvé précédemment est encore un élément de l'ensemble à majorer et on déduit à nouveau \\ \text{que } u_n = |||f_n|||_\infty = \sup_{P \in E_n, ||P||_\infty = 1} |f_n(P)| = \max_{P \in E_n, ||P||_\infty = 1} |f_n(P)| = \sum_{k=0}^n |x_0|^k.$

Dans les deux cas, on a $u_n = \sum\limits_{k=0}^n |x_0|^k$ et u_n est la somme partielle de la série géométrique de raison $|x_0|$. Si $|x_0| < 1$, la série converge et $\lim_{n \to +\infty} u_n = \frac{1}{1-|x_0|}$; si $|x_0| \geqslant 1$, alors la série diverge et $\lim_{n \to +\infty} u_n = +\infty$.

c. Initialisation: $T_0(\cos x) = 1 = \cos(0.x) = T_0(\operatorname{ch} x) = \operatorname{ch}(0.x)$ et $T_1(\cos x) = \cos(1.x)$ et $T_1(\operatorname{ch} x) = \operatorname{ch}(1.x)$. Si on suppose ces relations vraies pour tout réel x et pour les entiers $n \ge 1$ et n+1 fixés, alors par définition de la suite des polynômes de TCHEBYCHEV, on a $T_{n+2}(\cos(x)) = 2\cos(x)\cos((n+1)x) - \cos(nx)$ et $T_n(\operatorname{ch}(x)) = 2\operatorname{ch}(x)\operatorname{ch}((n+1)x) - \operatorname{ch}(nx)$ sauf que l'on connaît les formules de trigonométrie circulaire et hyperbolique $2\cos(a)\cos(b) = \cos(a+b) + \cos(a-b)$ et $2\operatorname{ch}(a)\operatorname{ch}(b) = \operatorname{ch}(a+b) + \operatorname{ch}(a-b)$ donc, en les appliquant pour a = (n+1)x et b = x, $T_{n+2}(\cos(x)) = \cos((n+2)x) + \cos(nx) - \cos(nx) = \cos((n+2)x)$ mais aussi $T_{n+2}(\operatorname{ch}(x)) = \operatorname{ch}((n+2)x) + \operatorname{ch}(nx) - \operatorname{ch}(nx) = \operatorname{ch}((n+2)x)$.

Par principe de récurrence, on a donc $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ T_n\big(cos(x)\big) = cos(nx)$ et $T_n\big(ch(x)\big) = ch(nx)$. De même, par une récurrence double, $\forall n \in \mathbb{N}^*, \ deg(T_n) = n, \ cd(T_n) = 2^{n-1}, \ T_n$ a la même parité que n.

d. Traitons à nouveau deux cas :

• Si $|x_0| \le 1$ et $P \in E_n$ tel que $||P||_1 = 1$, il est clair que $|f_n(P)| = |P(x_0)| \le ||P||_1 = \sup_{-1 \le t \le 1} |P(t)|$

car $x_0 \in [-1;1]$ donc v_n existe et on a $v_n \leqslant 1$. En prenant P=1, on a bien $P \in E_n$ et $||P||_1=1$ et $|f_n(P)|=1$ donc le majorant trouvé avant est un élément de l'ensemble à majorer et on en déduit que $v_n=|||f_n|||_1=\sup_{P\in E}\sup_{||P||=1}||f_n(P)|=\max_{P\in E}||f_n(P)|=1$.

$$\begin{split} \nu_n &= |||f_n|||_1 = \underset{P \in E_n, ||P||_1 = 1}{\text{Sup}} |f_n(P)| = \underset{P \in E_n, ||P||_1 = 1}{\text{Max}} |f_n(P)| = 1. \\ \bullet &\text{ Si } |x_0| > 1, \text{ comme ch est une bijection strictement croissante et continue de } \mathbb{R}_+^* \text{ dans }]1; +\infty[, \text{ il existe } y_0 \in \mathbb{R}_+^* \text{ tel que } |x_0| = \operatorname{ch}(y_0) \text{ (il s'agit en fait de } y_0 = \operatorname{Argch}(|x_0|) = \operatorname{ln}(|x_0| + \sqrt{x_0^2 - 1}) \text{ mais chut } !). \\ \text{D'après ce qui précède, } T_n \in E_n \text{ car } \text{deg}(T_n) = n, ||T_n||_1 = 1 \text{ car tout réel } x \in [-1;1] \text{ s'écrit } x = \cos(\theta) \text{ avec} \\ \theta \in \mathbb{R} \text{ donc } |T_n(x)| = |T_n(\cos(\theta))| = |\cos(n\theta)| \leqslant 1 \text{ avec } T_n(1) = T_n(\cos(0))| = \cos(n.0) = 1. \text{ De plus, comme} \\ T_n \text{ est pair ou impair, on obtient } |f_n(T_n)| = |T_n(x_0)| = |T_n(|x_0|)| = |T_n(y_0)| = |\operatorname{ch}(ny_0)| = \operatorname{ch}(ny_0) \text{ ce qui prouve que } \nu_n = |||f_n|||_1 = \underset{P \in E_n, ||P||_1 = 1}{\text{Sup}} |f_n(P)| \geqslant \operatorname{ch}(ny_0). \end{split}$$

 $\mathrm{Par}\ \mathrm{cons\acute{e}quent},\ \mathrm{si}\ |x_0|\leqslant 1,\ \mathrm{on}\ \mathrm{a}\ \lim_{n\to +\infty}\nu_n=1\ \mathrm{et},\ \mathrm{si}\ |x_0|>1,\ \mathrm{on}\ \mathrm{a}\ \lim_{n\to +\infty}\nu_n=+\infty\ \mathrm{par}\ \mathrm{minoration}.$

On peut revenir sur **a.** maintenant qu'on a les polynômes de TCHEBYCHEV à disposition. Pour $n \in \mathbb{N}^*$, on vient de voir que $||T_n||_1 = 1$, on a aussi $T_n \in E$ et $||T_n||_{\infty} \geqslant 2^{n-1}$. Par minoration, $\lim_{n \to +\infty} \frac{||T_n||_{\infty}}{||T_n||_1} = +\infty$ ce qui interdit à $||.||_1$ de dominer $||.||_{\infty}$. Ces deux normes sont incomparables : aucune ne domine l'autre.

22.3 a. Comme $|\lambda| < 1$, $\forall \theta \in [0; 2\pi]$, on a $|-\lambda e^{i\theta}| < 1$ donc la série géométrique $\sum_{n \geqslant 0} (-\lambda e^{i\theta})^n$ converge et on a $\frac{e^{i\theta}}{1+\lambda e^{i\theta}} = e^{i\theta} \sum_{n=0}^{+\infty} (-1)^n \lambda^n e^{in\theta} = \sum_{n=0}^{+\infty} (-1)^n \lambda^n e^{i(n+1)\theta}$. Définissons $f_n : \theta \mapsto (-1)^n \lambda^n e^{i(n+1)\theta}$, alors $||f_n||_{\infty,[0;2\pi]} = |\lambda|^n$ et $\sum_{n\geqslant 0} |\lambda|^n$ converge donc $\sum_{n\geqslant 0} f_n$ converge normalement sur le segment $[0;2\pi]$. Comme toutes les fonctions f_n sont continues sur le segment $[0;2\pi]$, on peut intégrer terme à terme pour avoir $\int_0^{2\pi} \frac{e^{i\theta}}{1+\lambda e^{i\theta}} d\theta = \int_0^{2\pi} \left(\sum_{n=0}^{+\infty} f_n(\theta)\right) d\theta = \sum_{n=0}^{+\infty} \int_0^{2\pi} f_n(\theta) d\theta = \sum_{n=0}^{+\infty} (-1)^n \lambda^n \left[\frac{e^{i(n+1)\theta}}{i(n+1)}\right]_0^{2\pi} = \sum_{n=0}^{+\infty} 0 = 0$.

b. D'après le théorème de D'Alembert-Gauss, $\mathbb C$ est algébriquement clos donc, comme $Q \neq 0$ car Q n'admet pas de racine dans $D(\alpha,r)$, on peut décomposer $Q=d\prod_{j=1}^r(X-\alpha_j)^{m_j}$ dans $\mathbb C[X]$ avec $d\neq 0$ son coefficient dominant, α_1,\dots,α_r les racines distinctes de Q et m_1,\dots,m_r les ordres de multiplicité respectifs de α_1,\dots,α_r dans le polynôme Q. D'après les propriétés de la dérivée logarithmique (des polynômes : c'est au programme en MPSI mais pas en PCSI et ça ce montre assez simplement par récurrence sur r), on a $\frac{Q'}{Q}=\sum\limits_{j=1}^r\frac{m_j}{X-\alpha_j}$ donc $\frac{Q'(\alpha+re^{i\theta})}{Q(\alpha+re^{i\theta})}=\sum\limits_{j=1}^r\frac{m_j}{\alpha+re^{i\theta}-\alpha_j}=\sum\limits_{j=1}^r\frac{b_j}{1+\lambda_je^{i\theta}}$ en posant $b_j=\frac{m_j}{\alpha-\alpha_j}$ et $\lambda_j=\frac{r}{\alpha-\alpha_j}$. Soit $j\in [1;r]$, comme $a_j\notin D(a,r)$, on a $|\alpha-\alpha_j|>r$ donc $|\lambda_j|<1$ et on peut appliquer le résultat de la question a. pour avoir $\int_0^{2\pi}\frac{e^{i\theta}}{1+\lambda_je^{i\theta}}d\theta=0$ de sorte que, par linéarité de l'intégrale, on en déduit que $I(Q)=\frac{1}{2\pi}\int_0^{2\pi}\frac{Q'(\alpha+re^{i\theta})}{Q(\alpha+re^{i\theta})}re^{i\theta}d\theta=\frac{r}{2\pi}\sum_{j=1}^rb_j\int_0^{2\pi}\frac{e^{i\theta}}{1+\lambda_je^{i\theta}}d\theta=\frac{r}{2\pi}\sum_{j=1}^r0=0$.

c. Si $Q = (X - a)^m U$ où U ne possède aucune racine dans D(a,r), alors $\frac{Q'}{Q} = \frac{m}{X - a} + \frac{U'}{U}$ car la dérivée logarithmique transforme les produits en somme (comme un logarithme). Ainsi, par linéarité de l'intégrale : $I(Q) = \frac{1}{2\pi} \int_0^{2\pi} \frac{m}{a + re^{i\theta} - a} re^{i\theta} d\theta + I(U) = \frac{1}{2\pi} \int_0^{2\pi} md\theta + I(U) donc I(Q) = m$ d'après la question \mathbf{b} .

d. Déjà, il s'agit bien d'un maximum car la fonction $\varphi : z \mapsto |P(z)|$ est bien continue sur D(a, r) qui est un fermé borné de l'espace \mathbb{C} (qui est de dimension finie) donc φ est bornée et atteint ses bornes sur D(a, r) ce

qui justifie l'existence de $||P|| = ||P||_{\infty,D(\mathfrak{a},r)}$. L'homogénéité et l'inégalité triangulaire de ||.|| proviennent des propriétés équivalentes de la norme infinie classique (sur $D(\mathfrak{a},r)$). Pour la séparation, si $P \in \mathbb{R}_n[X]$ vérifie ||P|| = 0, alors $\forall z \in D(\mathfrak{a},r), \ |P(z)| = 0$ donc P(z) = 0 donc P possède une infinité de racines d'où P = 0. Au final, ||.|| est bien une norme sur $\mathbb{R}_n[X]$ (et même sur $\mathbb{R}[X]$).

- e. L'application $f:P\mapsto P'$ est un endomorphisme de $\mathbb{R}_n[X]$ qui est de dimension finie. D'après le cours, f est donc lipschitzienne. On en déduit l'existence de $M\geqslant 0$ telle que $\forall P\in\mathbb{R}_n[X],\ ||f(P)||=||P'||\leqslant M||P||$.
- **f.** Si $\mu = 0$, en prenant $k_0 = 0$, on a bien $\forall k \ge 0$, $|P_k(z)| \ge 0 = \frac{\mu}{2}$.
- Si $\mu > 0$, on prend $\varepsilon = \frac{\mu}{2} > 0$ et, puisque la suite $(P_k)_{k\geqslant 0} \in (\mathbb{R}_n[X])^{\mathbb{N}}$ converge vers P (pour n'importe quelle norme car on est en dimension finie donc en particulier pour la norme de la question \mathbf{d} .), il existe un entier k_0 tel que $\forall k \geqslant k_0$, $||P_k P|| \leqslant \varepsilon = \frac{\mu}{2}$. Pour tout entier $k \geqslant k_0$ et tout complexe $z \in C(\mathfrak{a}, r) \subset D(\mathfrak{a}, r)$, $\mu \leqslant |P(z)| = |P(z) P_k(z) + P_k(z)| \leqslant |P(z) P_k(z)| + |P_k(z)| \leqslant ||P_k P|| + |P_k(z)| \leqslant \frac{\mu}{2} + |P_k(z)|$ (on peut bien sûr aussi utiliser $||P(z)| |P_k(z)|| \leqslant |P(z) P_k(z)|$) et on en déduit bien que $|P_k(z)| \geqslant \frac{\mu}{2}$.
- g. Dans cette question, pour s'assurer que $\mu > 0$, on choisit r assez petit pour être sûr qu'il n'y a pas de racine de P sur le cercle $C(\alpha,r)$. Comme α est une racine de P par hypothèse, en notant $\alpha,\alpha_1,\cdots,\alpha_q$ les différentes racines de P, il suffit de prendre $r < \underset{1 \le i \le q}{\text{Min}} |\alpha \alpha_i|$. Avec un tel choix, P ne s'annule pas sur $C(\alpha,r)$ donc $\mu > 0$ car il s'agit d'un minimum. Soit $k \geqslant k_0$, on a $\frac{2\pi}{r}|I(P_k) I(P)| \leqslant \int_0^{2\pi} \left|\frac{P_k'(\alpha + re^{i\theta})}{P_k(\alpha + re^{i\theta})} \frac{P'(\alpha + re^{i\theta})}{P(\alpha + re^{i\theta})}\right| d\theta$ par inégalité de la moyenne. En écrivant $\frac{P_k'}{P_k} \frac{P'}{P} = \frac{(P_k' P')P + P'(P P_k)}{PP_k}$, on peut majorer le numérateur $|(P_k'(\alpha + re^{i\theta}) P'(\alpha + re^{i\theta}))P(\alpha + re^{i\theta}) + P'(\alpha + re^{i\theta})(P(\alpha + re^{i\theta}) P_k(\alpha + re^{i\theta})(\alpha + re^{i\theta}))|$, puisque $|P_k'(\alpha + re^{i\theta}) P'(\alpha + re^{i\theta})| \leqslant ||P_k' P'|| \leqslant M||P_k P||$, $|P(\alpha + re^{i\theta})| \leqslant ||P||$, $|P'(\alpha + re^{i\theta})| \leqslant ||P'||$ et $|P(\alpha + re^{i\theta}) P_k(\alpha + re^{i\theta})| \leqslant ||P_k P||$ car $C(\alpha,r) \subset D(\alpha,r)$, par la quantité $(||P'|| + M||P||)||P P_k||$. Mais pour minorer le dénominateur, on sait que $|P_k(\alpha + re^{i\theta})| \geqslant \frac{\mu}{2}$ d'après e. et $|P(\alpha + re^{i\theta})| \geqslant \mu$ par définition de μ donc $|P_k(\alpha + re^{i\theta})P(\alpha + re^{i\theta})| = |P_k(\alpha + re^{i\theta})|.|P(\alpha + re^{i\theta})| \geqslant \frac{\mu^2}{2}$ donc, on obtient :

$$\frac{2\pi}{r}|I(P_k)-I(P)|\leqslant \int_0^{2\pi}\frac{(||P'||+M||P||))||P-P_k||}{(\mu^2/2)}d\theta = \frac{2}{\mu^2}.(2\pi).(||P'||+M||P||)||P-P_k||\leqslant \frac{8\pi M||P||||P_k-P||}{\mu^2}.$$

On en conclut, puisque $\lim_{k\to +\infty}||P-P_k||=0$ par hypothèse, que $\lim_{k\to +\infty}|I(P_k)-I(P)|=0$.

Or, en prenant r > 0 tel qu'on ait aussi $r < |Im(\mathfrak{a})|$, comme les P_k n'admettent que des racines réelles, P_k n'a pas de racine dans $D(\mathfrak{a},r)$ donc $I(P_k) = 0$ par la question **b.**. On a alors I(P) = 0 puisque $\lim_{k \to +\infty} I(P_k) = I(P)$. Mais ceci contredit la question **c.** car P admet a pour racine de multiplicité $m \ge 1$ donc on sait que I(P) = m. Au final, une limite dans $\mathbb{R}_n[X]$ de polynômes scindés dans \mathbb{R} est un polynôme scindé dans \mathbb{R} puisqu'il ne peut avoir que des racines réelles. L'ensemble de ces polynômes de $\mathbb{R}_n[X]$ scindés dans \mathbb{R} est donc un fermé.

22.4) a. Soit $i \in [1; p]$ et v_i un vecteur propre associé à la valeur propre λ_i . Comme la fonction $g_i : M \mapsto Mv_i$ est continue car linéaire en dimension finie et que la suite $(A^k)_{k\geqslant 0}$ converge, alors la suite $(A^kv_i)_{k\geqslant 0}$ converge vers le vecteur Lv_i . Or, par une récurrence facile, on a $\forall k \in \mathbb{N}$, $A^kv_i = \lambda_i^kv_i$. De plus, la convergence de la suite $(\lambda_i^kv_i)_{k\geqslant 0}$ équivaut à la convergence de la suite numérique $(\lambda_i^k)_{k\geqslant 0}$ (par exemple car les coordonnées de $\lambda_i^kv_i$ dans une base $\mathfrak B$ dont le premier vecteur est $v_i \neq 0_{\mathbb C^n}$ sont $(\lambda_i^k, 0, \dots, 0)$).

Si $|\lambda_i| < 1$, la suite $(\lambda_i^k)_{k\geqslant 0}$ converge vers 0. Si $\lambda_i = 1$, $\lim_{k\to +\infty} \lambda_i^k = 1$. Si $|\lambda_i| > 1$, comme $\lim_{k\to +\infty} |\lambda_i|^k = +\infty$, la suite $(\lambda_i^k)_{k\geqslant 0}$ diverge. Si $|\lambda_i| = 1$ mais $\lambda_i \neq 1$, alors $\lambda_i = e^{i\theta}$ avec $\theta \neq 0$ $[2\pi]$, comme $\lambda_i^{k+1} = e^{i\theta}\lambda_i^k$ (1), si la suite $(\lambda_i^k)_{k\geqslant 0}$ convergeait vers un complexe ℓ , on aurait $\ell = e^{i\theta}\ell$ donc $\ell = 0$ en passant à la limite dans (1) et c'est impossible car $|\lambda_i^k| = 1$. En résumé, la suite $(\lambda_i^k)_{k\geqslant 0}$ converge si et seulement si $|\lambda_i| < 1$ ou $\lambda_i = 1$. On peut conclure que la convergence de $(A^k)_{k\geqslant 0}$ implique $\forall i \in [\![1;p]\!]$, $|\lambda_i| < 1$ ou $\lambda_i = 1$.

Toujours dans le cas où A est diagonalisable, la réciproque est vraie et laissée aux étudiants curieux.

Pour aller plus loin, soit une base $\mathcal{B} = (\nu_1, \dots, \nu_n)$ de vecteurs propres de A telle que (ν_1, \dots, ν_r) soit une base de $E_1(A)$, alors ce qui précède prouve que $L\nu_i = \nu_i$ si $i \in [1;r]$ et $L\nu_i = \mathfrak{O}_{\mathbb{C}^n}$ si $i \in [r+1;n]$. Ainsi, l'application L est la projection sur le sous-espace propre $E_1(A)$ parallèlement à $\bigoplus_{\lambda \in Sp(A)\setminus\{1\}} E_{\lambda}(A)$.

 $\mathbf{b.} \text{ D'après le cours, } P = \prod_{k=1}^p (X - \lambda_k) \text{ est annulateur de } A \text{ car } A \text{ est diagonalisable et } Sp_{\mathbb{C}}(A) = \{\lambda_1, \cdots, \lambda_p\}.$

c. Soit $Q = \sum_{k=0}^d \alpha_k X^k$ annulateur de A et λ une valeur propre de A, alors il existe un vecteur propre ν associé à λ : $A\nu = \lambda\nu$. Comme $A^k\nu = \lambda^k\nu$ comme ci-dessus, on a $Q(A)\nu = \sum_{k=0}^d \alpha_k A^k\nu = \sum_{k=0}^d \alpha_k \lambda^k\nu = Q(\lambda)\nu$ donc $Q(\lambda)\nu = 0_{\mathbb{C}^n}$ alors que $\nu \neq 0_{\mathbb{C}^n}$ d'où $Q(\lambda) = 0$ et λ est bien une racine de Q.

Soit $(a_0, \dots, a_{p-1}) \in \mathbb{C}^p$ tel que $\sum_{i=0}^{p-1} a_i A^i = 0$, cela signifie que le polynôme $Q = \sum_{i=0}^{p-1} a_i X^i$ est annulateur de A. Or, on vient de voir qu'alors toutes les valeurs propres de A sont des racines de Q. Ainsi $Q \in \mathbb{C}_{p-1}[X]$ admet donc au moins p racines distinctes ce qui prouve que Q = 0 d'où $a_0 = \dots = a_{p-1} = 0$ donc la famille (I_n, \dots, A^{p-1}) est une famille libre. Ceci justifie que P est bien le polynôme minimal de A.

- $$\begin{split} \mathbf{d.} \ & \text{Soit} \ k \in \mathbb{N}, \text{ on effectue la division euclidienne de } X^k \ \text{par } P \ \text{ce qui donne } X^k = PQ_k + P_k \ \text{avec la condition} \\ & \text{deg}(P_k) < \text{deg}(P) = p \ \text{sur le reste } P_k : P_k \in \mathbb{C}_{p-1}[X]. \ \text{Ainsi}, \ A^k = P(A)Q_k(A) + P_k(A) = P_k(A) \ \text{car } P(A) = 0. \\ & \mathbf{e.} \ \mathcal{M}_n(\mathbb{C}) \ \text{de dimension finie donc tous les sous-espaces vectoriels de } \mathcal{M}_n(\mathbb{C}) \ \text{sont fermés (vu en cours)}. \\ & \text{Ainsi}, \ \mathbb{C}[A] = \text{Vect}(I_p, \cdots, A^{p-1}) \ (\text{d'après } \mathbf{d.}) \ \text{est fermé. Comme la suite } (A^k)_{k \in \mathbb{N}} \ \text{est une suite convergente} \\ & \text{de matrices de } \mathbb{C}[A], \ \text{sa limite } L \ \text{est dans } \mathbb{C}[A] = \mathbb{C}_{p-1}[X]. \ \text{Ainsi, il existe } U \in \mathbb{C}_{p-1}[X] \ \text{tel que } L = U(A). \end{split}$$
- **(22.5)** a. Les matrices $-I_n$ et I_n sont orthogonales et pourtant $[-I_n; I_n] \not\subset O(n)$ car la matrice nulle 0_n n'est pas orthogonale et $O_n \in [-I_n; I_n]$ car $O_n = \frac{1}{2}.I_n + \frac{1}{2}(-I_n)$ avec $\frac{1}{2} \in [0; 1]$ et $\frac{1}{2} = 1 \frac{1}{2}$. On en déduit que O(n) n'est pas convexe.
 - **b.** Considérons $\mathfrak{M}_n(\mathbb{R})$ normé par la norme euclidienne associée au produit scalaire canonique de $\mathfrak{M}_n(\mathbb{R})$ donné par $(A,B) \mapsto Tr(A^TB)$. C'est un choix mais tous les choix se valent car toutes les normes sont équivalentes puisqu'on est en dimension finie.

Pour toute matrice $M \in O(n)$, on a $M^TM = I_n$ donc $||M||^2 = \text{Tr }(M^TM) = \text{Tr }(I_n) = n$ et $||M|| = \sqrt{n}$ donc O(n) est inclus dans la sphère de centre O_n et de rayon \sqrt{n} , ce qui prouve déjà que O(n) est borné.

Soit une suite $(M_k)_{k\in\mathbb{N}}\in O(\mathfrak{n})^\mathbb{N}$ de matrices orthogonales qui converge dans $\mathfrak{M}_\mathfrak{n}(\mathbb{R})$ vers une matrice M. On a donc $\forall k\in\mathbb{N},\ M_k^TM_k=I_\mathfrak{n}.\ \phi:A\mapsto (A^T,A)$ et $\psi:(A,B)\mapsto AB$ sont respectivement linéaires et bilinéaires en dimension finie donc continues d'où $f=\psi\circ\phi:A\mapsto A^TA$ est continue par composition. Par

caractérisation séquentielle de la continuité, la suite $(f(M_k))_{k\geqslant 0}$ converge vers f(M) mais cette suite est constante et vaut I_n donc $f(M) = M^T M = I_n$ d'où $M \in O(n)$. Ainsi, O(n) est fermé.

c. Soit $v_1 = \frac{1}{3}(2,1,2), v_2 = \frac{1}{3}(2,-2,-1), v_3 = \frac{1}{3}(1,2,-2)$ les vecteurs dont les coordonnées sont dans les colonnes de A. Comme $(v_1|v_2) = \frac{1}{9}(4-2-2) = (v_1|v_3) = \frac{1}{9}(2+2-4) = (v_2|v_3) = \frac{1}{9}(2-4+2) = 0$ et que $||\nu_1||^2 = ||\nu_2||^2 = ||\nu_3||^2 = \frac{1}{9} \big(4 + 4 + 1\big) = 1, \ (\nu_1, \nu_2, \nu_3) \text{ est une base orthonormale de } \mathbb{R}^3 \text{ donc } A \in O(3).$ plus, $det(A) = \frac{1}{27}(8+8-1+4+4+4) = 1$ donc $A \in SO(3)$. Comme A n'est pas symétrique, A représente une "vraie" rotation d'angle $\theta \in]0; 2\pi[$ tel que Tr $(A) = 1 + 2\cos(\theta) = -\frac{2}{3}$ donc $\theta = \pm \operatorname{Arccos}\left(-\frac{5}{6}\right)$. Comme

 $A - I_3 = \frac{1}{3} \begin{pmatrix} -1 & 2 & 1 \\ 1 & -5 & 2 \\ 2 & -1 & -5 \end{pmatrix}, \text{ pour } X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \text{ le système } AX = X \text{ \'equivaut \`a} \begin{cases} -x + 2y + z & = 0 \ (1) \\ x - 5y + 2z & = 0 \ (2) \end{cases}. \text{ En}$ $faisant (2) \longleftarrow (2) + (1) \text{ et } (3) \longleftarrow (3) + 2(1), \text{ on a } AX = X \iff \begin{cases} -x + 2y + z & = 0 \ (1) \\ 2x - y - 5z & = 0 \ (3) \end{cases}$ $on \text{ a } AX = X \iff (x = 3z, \ y = z) \text{ et } E_1(A) = \text{Vect}(u) \text{ avec } u = (3, 1, 1). \text{ Prenons } v = (1, 0, 0), \text{ alors } u \text{ et } v$ ne sont pas colinéaires et on sait que $\sin(\theta)$ est du signe de $[\nu, A\nu, u] = \frac{1}{3} \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 1 \end{vmatrix} = -\frac{1}{3} \operatorname{donc} \sin(\theta) < 0.$

Ainsi, A est la matrice dans la base canonique de \mathbb{R}^3 de la rotation d'angle $\theta = -\operatorname{Arccos}\left(-\frac{5}{6}\right) \sim -146,4^{\circ}$ autour de l'axe orienté par le vecteur u = (3, 1, 1).

22.6) a. L'application Φ est bien définie et elle est linéaire car si $\lambda \in \mathbb{C}$ et $(P,Q) \in \mathbb{C}_n[X]$, on a la relation $\Phi(\lambda P+Q)=\big((\lambda P+Q)(\alpha_0),\cdots,(\lambda P+Q)(\alpha_n)\big)=\big(\lambda P(\alpha_0)+Q(\alpha_0),\cdots,\lambda P(\alpha_n)+Q(\alpha_n)\big) \text{ qui se transforme}$ en $\Phi(\lambda P + Q) = \lambda(P(\alpha_0), \dots, P(\alpha_n)) + (Q(\alpha_0), \dots, Q(\alpha_n)) = \lambda \Phi(P) + \Phi(Q)$

De plus, si $P \in Ker(\Phi)$, on a $\forall k \in [0, n]$, $P(a_k) = 0$ donc P admet n+1 racines distinctes alors que $deg(P) \leq n$. On sait qu'alors P = 0. Ainsi, Φ est injective donc, comme $\dim(\mathbb{C}_n[X]) = \dim(\mathbb{C}^{n+1}) = n+1$, Φ est un isomorphisme, en particulier c'est une bijection.

b. Pour $i \in [0, n]$, soit le vecteur $e_{i+1}tvi$ de la base canonique de \mathbb{C}^n , puisque Φ est une bijection, il existe un unique polynôme $L_i \in \mathbb{C}_n[X]$ tel que $\Phi(L_i) = e_{i+1}$, il s'agit de $L_i = \Phi^{-1}(e_{i+1})$. Par définition de Φ , on a $\Phi(L_{\mathfrak{i}})=(L_{\mathfrak{i}}(\mathfrak{a}_{0}),\cdots,L_{\mathfrak{i}}(\mathfrak{a}_{\mathfrak{n}}))=(0,\cdots,0,1,0,\cdots,0) \text{ donc } L_{\mathfrak{i}}(\mathfrak{a}_{\mathfrak{i}})=1 \text{ et } \forall \mathfrak{j} \in \llbracket 0;\mathfrak{n} \rrbracket \setminus \{\mathfrak{i}\}, \ L_{\mathfrak{i}}(\mathfrak{a}_{\mathfrak{j}})=0.$

D'après le cours, on a même $L_i = \prod_{\substack{j=0 \ i \in I}}^n \frac{X - a_j}{a_i - a_j}$ (polynômes de LAGRANGE).

c. Comme $\chi_M \in \mathbb{C}_n[X]$ et $\Phi(\chi_M) = (\chi_M(\mathfrak{a}_0), \cdots, \chi_M(\mathfrak{a}_n)) = \sum_{k=0}^n \chi_M(\mathfrak{a}_k) e_{k+1} = \sum_{k=0}^n \chi_M(\mathfrak{a}_k) \Phi(L_k)$, par linéarité et bijectivité de Φ , on a $\Phi(\chi_M) = \Phi\left(\sum_{k=0}^n \chi_M(\alpha_k) L_k\right)$ donc $\chi_M = \sum_{k=0}^n \chi_M(\alpha_k) L_k$.

 $\mathbf{d.} \ \mathrm{Pour} \ k \in [\![0;n]\!], \ l'application \ f_k : \mathfrak{M}_n(\mathbb{C}) \to \mathbb{C} \ \mathrm{d\acute{e}finie} \ \mathrm{par} \ f_k(M) = \chi_M(\mathfrak{a}_k) = \det(\mathfrak{a}_k I_n - M) \ \mathrm{est} \ \mathrm{continue}$ car polynomiale en les coefficients de M. Plus précisément, $f_k = det \circ g_k$ avec $g_k : M \mapsto \mathfrak{a}_k I_\mathfrak{n} - M$ qui est continue car 1-lipschitzienne puisque $||g_k(M) - g_k(N)|| = ||M - N||$.

Or, d'après \mathbf{c} , $\forall M \in \mathfrak{M}_n(\mathbb{C})$, $f(M) = \chi_M = \sum_{k=0}^n \chi_M(\mathfrak{a}_k) L_k$ donc $f = \sum_{k=0}^n f_k L_k$ est continue en tant que somme de fonctions continues. En effet, $h_k: M \mapsto \chi_M(a_k)L_k$ est la composée de la fonction f_k et de la fonction $h_k: z \mapsto zL_k$ qui est linéaire donc continue (en dimension finie).

- e. Considérons deux cas :
 - Si A est inversible, alors $BA = A^{-1}(AB)A$ donc AB et BA sont semblables. Directement, $\chi_{AB} = \chi_{BA}$.
 - Si A n'est inversible, comme χ_A n'admet qu'un nombre fini de racines car $deg(\chi_A) = n$, la matrice A n'admet qu'un nombre fini de valeurs propres. Pour $p \in \mathbb{N}^*$, puisque $A \frac{I_n}{p}$ n'est pas inversible si et seulement $\frac{1}{p}$ est valeur propre de A, il existe $p_0 \in \mathbb{N}^*$ tel que $\forall p \geqslant p_0$, $A_p = A \frac{I_n}{p} \in GL_n(\mathbb{C})$. D'après le premier cas, comme $A_pB = AB \frac{B}{p} = BA_p$, on en déduit que $\chi_{A_pB} = \chi_{BA_p}$. Comme les deux applications $\phi_B : M \mapsto MB$ et $\psi_B : M \mapsto BM$ sont linéaires en dimension finie, elles sont continues donc, puisque $\lim_{p \to +\infty} A_p = A$, on a $\lim_{p \to +\infty} \phi_B(A_p) = \phi_B(A)$ et $\lim_{p \to +\infty} \psi_B(A_p) = \psi_B(A)$ par caractérisation séquentielle de la continuité. Ainsi, $\lim_{p \to +\infty} A_pB = AB$ et $\lim_{p \to +\infty} BA_p = BA$. Par conséquent, comme f est continue, il vient $\lim_{p \to +\infty} f(A_pB) = f(BA)$ et $\lim_{p \to +\infty} f(B_p) = f(BA)$. Pour $p \geqslant p_0$, $f(A_pB) = f(BA_p)$ d'après ce qui précède, donc $f(AB) = f(BA) = \lim_{p \to +\infty} f(A_pB) = \chi_{AB} = \chi_{BA}$.

Dans les deux cas, on a bien le résultat attendu, $\chi_{AB} = \chi_{BA}$.

- 22.7 Par définition, même si ce n'est plus au programme depuis 2021, X est la partie de E qui est composée des points intérieurs à X.
 - **a.** Soit $x \in \overset{\circ}{X}$, par définition $\exists r > 0$, $B(x,r) \subset X$. Mais comme $x \in B(x,r)$, on a $x \in X$. Ainsi, $\overset{\circ}{X} \subset X$.
 - Soit $x \in X$, pour tout réel r > 0, $B(x,r) \cap X \neq \emptyset$ car $x \in B(x,r) \cap X$. Ainsi, x est adhérent à X donc $x \in \overline{X}$. Par conséquent, $X \subset \overline{X}$.
 - **b.** Soit $(a,b) \in (\mathring{C})^2$, montrons que $[a;b] \subset \mathring{C}$. Par définition, il existe deux réels $r_a > 0$ et $r_b > 0$ tels que $B(a,r_a) \subset C$ et $B(b,r_b) \subset C$. Posons alors $r = Min(r_a,r_b) > 0$. Soit $\lambda \in [0;1]$, posons $c = \lambda a + (1-\lambda)b$ et montrons que c est intérieur à C. Soit $c \in B(c,r_c)$, posons c = c0 de sorte que $||g|| < r_c$ 1 donc $||g|| < r_c$ 2 et $||g|| < r_c$ 3 et $||g|| < r_c$ 4 et $||g|| < r_c$ 5 donc $||g|| < r_c$ 6 donc $||g|| < r_c$ 7 on a donc $||g|| < r_c$ 7 donc $||g|| < r_c$ 8 donc $||g|| < r_c$ 9 donc ||g|| < r
 - Méthode 1: soit $(a,b) \in (\overline{\mathbb{C}})^2$, montrons que $[a;b] \subset \overline{\mathbb{C}}$. Par définition, pour tout réel r > 0, $B(a,r) \cap C \neq \emptyset$ et $B(b,r) \cap C \neq \emptyset$ de sorte qu'il existe deux vecteurs $x \in B(a,r) \cap C$ et $y \in B(b,r) \cap C$. Soit $\lambda \in [0;1]$, posons $c = \lambda a + (1-\lambda)b$ et $z = \lambda x + (1-\lambda)y$, alors $||c-z|| = ||\lambda(a-x) + (1-\lambda)(b-y)|| \leq |\lambda| ||a-x|| + |1-\lambda| ||b-y||$ donc, comme $\lambda \geq 0$ et $1-\lambda \geq 0$, on a $||c-z|| < \lambda r + (1-\lambda)r = r$ donc $z \in B(c,r)$ car $\lambda > 0$ ou $1-\lambda > 0$. Or $z = \lambda x + (1-\lambda)y$ donc $z \in C$ car $(x,y) \in C^2$ et que C est convexe, ce qui prouve que $B(c,r) \cap C \neq \emptyset$ donc $c \in \overline{C}$. Par conséquent, $[a;b] \subset \overline{C}$ et \overline{C} est un convexe.

 $\begin{array}{l} \underline{\text{M\'ethode 2}} : \text{soit } (a,b) \in (\overline{C})^2, \text{montrons que } [a;b] \subset \overline{C}. \text{ Par caract\'erisation s\'equentielle des points adh\'erents,} \\ \text{il existe deux suites } (a_n)_{n \in \mathbb{N}} \in C^{\mathbb{N}} \text{ et } (b_n)_{n \in \mathbb{N}} \in C^{\mathbb{N}} \text{ telles que } \lim_{n \to +\infty} a_n = a \text{ et } \lim_{n \to +\infty} b_n = b. \text{ Soit } \lambda \in [0;1] \\ \text{et } c = \lambda a + (1-\lambda)b, \text{ par op\'eration sur les suites de vecteurs, on a } \lim_{n \to +\infty} (\lambda a_n + (1-\lambda)b_n) = \lambda a + (1-\lambda)b = c. \\ \text{Mais } \forall n \in \mathbb{N}, \ c_n = \lambda a_n + (1-\lambda)b_n \in C \text{ car } C \text{ est convexe donc } c \text{ est la limite d'une suite de vecteurs de } C \\ \text{ce qui prouve que } c \in \overline{C}. \text{ Par cons\'equent, } \overline{C} \text{ est convexe.} \\ \end{array}$

(22.8) a. En notant $\lambda = \text{dom}(P) > 0$, comme P est scindé à racines simples et qu'on connaît ses racines, on peut

écrire $P = \lambda \prod_{k=1}^n (X - \alpha_k) \in S$. Comme les racines de P sont simples, la fonction polynomiale P change de signe au voisinage de chacune de ses racines (car $\forall k \in [\![1;n]\!], \ P'(\alpha_k) \neq 0$ car α_k est racine simple de P) et $\lim_{x \to +\infty} P(x) = +\infty$ car $\lambda > 0$. Ainsi, $P(\beta_n) > 0$, $P(\beta_{n-1}) < 0$, etc... et $P(\beta_0)$ du signe de $(-1)^n$.

Ou alors $\forall k \in [1; n]$, $P(\beta_k) = \lambda \prod_{i=1}^n (\beta_k - \alpha_i) = \lambda \prod_{i=1}^{k-1} (\beta_k - \alpha_i) \times \prod_{i=k}^n (\beta_k - \alpha_i)$ ce qui fait k termes strictement positifs et n-k termes strictement négatifs dans ce produit : $P(\beta_k)$ est du signe de $(-1)^{n-k}$.

b. Pour tout entier $k \in [0; n]$, l'application $\phi_k : \mathbb{R}_n[X] \to \mathbb{R}$ définie par $\phi_k(R) = R(\beta_k)$ est linéaire et $\mathbb{R}_n[X]$ de dimension finie donc ϕ_k est lipschitzienne donc continue.

 $\textbf{c.} \ \operatorname{Soit} \ \textbf{U} = \bigcap_{k=0}^n \phi_k^{-1}((-1)^{n-k}\,\mathbb{R}_+^*) \ \operatorname{avec} \ \operatorname{la} \ \operatorname{convention} \ (1)\,\mathbb{R}_+^* = \,\mathbb{R}_+^* \ \operatorname{et} \ (-1)\,\mathbb{R}_+^* = \,\mathbb{R}_-^*. \ \operatorname{Comme} \ \mathbb{R}_+^* \ \operatorname{ou}$

 \mathbb{R}_{-}^{*} sont des ouverts de \mathbb{R} et que ϕ_{k} est continue, alors $\phi_{k}^{-1}((-1)^{n-k}\mathbb{R}_{+}^{*})$ est ouvert dans $\mathbb{R}_{n}[X]$ en tant qu'image réciproque d'un intervalle ouvert par une application continue. De plus, U est alors ouvert en tant qu'intersection d'un nombre fini d'ouverts.

Comme P appartient à l'ouvert U d'après la question a, il existe r > 0 tel que $B(P,r) \subset U$.

Or si un polynôme Q appartient à U, on a $Q(\beta_n)>0$, $Q(\beta_{n-1})<0$, \cdots , $Q(\beta_0)$ du signe de $(-1)^n$ ce qui implique grâce au théorème des valeurs intermédiaires que la fonction polynomiale continue Q s'annule (en c_k) sur chaque intervalle du type $]\beta_k; \beta_{k+1}[$ avec $k\in [0;n-1]$. Le polynôme Q a donc n racines distinctes, il est de degré n, on en déduit qu'il existe $\mu>0$ tel que $Q=\mu\prod_{k=0}^{n-1}(X-c_k)$ donc $Q\in S$. Comme on vient de prouver que $U\subset S$, et puisque $B(P,r)\subset U$, on a donc $B(P,r)\subset S$ ce qui justifie que S est ouvert.