\Diamond

PRÉPARATION ORAUX

PSI 1

MILLÉSIME

2024 / 2025

EXERCICES PAR THÈME

- 1 : intégrales et analyse (10 exercices : 1-10)
- 2 : algèbre linéaire et générale (6 exercices : 11-16)
- 3 : séries numériques, séries de fonctions, séries entières (24 exercices : 17-40) page 8
- 4 : espaces vectoriels normés (8 exercices : 41-48)
- 5 : réduction des endomorphismes (22 exercices : 49-70) page 16
- 6 : théorèmes de domination (9 exercices : 71-79)
- 7 : espaces préhilbertiens réels, espaces euclidiens (24 exercices : 80-103) page 24
- 8 : probabilités et variables aléatoires (23 exercices : 104-126)page 30
- 9 : équations différentielles et calcul différentiel (13 exercices : 127-139) page 36

EXERCICES PAR CONCOURS

- 1 : X
numéros $1, 11, 80, 127$
- 2 : ENS Cachan / Rennes(8 exercices
numéros 41, 49-51, 81-82, 104-105
- 3 : Centrale Maths 1(30 exercices
$num\'eros\ 2\text{-}4,\ 12\text{-}13,\ 17\text{-}18,\ 42\text{-}43,\ 52\text{-}53,\ 71\text{-}72,\ 83\text{-}88,\ 106\text{-}109,\ 128\text{-}132$
- 4 : Mines(58 exercices
$num\'eros\ 5-9,\ 14-15,\ 21-29,\ 44-47,\ 54-62,\ 73-78,\ 89-97,\ 110-120,\ 133-135$
- 5 : CCINP
numéros 10, 30-35, 48, 63-68, 79, 98-101, 121-124, 136-138
- 6 : Mines-Télécom
numéros 16, 36-40, 69-70, 102-103, 125-126, 139

PRÉPARATION ORAUX 2025 THÈME 1 INTÉGRALE ET ANALYSE

1 X PSI 2024 Jules Campistron II

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 telle que f(0) = 0 et f'(0) = q > 0.

- **a.** Montrer qu'il existe $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ et $\psi:]-\alpha; \beta[\to]-\alpha; \beta[$ tels que $\forall x \in]-\alpha; \beta[$, $f(x)=-f(\psi(x))$.
- **b.** Montrer que ψ est de classe C^1 .

2 <u>Centrale Maths1 PSI 2024</u> Jules Campistron

Soit
$$E = \{ f \in C^0(\mathbb{R}_+, \mathbb{R}) \mid \exists \alpha \in \mathbb{R}_+, \ x^{\alpha} f(x) \underset{x \to +\infty}{\longrightarrow} 0 \}$$

Soit $f \in E,$ on définit l'équation différentielle $(E_f) \ : \ y' - y + f(x) = 0.$

- a. Montrer que E est un espace vectoriel.
- **b.** Montrer que la fonction $g: x \mapsto e^x \int_x^{+\infty} e^{-t} f(t) dt$ est l'unique solution de (E_f) appartenant à E.

(3) Centrale Maths1 PSI 2024 Mathis Laruelle

On définit la fonction f par $f(x) = \int_0^{\pi/2} \sin^x(t) dt$.

a. Déterminer le domaine de définition de f.

On pose maintenant $\Phi(x) = xf(x)f(x-1)$.

- **b.** Montrer que $\forall x \in \mathbb{R}_+^*$, $\Phi(x+1) = \Phi(x)$.
- **c.** Montrer que $x \mapsto \frac{\Phi(x)}{x}$ est décroissante.
- **d.** Montrer que Φ est constante sur \mathbb{R}_+^* .
- e. En déduire un équivalent de f(x) en $+\infty$.

(4) Centrale Maths 1 PSI 2024 Arya Tabrizi

- a. Soit $z \in \mathbb{C}$, montrer que $\mathfrak{t} \mapsto e^{-z\mathfrak{t}}$ admet une limite finie en $+\infty$ si et seulement si $\operatorname{Re}(z) > 0$ ou z = 0.
- **b.** Soit $z \in \mathbb{C}$, montrer que $t \mapsto e^{-zt}$ est intégrable sur \mathbb{R}_+ si et seulement si $\operatorname{Re}(z) > 0$.
- **c.** Soit $z \in \mathbb{C}$, montrer que $\int_0^{+\infty} e^{-zt} dt$ converge si et seulement si Re(z) > 0.

Soit $(z, z_0) \in \mathbb{C}^2$ tel que $\operatorname{Re}(z) > \operatorname{Re}(z_0)$, une fonction $f : \mathbb{R}_+ \to \mathbb{C}$ continue telle que $\int_0^{+\infty} e^{-z_0 t} f(t) dt$ converge. On définit $F : \mathbb{R}_+ \to \mathbb{C}$ par $F(x) = \int_0^x e^{-z_0 t} f(t) dt$.

- $\mathbf{d}.$ Montrer que F est de classe C^1 sur \mathbb{R}_+ et qu'elle y est bornée.
- e. Montrer que $t \mapsto e^{-(z-z_0)t} F(t)$ est intégrable sur \mathbb{R}_+ .
- $\mathbf{f.} \ \mathrm{Montrer} \ \mathrm{que} \ \int_0^{+\infty} e^{-zt} f(t) dt \ \mathrm{converge} \ \mathrm{et} \ \mathrm{qu'on} \ \mathrm{a} \ \int_0^{+\infty} e^{-zt} f(t) dt = (z-z_0) \int_0^{+\infty} e^{-(z-z_0)t} F(t) dt.$

Questions supplémentaires :

- rappeler la formule de Taylor reste intégral.
- rappeler l'inégalité de Taylor-Lagrange.

(5) <u>Mines PSI 2024</u> Armand Dépée II

Montrer la convergence de $\int_1^{+\infty} \left(Arcsin\left(\frac{1}{x}\right) - \frac{1}{x} \right) dx$ et calculer sa valeur.

6 Mines PSI 2024 Jonathan Filocco I

- $\textbf{a.} \ \text{Montrer que } f: x \mapsto \int_x^{+\infty} \frac{\sin(t)}{t^2} dt \ \text{est bien définie et de classe } C^1 \ \text{sur } \mathbb{R}_+^*. \ \text{Calculer } f'(x).$
- $\textbf{b.} \ \text{Montrer que} \ \int_0^{+\infty} \frac{\sin(u)}{u} du \ \text{converge. On pose} \ J = \int_0^{+\infty} \frac{\sin(u)}{u} du.$
- c. Trouver un équivalent de f(x) lorsque x tend vers 0^+ .
- **d.** Montrer que $f(x) = O(\frac{1}{x})$.
- e. Effectuer une intégration par parties pour améliorer la majoration de la question précédente.
- **f.** Est-ce que f est intégrable sur $]0; +\infty[$?
- g. Calculer $\int_0^{+\infty} f(x) dx$ en fonction de J.

(7) Mines PSI 2024 Nathan Jung I

- $\textbf{a.} \ \text{Montrer que la fonction} \ I: x \mapsto \int_0^{2\pi} \ln(x^2 2x\cos(\theta) + 1) d\theta \ \text{est bien définie sur} \ D = \mathbb{R} \setminus \{-1, 1\}.$
- **b.** Donner une expression simplifiée de $P_n = \prod_{k=0}^{n-1} \left(X^2 2X\cos\left(\frac{2k\pi}{n}\right) + 1\right)$ pour $n \in \mathbb{N}^*$.
- c. En déduire la valeur de I(x) pour $x \in D$.

8 Mines PSI 2024 Antoine Métayer II

 $\mathrm{Soit}\ s\in \mathbb{C}\backslash\{1\}.\ \mathrm{Pour}\ N\in\mathbb{N}^*, \ \mathrm{on}\ \mathrm{pose}\ S_N(s)=\Big(\sum_{k=1}^N\frac{1}{k^s}\Big)-\frac{N^{1-s}}{1-s}\ \mathrm{et}, \ \mathrm{en}\ \mathrm{cas}\ \mathrm{d'existence}, \ \zeta(s)=\lim_{N\to+\infty}S_N(s).$

- a. Montrer que $\zeta(s)$ est bien définie si $\operatorname{Re}(s) > 1$
- **b.** Montrer que $\sum_{k=1}^{N} \frac{1}{k^s} = \int_1^{N+1} \frac{1}{\lfloor t \rfloor^s} dt.$
- $\textbf{c.} \ \ \text{Si Re}\,(s) > 0, \ \text{après avoir justifié l'existence de l'intégrale} \ \int_1^{+\infty} \left(\frac{1}{t^s} \frac{1}{\left\lfloor t \right\rfloor^s}\right) dt, \ \text{montrer que} \ \zeta(s) \ \text{existence}$ et qu'on a $\zeta(s) = \int_1^{+\infty} \left(\frac{1}{\left\lfloor t \right\rfloor^s} \frac{1}{t^s}\right) dt + \frac{1}{s-1}.$

$\fbox{9}$ <u>Mines PSI 2024</u> Antoine Vergnenègre II

- $\textbf{a. Soit } y: \mathbb{R}_+ \to \mathbb{R}_+ \text{ de classe } C^1, \text{ convexe et décroissante, montrer que } \lim_{t \to +\infty} ty'(t) = 0.$
- **b.** Soit $q: \mathbb{R}_+ \to \mathbb{R}_+$ continue et $y: \mathbb{R}_+ \to \mathbb{R}_+$ deux fois dérivable telle que y'' = qy. Montrer l'équivalence suivante : $\lim_{t \to +\infty} y(t) = 0 \iff \int_0^{+\infty} tq(t)dt$ diverge.

(10) <u>CCINP PSI 2024</u> Yasmine Azzaoui I

- a. Montrer que f définie par $f(x)=\int_x^{+\infty}\frac{e^{-t}}{t}dt$ est de classe C^1 sur \mathbb{R}_+^* . Calculer f'(x).
- **b.** Montrer que $\forall x > 0$, $f(x) \leqslant \frac{e^{-x}}{x}$.
- c. Montrer que $\forall x>0,\ f(x)=-e^{-x}\ln(x)+\int_{x}^{+\infty}e^{-t}\ln(t)dt.$
- **d.** Calculer $\int_0^{+\infty} f(x) dx$.

PRÉPARATION ORAUX 2025 THÈME 2 ALGÈBRE LINÉAIRE ET GÉNÉRALE

(11) X PSI 2024 Guilhem Thébault I

Soit $n \in \mathbb{N}^*$, I un ensemble non vide et une famille $\mathfrak{F} = (A_i)_{i \in I} \in (\mathfrak{M}_n(\mathbb{C}))^I$ telle que $\forall i \in I$, $A_i^2 = I_n$ et $\forall (i,j) \in I^2$, $A_iA_j = A_jA_i$. Montrer que \mathfrak{F} est une famille finie et donner une majoration de son cardinal.

(12) Centrale Maths1 PSI 2024 Armand Coiffe

Soit E l'ensemble des fonctions lipschitziennes de \mathbb{R} dans \mathbb{R} . On pose $F = \{ f \in E \mid f(0) = 0 \}$.

- a. Montrer que E est un sous-espace vectoriel de l'espace $C^0(\mathbb{R},\mathbb{R})$ des fonctions continues de \mathbb{R} dans \mathbb{R} .
- b. Montrer que F est un sous-espace vectoriel de E et trouver un supplémentaire G de F dans E.

Soit
$$t \in]0;1[$$
 et $\phi_t : f \mapsto g$ telle que $\forall x \in \mathbb{R}, \ g(x) = f(x) - f(tx).$

- c. Montrer que ϕ_t est un endomorphisme injectif de F.
- **d.** Soit $(f,g) \in F^2$ tel que $g = \varphi_t(f)$. Montrer que $f(x) = \sum_{k=0}^{+\infty} g(t^k x)$. Conclure.
- e. Déterminer toutes les fonctions $f \in F$ telle que $\forall x \in \mathbb{R}, \ f(x) 2f(tx) + f(t^2x) = x$.

13 Centrale Maths1 PSI 2024 Adrien Saugnac

Soit $E = \mathbb{K}[X]$, $u : P \in E \rightarrow P(X+1)$ et $v = u - \mathrm{id}_{E}$.

- a. Montrer que ν est un endomorphisme de E et que $\forall P \in E, \ \forall n \in \mathbb{N}, \ \nu^n(P) = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} P(X+k).$
- **b.** Montrer que $\forall p \in \mathbb{N}, \ \forall n \geqslant p+1, \ \sum\limits_{k=0}^n (-1)^{n-k} \binom{n}{k} k^p = 0.$
- c. Que vaut $\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^n$ pour $n \in \mathbb{N}$?
- **d.** Déterminer Ker(v). Est-ce que v est injective ?
- e. Est-ce que ν est surjective ?

14 Mines PSI 2024 Amélia Arangoits II

Soit $n \in \mathbb{N}^*$, montrer qu'il existe $(a_0, \cdots, a_{n-1}) \in \mathbb{R}^n$ tel que $\forall P \in \mathbb{R}_{n-1}[X]$, $P(X+n) = \sum_{k=0}^{n-1} a_k P(X-k)$.

[15] Mines PSI 2024 Edward Bauduin I

$$\mathrm{Soit}\; n \in \, \mathbb{N}^* \; \mathrm{et}\; A_n = \left(\binom{j}{i} \right)_{0 \leqslant i,j \leqslant n} \in \mathfrak{M}_{n+1}(\, \mathbb{R}). \; \mathrm{Par}\; \mathrm{exemple}, \, A_2 = \left(\begin{matrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{matrix} \right).$$

On appelle permutation de [1;n] une bijection de [1;n] dans [1;n] et on note d_n le nombre de dérangements de [1;n], un dérangement étant une permutation de [1;n] sans point fixe. On prend par convention $d_0 = 1$. On note p_n la probabilité d'obtenir un dérangement si on prend une permutation au hasard.

- $\textbf{a.} \ \, \text{D\'eterminer} \ \, A_{\mathfrak{n}}^{-1}. \ \, \text{Indication} : \ \, \text{trouver} \ \, f \in \mathcal{L}(\, \mathbb{R}_{\mathfrak{n}}[X]) \ \, \text{tel que } A_{\mathfrak{n}} = \operatorname{Mat}_{\, \mathcal{B}}(f) \ \, \text{o\`u} \ \, \mathcal{B} \ \, \text{est la base canonique}.$
- **b.** Montrer que $\forall n \in \mathbb{N}, \ n! = \sum_{k=0}^{n} {n \choose k} d_k$.
- c. Trouver une relation entre A_n^T , $(0!\ 1!\ \cdots\ (n-1)!\ n!)^T$ et $(d_0\ d_1\ \cdots\ d_n)^T$.

 d. En déduire que $d_n=n!\sum_{k=0}^n\frac{(-1)^k}{k!}$.

 e. Déterminer p_n et $\lim_{n\to +\infty}p_n$.

(16) Mines-Télécom PSI 2024 Mathéo Demongeot-Marais II

Soit E un espace de dimension n et p un projecteur de E. On pose $\mathcal{F} = \{ f \in \mathcal{L}(E) \mid f \circ p = -p \circ f \}$.

- a. Montrer que \mathcal{F} est un espace vectoriel.
- **b.** Soit $f \in \mathcal{F}$, montrer que Im (p) et Ker(p) sont stables par f.
- c. Soit $f \in \mathcal{F}$, montrer que l'application induite par f sur Im (p) est l'application nulle.
- **d.** Déterminer la dimension de \mathcal{F} .

PRÉPARATION ORAUX 2025 THÈME 3 SÉRIES NUMÉRIQUES, SÉRIES DE FONCTIONS ET SÉRIES ENTIÈRES

17 Centrale Maths1 PSI 2024 Émile Gauvrit

$$\mathrm{Soit}\ \alpha\in\mathbb{R}_+^*,\ (\alpha_n)_{n\geqslant 0}\ \mathrm{et}\ (\nu_n)_{n\geqslant 1}\ \mathrm{d\acute{e}finies}\ \mathrm{par}\ \alpha_n=\frac{n!}{\displaystyle\prod_{k=1}^n(\alpha+k)}\ \mathrm{et}\ \nu_n=\Big(\sum_{k=1}^n\ln\Big(1+\frac{\alpha}{k}\Big)\Big)-\alpha\ln(n).$$

- a. Déterminer le rayon de convergence R de la série entière $\sum_{n\geqslant 0}\alpha_nx^n.$
- **b.** Montrer que $\sum_{n\geq 2} (\nu_n \nu_{n-1})$ converge.
- c. En déduire l'existence de $\lambda>0$ tel que $\mathfrak{a}_{\mathfrak{n}} \underset{+\infty}{\sim} \frac{\lambda}{\mathfrak{n}^{\alpha}}.$
- **d.** Étudier la convergence de $\sum_{n\geqslant 0} a_n x^n$ pour $x=\pm R$.

(18) <u>Centrale Maths1 PSI 2024</u> Lucie Girard

Pour
$$n \in \mathbb{N}$$
, on pose $u_n = \frac{(-1)^n}{2n+1}$. On note $S = \sum_{n=0}^{+\infty} u_n$.

- $\mathbf{a.}$ Montrer la convergence de $\sum_{n\geqslant 0}u_n,$ c'est-à-dire l'existence du réel S.
- **b.** Quel est le domaine de définition D de la fonction $I:x\mapsto \sum_{n=0}^{+\infty} u_n x^{n+1}$?
- $\mathbf{c}.$ Donner une expression simple de I(x) pour certains x et en déduire la valeur de S.
- $\mathbf{d.}$ Calcul de $\int_0^1 I(x) dx$ de deux manières différentes.

$(\mathbf{19})\,\underline{Centrale\;Maths1\;PSI\;2024}\;$ Mathias Pisch

a. Montrer la convergence de $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.

Soit
$$F: \mathbb{R} \to \mathbb{R}$$
 définie par $F(x) = \int_0^x \frac{\sin(t)}{t} dt$ si $x \neq 0$ et $F(0) = 0$.

- **b.** Montrer que F est définie et développable en série entière sur \mathbb{R} . Donner son développement.
- $\textbf{c. Soit } x \in \mathbb{R}, \text{ montrer que } \mathrm{Re} \left(\int_0^{\pi/2} exp(-xe^{-it}) dt \right) = \frac{\pi}{2} \sum_{k=0}^{+\infty} \frac{(-1)^k x^{2k+1}}{(2k+1).(2k+1)!}.$
- $\mathbf{d.} \text{ Déterminer } \lim_{x \to +\infty} \int_0^{\pi/2} \exp(-xe^{-it}) dt \text{ et en déduire l'existence et la valeur de la limite de } F \text{ en } +\infty.$

(20) <u>Centrale Maths1 PSI 2024</u> Eva Rojo

Pour $n \in \mathbb{N}$ et x > 0, on pose $f_n(x) = \frac{1 + sin(2\pi nx)}{1 + n^2x^2}$.

- a. Tracer le graphe de la fonction f_5 .
- **b.** Que dire quant à la convergence simple ou uniforme de $(f_n)_{n\geqslant 0}$ sur \mathbb{R}_+^* ?
- c. Que dire quant à la convergence simple ou uniforme de $\sum_{n\geqslant 0}f_n$ sur \mathbb{R}_+^* ?

Questions supplémentaires :

- Donner la définition de $f^{-1}(A)$ avec $f: E \to F$ et $A \subset F$.
- Est-ce que $f: x \mapsto \int_0^1 \cos(xt) dt$ est continue sur \mathbb{R} ?

(21) Mines PSI 2024 Amélia Arangoits I

Soit la suite $(x_n)_{n \in \mathbb{N}^*}$ définie par $x_1 \in \mathbb{R}_+^*$ et $\forall n \geqslant 1, \ x_{n+1} = x_n + \frac{n}{x_n}$.

- **a.** Montrer que la suite $(x_n)_{n\geqslant 1}$ est bien définie et que $\lim_{n\to +\infty} x_n=+\infty$.
- **b.** Montrer que $\forall n \geq 2, \ x_n \geq n.$ En déduire que $x_n \underset{+\infty}{\sim} n.$
- c. Montrer qu'il existe un réel c tel que $x_n = n + c + o(1)$.
- **d.** Montrer que c = 0.

(22) <u>Mines PSI 2024</u> Yasmine Azzaoui I

Déterminer le rayon de convergence R de la série entière $\sum_{n\geqslant 0} \frac{(n+1)(n+2)}{2^n} x^n$. Calculer $\sum_{n=0}^{+\infty} \frac{(n+1)(n+2)}{2^n}$.

23 Mines PSI 2024 Edward Bauduin II

- a. Montrer que la fonction $f: x \mapsto \frac{1}{\cos(x)}$ est développable en série entière au voisinage de 0.
- b. Que dire du rayon de convergence du développement de la question précédente ?

24 Mines PSI 2024 Axel Corbière I

On appelle involution d'un ensemble E toute application $f: E \to E$ telle que $f \circ f = \operatorname{id}_E$. Soit $n \in \mathbb{N}^*$, on note A_n l'ensemble des involutions de l'ensemble [1;n] et $I_n = \operatorname{card}(A_n)$ avec la convention $I_0 = 1$.

- a. Montrer que $\forall n \in \mathbb{N}, \ I_{n+2} = I_{n+1} + (n+1)I_n.$
- **b.** Montrer que le rayon de convergence R de $\sum_{n\geqslant 0}\frac{I_n}{n!}x^n$ vérifie $R\geqslant 1.$

On définit $\phi:]-1;1[\to\mathbb{R} \text{ par } \phi(x)=\sum\limits_{n=0}^{+\infty}\frac{I_n}{n!}x^n.$

- **c.** Montrer que $\forall x \in]-1;1[, \varphi'(x)=(1+x)\varphi(x).$
- **d.** En déduire une expression simple de $\varphi(x)$ à l'aide de fonctions usuelles.
- e. En déduire une expression de I_n sous forme de somme.

[25] Mines PSI 2024 Tiago Genet II

Soit $(f_n)_{n\in\mathbb{N}}$ définie sur \mathbb{R}_+^* par $\forall x>0$, $f_0(x)=x$ et $\forall n\in\mathbb{N},\ \forall x>0$, $f_{n+1}(x)=\frac{1}{2}\Big(f_n(x)+\frac{x}{f_n(x)}\Big)$.

Étudier la convergence simple et uniforme de $(f_n)_{n\in\mathbb{N}}$ sur \mathbb{R}_+^* .

26 Mines PSI 2024 Valentine Girard I

Soit $n \in \mathbb{N}^*$, on considère un carré quadrillé avec $(n+1)^2$ cases numérotées $(x,y) \in [0,n]^2$. On cherche à aller de la case (0,0) à la case (n,n) avec pour seuls déplacement autorisés les mouvements (0,1) et (1,0) (vers la droite ou vers en haut).

a. Déterminer le nombre c_n de chemins possibles (avec ces contraintes) pour aller de (0,0) à (n,n).

On note d_n le nombre de chemins qui vont de (0,0) à (n,n) (avec ces contraintes) mais en restant toujours au-dessus (au sens large) de la diagonale x=y. Par convention, on pose $d_0=1$. En cas de convergence, pour $x\in\mathbb{R}$, on pose $f(x)=\sum_{n=0}^{+\infty}d_nx^n$.

b. Calculer d_1 , d_2 , d_3 .

c. Montrer que $\forall n \in \mathbb{N}, \ d_{n+1} = \sum\limits_{k=0}^n d_k d_{n-k}.$

d. Justifier que $0 \le d_n \le \binom{2n}{n}$. Minorer le rayon de convergence R de la série entière $\sum_{n \ge 0} d_n x^n$.

e. Donner une relation entre $xf(x)^2$ et f(x) pour $x \in]-R$; R[.

 $\mathbf{f.}$ En déduire une expression de f(x) à l'aide de fonctions usuelles. Que vaut R ?

g. Donner une expression de d_n en fonction de n.

h. Si tous les chemins allant de (0,0) à (n,n) sont équiprobables, quelle est la probabilité p_n qu'un chemin reste au-dessus de la diagonale ?

27 Mines PSI 2024 Lou Goiffon II

Pour $x \in \mathbb{R}$, en cas d'existence, on note $f(x) = e^{-2x^2} \int_0^x e^{2t^2} dt$.

a. Montrer que f est développable en série entière sur un intervalle à préciser.

b. Expliciter le développement en série entière de f.

c. Donner un équivalent de f(x) quand x tend vers $+\infty$.

(28) <u>Mines PSI 2024</u> Jasmine Meyer I

Pour $n \in \mathbb{N}^*$, soit $u_n : \mathbb{R} \to \mathbb{R}$ définie par $u_n(x) = \frac{x}{x^2 + n^2}$. On pose $S(x) = \sum_{n=1}^{+\infty} \frac{x}{x^2 + n^2}$.

 $\mathbf{a.}\,$ Montrer que S est définie sur $\,\mathbb{R}.\,$

b. Y a-t-il convergence normale de $\sum_{n\geqslant 1} u_n$ sur \mathbb{R} ?

c. Montrer que S est de classe C^1 sur \mathbb{R} .

d. Donner un équivalent simple de S(x) quand x tend vers 0. On rappelle que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

e. Déterminer $\lim_{x\to +\infty} S(x)$.

f. Y-a-t-il convergence uniforme de $\sum_{n\geq 1} u_n$ sur $\mathbb R$?

(**29**) <u>Mines PSI 2024</u> Guilhem Thébault II

Soit $r \in \left]0; \frac{1}{2}\right[$ et $u = (u_n)_{n \in \mathbb{N}} \in \{-1,1\}^{\mathbb{N}}$, on pose alors $x(u) = \sum_{n=0}^{+\infty} u_n r^n$.

Montrer que l'application x ainsi construite est injective.

(30) CCINP PSI 2024 Amélia Arangoits I

Soit $a \in \mathbb{R}$, on définit $S: x \mapsto \sum_{n=0}^{+\infty} \frac{a^n}{n+x}$.

a. Déterminer le domaine de définition D de S selon les valeurs de a.

Dans la suite de l'exercice, on impose |a| < 1.

- **b.** Montrer que S est continue sur \mathbb{R}_+^* .
- c. Trouver une relation entre S(x) et S(x+1) pour x>0.
- d. Trouver un équivalent de S en 0.
- e. Déterminer la limite de S en $+\infty$.
- **f.** Trouver un équivalent de S en $+\infty$.

(31) CCINP PSI 2024 Amjad Belmiloud II

Pour $\mathfrak{n}\in\,\mathbb{N}^*,$ on définit $f_\mathfrak{n}:[-1;1]\to\,\mathbb{R}$ par $f_\mathfrak{n}(x)=sin\,\big(nx\,e^{-n\,x^2}\big).$

- $\mathbf{a.}$ Montrer que $(f_{\mathfrak{n}})_{\mathfrak{n}\geqslant 1}$ converge simplement vers une fonction F à déterminer.
- **b.** Montrer que $(f_n)_{n\geqslant 1}$ converge uniformément sur tout segment [a;1] avec $a\in]0;1[$.
- $\textbf{c.} \ \text{En considérant} \ f_n\Big(\frac{1}{n}\Big), \ \text{que dire de la convergence uniforme de } (f_n)_{n\geqslant 1} \ \text{sur } [-1;1] \ ?$

32 CCINP PSI 2024 Olivier Farje I

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose $u_n(x) = \frac{ln(1+nx^2)}{n^2}$. Soit la fonction S définie par $S(x) = \sum_{n=1}^{+\infty} u_n(x)$.

- a. Montrer que S est définie sur \mathbb{R} .
- **b.** Montrer que S est continue sur \mathbb{R} .
- c. Montrer que $\sum_{n\geqslant 1}\mathfrak{u}_n$ ne converge pas normalement sur $\mathbb{R}.$
- **d.** Montrer que S est de classe C^1 sur $\,\mathbb{R}.$
- e. Déterminer S(0) et $\lim_{x \to +\infty} S(x)$.
- **f.** Trouver un équivalent de S'(x) quand x tend vers 0^+ .

(33) CCINP PSI 2024 Lucie Girard I

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose $u_n(x) = \frac{(-1)^n e^{-nx}}{n}$. Soit la fonction S définie par $S(x) = \sum\limits_{n=1}^{+\infty} u_n(x)$.

- a. Déterminer le domaine de définition D de S.
- **b.** Montrer que S est continue sur D.
- c. Y a-t-il convergence uniforme de $\sum_{n\geqslant 1}\mathfrak{u}_n'$ sur D ?
- **d.** Calculer S'(x) pour x convenable.
- e. En déduire une expression simple de S(x) pour $x \in D$.

34 CCINP PSI 2024 Clément Lacoste I

Soit la suite $(a_n)_{n\in\mathbb{N}}$ définie par $a_0=1,\ a_1=3$ et $\forall n\geqslant 2,\ a_n=3a_{n-1}-2a_{n-2}.$

- a. Trouver une expression de $\mathfrak{a}_{\mathfrak{n}}$ en fonction de $\mathfrak{n}.$
- **b.** Montrer que $\forall n \in \mathbb{N}, |a_n| \leq 4^n$.
- c. En déduire une inégalité concernant le rayon de convergence R de la série entière $\sum_{n \geq 0} a_n x^n$.
- **d.** Montrer que pour des x convenables, on a $\sum_{n=0}^{+\infty} a_n x^n = \frac{1}{2x^2 3x + 1}$.
- e. Donner une autre expression de a_n et la valeur de R.

(35) <u>CCINP PSI 2024</u> Martin Mayot II

Soit la suite $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ définie par $\mathfrak{u}_0\in\left]0;\frac{\pi}{2}\right[$ et $\forall n\in\mathbb{N},\ \mathfrak{u}_{n+1}=\sin(\mathfrak{u}_n).$

- a. Étudier la convergence et la limite de la suite $(u_n)_{n\in\mathbb{N}}$.
- $\mathbf{b.}$ Étudier la convergence de $\sum\limits_{n\geqslant 0}\mathfrak{u}_n^3.$ Indication : considérer $\mathfrak{u}_{n+1}-\mathfrak{u}_n.$
- c. Montrer que $\sum_{n\geqslant 0}u_n^2$ diverge. Indication : considérer $ln(u_{n+1})-ln(u_n)$.
- d. Déterminer un équivalent de u_n quand n tend vers $+\infty$ grâce au théorème de CESARO (question rajoutée). Indication : considérer $u_{n+1}^{-2} u_n^{-2}$.

36 Mines-Télécom PSI 2024 Mathéo Demongeot-Marais I

Pour $n \in \mathbb{N}$, on définit la fonction f_n par $f_n(x) = \frac{1}{n^2x + n}$. Soit aussi f définie par $f(x) = \sum_{n=1}^{+\infty} f_n(x)$.

- a. Déterminer le domaine de définition D de f.
- **b.** Montrer que f est de classe C^1 sur \mathbb{R}_+^* .
- **c.** Montrer qu'il existe un réel a tel que $\forall x > 0$, $\left| f(x) \frac{1}{x} \sum_{n=1}^{+\infty} \frac{1}{n^2} \right| \leqslant \frac{a}{x^2}$.
- **d.** En déduire un équivalent de f(x) quand x tend vers $+\infty$.
- e. Trouver un équivalent de f(x) quand x tend vers 0^+ .

(37) <u>Mines-Télécom PSI 2024</u> Émile Gauvrit II

Soit la fonction f définie par $f(x) = \frac{1 - \cos(x)}{x^2}$.

Sur quelle domaine peut-on prolonger f? f est-elle continue, dérivable, de classe C^1 ? De classe C^{∞} ?

(38) <u>Mines-Télécom PSI 2024</u> Romane Mioque II

Pour x > 0, on pose $f(x) = \sum_{n=0}^{+\infty} \frac{1}{n!(x+n)}$.

- **a.** Justifier que f est bien définie et continue sur \mathbb{R}_+^* .
- **b.** Trouver des réels a et b tels que $f(x) = \frac{a}{x} + \frac{b}{x^2} + o(\frac{1}{x^2})$.

(39) <u>Mines-Télécom PSI 2024</u> Eva Rojo I

Soit la suite $(a_n)_{n\in\mathbb{N}}$ définie par $a_0=0,\ a_1=1$ et $\forall n\geqslant 2,\ a_n=\sum\limits_{k=0}^n a_ka_{n-k}.$ On note $S(x)=\sum\limits_{n=0}^{+\infty} a_nx^n$ et

R le rayon de convergence de la série entière $\sum_{n\geqslant 0} \alpha_n x^n.$

- a. Montrer que $\forall x \in]-R; R[, S(x) = x + S(x)^2]$.
- **b.** En déduire S(x) pour $x \in]-R; R[$ et la valeur de R.
- $\mathbf{c.} \ \mathrm{Montrer} \ \mathrm{que} \ \forall n \geqslant 1, \ \alpha_n = \frac{1}{n} \binom{2n-2}{n-1}.$

$ig({f 40} ig) {\it \underline{Mines-T\'el\'ecom\ PSI\ 2024}}$ Tom Sanchez I

Pour $n\in\,\mathbb{N}^*,$ on considère l'équation $(E_n)\ :\ x^n+x\sqrt{n}-1=0.$

- **a.** Montrer que, pour tout $n \in \mathbb{N}^*$, (E_n) admet une unique solution dans \mathbb{R}_+^* qu'on notera x_n .
- **b.** Montrer que la suite $(x_n)_{n\geqslant 1}$ converge vers 0.
- c. Quelle est la nature de $\sum_{n\geqslant 1}x_n$?

PRÉPARATION ORAUX 2025 THÈME 4 ESPACES VECTORIELS NORMÉS

41 ENS Cachan PSI 2024 Armand Dépée et Adrien Saugnac

Soit $n \ge 1$ et $\rho > 0$. On se place dans \mathbb{R}^n muni de sa structure euclidienne usuelle. On définit le diamètre d(A) d'une partie bornée non vide $A \subset \mathbb{R}^n$ par $d(A) = Sup\{||x-y|| \mid (x,y) \in A^2\}$.

Soit X un borné de \mathbb{R}^n , $s \in \mathbb{R}_+$ et $(A_k)_{k \in \mathbb{N}}$ une suite de parties bornées de \mathbb{R}^n :

- $\bullet \text{ on dit que } (A_k)_{k \in \, \mathbb{N}} \text{ est un } \rho\text{-recouvrement de } X \text{ si } X \subset \bigcup_{k \geqslant 0} A_k \text{ et } \forall k \in \, \mathbb{N}, \ d(A_k) \leqslant \rho.$
- $\bullet \ \mathrm{on \ pose} \ H_s^\rho(X) = Inf \, \Big(\Big\{ \sum_{k=0}^{+\infty} d(A_k)^s \ \Big| \ (A_k)_{k \in \, \mathbb{N}} \ \rho\text{-recouvrement de } X \Big\} \Big).$
- a. Montrer que $H_s^{\rho}(X)$ est fini et que $\rho \mapsto H_s^{\rho}(X)$ est une fonction décroissante.

Indication : on pourra considérer des hyper-cubes.

$$\mathrm{On\ pose}\ H_s(X) = Sup\left(\{H_s^\rho(X)\ |\ \rho>0\}\right) = \lim_{\rho\to 0^+} H_s^\rho(X) \in \overline{\mathbb{R}_+}.$$

- **b.** Montrer que $s \mapsto H_s(X)$ est une fonction décroissante.
- **c.** Calculer $H_0(X)$ et $H_s(X)$ si $s \ge n$.
- **d.** Soit $v \in \mathbb{R}^n$, on note X + v le translaté de X par le vecteur v. Comparer $H_s(X + v)$ et $H_s(X)$.
- e. Soit $\lambda > 0$, on note λX l'homothétisé de X dans le rapport λ . Exprimer $H_s(\lambda X)$ en fonction de $H_s(X)$.
- **f.** Pour deux parties U et V bornées de \mathbb{R}^n , comparer $H_s(U \cup V)$ et $H_s(U) + H_s(V)$.
- **g.** Soit X et Y deux parties bornées de \mathbb{R}^n telles que Inf $\Big(\big\{ ||x-y|| \mid (x,y) \in X \times Y \big\} \Big) > 0$. Montrer la relation $H_s(X \cup Y) = H_s(X) + H_s(Y)$.
- **h.** Si s > 0 et $H_s(X) > 0$, montrer que $H_u(X) = +\infty$ si u < s.
- i. Si s > 0 et $H_s(X) > 0$, montrer que $H_t(X) = 0$ si s < t.
- **j.** On pose $\delta(X) = \text{Inf}(\{H_s(X) \mid s > 0\})$. Calculer $\delta(X)$ pour X un segment, un carré, un cube.

(42) Centrale Maths1 PSI 2024 Olivier Farje

Soit $P \in \mathbb{C}[X]$ un polynôme non constant, on suppose que P n'admet pas de racine complexe.

On définit alors la fonction I sur \mathbb{R}_+ par $I(r) = \int_0^{2\pi} \frac{d\theta}{P(re^{i\theta})}$.

- a. Montrer que I est bien définie et de classe C^1 sur \mathbb{R}_+ .
- **b.** Montrer que I est constante sur \mathbb{R}_+ .
- $\textbf{c.} \ \text{Pour } \epsilon > 0, \ \text{montrer l'existence de } k \in \ \mathbb{R}_+ \ \text{tel que } \forall (r,\theta) \in [k; +\infty[\times[0;2\pi], \ \left|\frac{1}{P(re^{i\theta})}\right| \leqslant \epsilon.$
- d. Conclure.

Questions supplémentaires :

- soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^1 et $g: t \mapsto f(t^2, 2^t)$. Calculer la dérivée de g.

(43) <u>Centrale Maths1 PSI 2024</u> Jonathan Filocco

Soit $a \in \mathbb{R}_+^*$ et la suite $(u_n(a))_{n \in \mathbb{N}^*}$ définie par $u_1(a) = a$ et $\forall n \in \mathbb{N}^*, \ u_{n+1}(a) = u_n(a)^2 + \frac{1}{n+1}$.

a. Montrer que si la suite $(u_n(a))_{n\geqslant 1}$ admet une limite, celle-ci ne peut valoir que 0, 1 ou $+\infty$.

 $\mathrm{Pour}\ L=0,1\ \mathrm{ou}\ \infty,\,\mathrm{on\ note}\ E_L=\big\{\alpha>0\ |\ \mathfrak{u}_{\mathfrak{n}}(\alpha)\mathop{\longrightarrow}_{\mathfrak{n}\to+\infty}L\big\}.$

b. Montrer que E_L sont des intervalles de \mathbb{R} si L=0,1 ou ∞ .

c. Montrer que $[1; +\infty[\subset E_{\infty} \text{ et montrer que } E_{\infty} \text{ est un ouvert.}]$

Question supplémentaire :

- Énoncer le théorème des valeurs intermédiaires.

44 Mines PSI 2024 Armand Coiffe et Adrien Saugnac II

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ dérivable telle que $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} f'(x) = 0$.

Montrer que $A = \{f(m) - f(n) \mid (m, n) \in \mathbb{N}^2\}$ est dense dans \mathbb{R} .

$ig(\mathbf{45}ig)\, \underline{Mines\, PSI\, 2024}\,$ Olivier Farje I

Soit $n \in \mathbb{N}^*$ et $A \in \mathfrak{M}_n(\mathbb{C})$. Pour $p \in \mathbb{N}$, on note $exp_p(A) = \sum_{k=0}^p \frac{A^k}{k!}$.

a. Soit E un espace normé de dimension finie et F un sous-espace de E. Montrer que F est un fermé de E.

 $\textbf{b.} \ \text{Montrer que la suite} \ \big(\exp_p(A) \big)_{p \in \mathbb{N}} \ \text{converge dans} \ \mathfrak{M}_n(\, \mathbb{C}) \ \text{vers une limite notée} \ \exp(A).$

c. Montrer que $exp(A) \in \mathbb{C}_{n-1}[A] = Vect(I_n, A, \dots, A^{n-1}).$

46 Mines PSI 2024 Bilal Mrani II

Soit E l'espace des fonctions continues et bornées de \mathbb{R} dans \mathbb{R} qu'on munit de la norme infinie classique. Pour tout $T \in \mathbb{R}_+^*$, on note P_T l'ensemble des fonctions T-périodiques continues de \mathbb{R} dans \mathbb{R} . On note aussi P l'ensemble des fonctions périodiques continues de \mathbb{R} dans \mathbb{R} .

a. Montrer que pour toute fonction $f \in P$, on a $f \in E$.

b. P_T et P sont-ils ouverts?

 $\mathbf{c.}$ P_T et P sont-ils fermés ?

47 Mines PSI 2024 Mathias Pisch II

Soit $A = \begin{pmatrix} 0 & 1 & -3 \\ -5 & 2 & 1 \\ 5 & -1 & -6 \end{pmatrix} \in \mathfrak{M}_3(\mathbb{C}), \text{ et } ||.|| \text{ une norme sur } \mathfrak{M}_3(\mathbb{C}).$

a. Calculer χ_A . Indication : on pourra commencer par l'opération $C_1 \longleftarrow C_1 + C_2 + C_3$.

b. Calculer le rayon de convergence de la série entière $\sum\limits_{n\geq 0}||A^n||z^n.$

[48] <u>CCINP PSI 2024</u> Lucie Girard II

Soit E un espace vectoriel normé de dimension finie et $\mathfrak{u}\in\mathcal{L}(E)$ tel que $\forall x\in E,\ ||\mathfrak{u}(x)||\leqslant ||x||.$

Soit $x \in \text{Im}(u - id_E) \cap \text{Ker}(u - id_E)$.

a. Justifier l'existence d'un vecteur $y \in E$ tel que u(y) = x + y.

b. Exprimer, pour $n \in \mathbb{N}$, $u^n(y)$ en fonction de n, x et y.

c. Que peut-on en déduire sur x?

d. Que peut-on dire de $\operatorname{Im}(u - \operatorname{id}_{E})$ et $\operatorname{Ker}(u - \operatorname{id}_{E})$ dans E?

PRÉPARATION ORAUX 2025 THÈME 5 RÉDUCTION

49 ENS Cachan PSI 2024 Tristan Cheyrou

Soit $n \in \mathbb{N}^*$, pour $(A,B) \in (\mathfrak{M}_n(\mathbb{C}))^2$, on pose [A,B] = AB - BA. On note $S = \{[A,B] \mid (A,B) \in (\mathfrak{M}_n(\mathbb{C}))^2\}$. Soit $D = diag(1,2,\cdots,n)$ et Z l'ensemble des matrices de $\mathfrak{M}_n(\mathbb{C})$ dont la diagonale est nulle.

- **a.** Montrer que si $M \in S$, alors Tr(M) = 0.
- **b.** Montrer que S est stable par multiplication par un scalaire.
- **c.** Montrer que si $M \in S$ est semblable à $N \in \mathcal{M}_n(\mathbb{C})$, alors $N \in S$.
- **d.** Montrer que si $M \in \mathcal{M}_n(\mathbb{C})$ et Tr(M) = 0, alors M est semblable à une matrice à diagonale nulle.
- e. Montrer que $\Phi: Z \to Z$ définie par $\Phi(M) = [D, M]$ est un automorphisme de Z.
- **f.** En déduire que $S = \{M \in \mathfrak{M}_n(\mathbb{C}) \mid Tr(M) = 0\}.$

Soit e, f, h trois endomorphismes de \mathbb{C}^n tels que [h, e] = 2e, [h, f] = -2f et [e, f] = h. Soit x un vecteur propre de h associé à la valeur propre λ .

- g. Montrer que e(x)=0 ou que e(x) est un vecteur propre de h associé à une valeur propre μ que vous donnerez en fonction de λ .
- **h.** Montrer que $A = \{k \in \mathbb{N} \mid e^k(x) \neq 0\}$ est un ensemble fini.

[50] ENS Cachan PSI 2024 Axel Corbière et Maxime Plottu

Une matrice $U \in \mathcal{M}_n(\mathbb{C})$ est dite unilpotente si $U - I_n$ est nilpotente.

On admet que pour toute matrice $A \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$, il existe un unique couple (D,N) tel que $D \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ est diagonalisable et $N \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ est nilpotente avec DN = ND (décomposition de Dunford).

- a. Soit $U \in \mathcal{M}_n(\mathbb{C})$ unilpotente, montrer que 1 est l'unique valeur propre de U.
- b. Soit $U \in \mathfrak{M}_n(\mathbb{C})$ unilpotente, exprimer U^{-1} en fonction de $N = U I_n$.
- **c.** Montrer que si $A \in \mathcal{M}_n(\mathbb{R})$, le couple (D, N) de Dunford vérifie $D \in \mathcal{M}_n(\mathbb{R})$ et $N \in \mathcal{M}_n(\mathbb{R})$.

Soit $A \in GL_n(\mathbb{C})$ et le couple (D, N) associé à A par la décomposition de DUNFORD.

- **d.** Montrer que $D \in GL_n(\mathbb{C})$.
- e. Montrer qu'il existe un unique couple (D', U') tel que D diagonalisable, U' unilpotente et D'U' = U'D'.
- **f.** Montrer que si $A \in GL_n(\mathbb{R})$, on a $D' \in \mathfrak{M}_n(\mathbb{R})$ et $U' \in \mathfrak{M}_n(\mathbb{R})$.

[51] ENS Cachan PSI 2024 Mathis Laruelle

Soit $n \in \mathbb{N}^*$ et $B \in \mathfrak{M}_n(\mathbb{C})$.

- a. Montrer que si B est diagonalisable, alors exp(B) l'est aussi.
- **b.** Montrer qu'il existe $(B_1, N) \in \mathfrak{M}_n(\mathbb{C})^2$ avec B_1 diagonalisable, N nilpotente, $B = B_1 + N$ et $B_1N = NB_1$.
- ${f c.}$ Si exp(B) est diagonalisable, montrer que $exp(N)-I_n$ est nilpotente, puis que B est diagonalisable.

Soit pour les trois prochaines questions $A \in \mathfrak{M}_n(\mathbb{C})$ diagonalisable avec μ_1, \dots, μ_p ses valeurs propres distinctes. Soit des matrices $P \in GL_n(\mathbb{C})$ et $D \in \mathfrak{M}_n(\mathbb{C})$ diagonale telles que $A = PDP^{-1}$.

- **d.** Déterminer un polynôme U tel que $\forall k \in [1; p], \ P(\mu_k) = e^{\mu_k}$.
- e. Montrer que pour tout polynôme $Q \in \mathbb{C}[X]$, on a $Q(A) = PQ(D)P^{-1}$.
- f. En déduire que exp(A) est un polynôme en A.

On admet que $\forall M \in \mathfrak{M}_n(\mathbb{C})$, $exp(M) \in GL_n(\mathbb{C})$ de sorte qu'on peut définir l'application exponentielle sur les matrices par $exp : \mathfrak{M}_n(\mathbb{C}) \to GL_n(\mathbb{C})$. Soit aussi la matrice $D = diag(-1, -2, \dots, -n) \in \mathfrak{M}_n(\mathbb{C})$.

- g. Montrer que D est inversible.
- **h.** Soit $\lambda \in \mathbb{C}$ une valeur propre de $B \in \mathfrak{M}_n(\mathbb{C})$, montrer que e^{λ} es une valeur propre de exp(B).
- i. Existe-t-il une matrice $B \in \mathcal{M}_n(\mathbb{R})$ telle que exp(B) = D?
- j. Que dire de l'application exp?

(52) <u>Centrale Maths1 PSI 2024</u> Amélia Arangoits

Soit $n \in \mathbb{N}^*$, $M \in \mathfrak{M}_n(\mathbb{R})$ et F un sous-espace vectoriel de \mathbb{R}^n .

- a. Montrer que F est stable par M si et seulement si F^{\perp} est stable par M^{T} .
- **b.** Trouver les sous-espaces stables par $A = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$.

[53] <u>Centrale Maths1 PSI 2024</u> Romane Mioque et Maxime Plottu

a. Montrer que si A et B dans $\mathfrak{M}_{\mathfrak{n}}(\mathbb{C})$ sont semblables, alors $\mathfrak{Sp}(A) = \mathfrak{Sp}(B)$.

Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que M et 2M sont semblables.

- **b.** Que vaut Sp(M)? Qu'en déduire sur M?
- c. Trouver un exemple de matrice $M \in M_2(\mathbb{C})$ non nulle telle que M et 2M sont semblables.
- **d.** Soit $M \in \mathfrak{M}_3(\mathbb{C})$ nilpotente telle que rang (M) = 1, montrer que M est semblable à $E_{2,3}$. En déduire que M est semblable à 2M.
- e. Soit $M \in \mathcal{M}_n(\mathbb{C})$ nilpotente d'indice n-1, montrer que M est semblable à 2M.

[54] <u>Mines PSI 2024</u> Yasmine Azzaoui II

Soit $n \in \mathbb{N}^*$ et $(A, B) \in (\mathfrak{M}_n(\mathbb{C}))^2$ avec $Sp(A) \cap Sp(B) = \emptyset$.

- **a.** Montrer que $\chi_A(B)$ est inversible.
- **b.** Montrer que si $X \in \mathfrak{M}_n(\mathbb{C})$ vérifie AX = XB, alors X = 0.
- **c.** Montrer que $\forall M \in \mathcal{M}_n(\mathbb{C}), \exists ! X \in \mathcal{M}_n(\mathbb{C}), AX XB = M.$

(55) Mines PSI 2024 Thomas Favant I

Soit E le \mathbb{R} -espace vectoriel des suites réelles indexées par \mathbb{N}^* et $\varphi: E \to E$ définie par $\varphi(\mathfrak{u}) = \nu$ où $\mathfrak{u} = (\mathfrak{u}_n)_{n \in \mathbb{N}^*}$ et $\nu = (\nu_n)_{n \in \mathbb{N}^*}$ avec $\nu_n = \frac{1}{n} \sum_{k=1}^n \mathfrak{u}_k$.

- a. Montrer que ϕ est un automorphisme de E.
- **b.** Trouver les valeurs propres et les sous-espaces propres de φ .

(56) <u>Mines PSI 2024</u> Tiago Genet et Lou Goiffon I

Soit
$$P = X^5 - 4X^4 + 2X^3 + 8X^2 - 8X$$
.

- a. Vérifier que P(2) = P'(2) = 0. En déduire une factorisation de P dans $\mathbb{R}[X]$.
- $\textbf{b. Soit } n \in \mathbb{N}^*, \text{ trouver toutes les matrices } M \in \mathfrak{M}_n(\mathbb{R}) \text{ telles que } P(M) = 0 \text{ et Tr } (M) = 0.$

$ig({f 57} ig) {\it Mines~PSI~2024} \,\,\, { m Nathan~Jung~II}$

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{C})$.

- a. Montrer que A est nilpotente si et seulement si $Sp(A) = \{0\}$.
- **b.** Pour $\lambda \in \mathbb{C}$, montrer que $E_A = \{X \in \mathbb{C}^n \mid AX = \lambda X\}$ est un espace vectoriel.

(58) Mines PSI 2024 Martin Mayot I

On définit
$$A_0 = (1) \in \mathfrak{M}_1(\mathbb{R})$$
 et, pour tout $\mathfrak{n} \in \mathbb{N}$, $A_{\mathfrak{n}+1} = \begin{pmatrix} A_{\mathfrak{n}} & A_{\mathfrak{n}} \\ A_{\mathfrak{n}} & 0 \end{pmatrix}$.

- a. Donner, pour tout $n \in \mathbb{N}$, la taille de la matrice A_n .
- **b.** Calculer le rang de A_n .
- c. Donner les valeurs propres de A_n . La matrice A_n est-elle diagonalisable ?

[**59**] <u>Mines PSI 2024</u> Clément Reiner II

On considère \mathbb{C} en tant que \mathbb{R} -espace vectoriel et on pose $\mathsf{E} = \mathcal{L}(\mathbb{C})$.

- **a.** Montrer que $E = \{f_{a,b} : z \mapsto az + b\overline{z} \mid (a,b) \in \mathbb{C}^2\}.$
- **b.** Déterminer le déterminant et la trace de $f_{a,b}$ en fonction de a et b.
- c. Donner une condition nécessaire et suffisante pour que $f_{a,b}$ soit diagonalisable.

[**60**] <u>Mines PSI 2024</u> Arya Tabrizi I

Soit $n \in \mathbb{N}^*$ et $A_n = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathfrak{M}_n(\mathbb{R})$ telle que $\forall (i,j) \in [\![1;n]\!]^2$, $a_{i,i} = i$ et $a_{i,j} = 1$ si $i \neq j$.

On note P_n le polynôme caractéristique de A_n .

- $\mathbf{a.} \ \mathrm{Montrer} \ \mathrm{que} \ \forall \mathfrak{n} \geqslant 1, \ P_{\mathfrak{n}+1} = (X-\mathfrak{n})P_{\mathfrak{n}} X(X-1)\cdots (X-\mathfrak{n}+1).$
- $\mathbf{b.} \text{ Montrer que}, \ \forall k \in [\![0;n-1]\!], \ (-1)^k P_n(k) \text{ a le même signe que } P_n(0) \text{ et que } P_n(n-1) < 0 \text{ et } P_n(n) < 0.$
- ${\bf c}$. En déduire que A_n admet ${\bf n}$ valeurs propres réelles distinctes.

61 Mines PSI 2024 Guilhem Thébault I

$$\mathrm{Soit}\; N\geqslant 2\;\mathrm{et}\; A=\begin{pmatrix}0&\frac{1}{N}&0&\cdots&0\\1&\ddots&\frac{2}{N}&\ddots&\vdots\\0&\frac{N-1}{N}&\ddots&\ddots&0\\\vdots&\ddots&\ddots&\ddots&1\\0&\cdots&0&\frac{1}{N}&0\end{pmatrix}\in \mathfrak{M}_{N+1}(\,\mathbb{R}).$$

- **a.** Identifier un endomorphisme f de $\mathbb{R}_N[X]$ tel que $\operatorname{Mat}_{\mathcal{B}}(f) = A$ où \mathcal{B} est la base canonique de $\mathbb{R}_N[X]$.
- b. En déduire que A est diagonalisable et donner ses éléments propres.

(62) <u>Mines PSI 2024</u> Antoine Vergnenègre I

Soit $n \in \mathbb{N}^*$ et $(U, V) \in (\mathfrak{M}_n(\mathbb{C}))^2$ tel que UV = VU et V nilpotente.

- a. Montrer que $det(I_n + M) = 1$ si $M \in \mathfrak{M}_n(\mathbb{C})$ est nilpotente.
- **b.** Montrer que det(U + V) = det(U) si U est inversible.
- c. Montrer que det(U + V) = det(U). Indication : montrer que Ker(U) est stable par V.

63 CCINP PSI 2024 Amélia Arangoits II

Soit
$$A = \begin{pmatrix} -2 & 4 & 1 \\ -1 & 3 & 1 \\ -3 & 3 & 2 \end{pmatrix} \in \mathfrak{M}_3(\mathbb{R})$$
 et f l'endomorphisme canoniquement associé à A .

- a. Donner au moins une condition nécessaire et suffisante de diagonalisabilité d'un endomorphisme sur un espace vectoriel de dimension fini.
- **b.** Donner les valeurs propres de A.
- c. La matrice A est-elle diagonalisable?
- **d.** Trouver une base \mathcal{B} de \mathbb{R}^3 telle que $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} * & 0 & 0 \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix}$.

[64] CCINP PSI 2024 Edward Bauduin II

Soit $M \in \mathcal{M}_4(\mathbb{R})$ vérifiant (1) : $M^3 - 4M = 0$ et Tr(M) = 0.

- a. Montrer que les valeurs propres de M sont des racines de $P = X^3 4X$.
- **b.** En déduire toutes les matrices $M \in \mathcal{M}_4(\mathbb{R})$ vérifiant (1).

[65] <u>CCINP PSI 2024</u> Amjad Belmiloud I

a. Étudier la diagonalisabilité de
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6 \end{pmatrix}$$
.

Soit une matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que dim(Ker(A)) = 2. On pose $B = \begin{pmatrix} \alpha A & \beta A \\ \gamma A & 0 \end{pmatrix}$ et $C = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$

- **b.** Calculer χ_C en fonction de χ_A . En déduire Sp(C) en fonction de Sp(A).
- **c.** On suppose $\beta \neq 0$, $\gamma \neq 0$ et $\alpha + \beta = \gamma$. Calculer χ_B en fonction de χ_A , puis Sp(B) en fonction de Sp(A).
- $\mathbf{d.} \ \mathrm{Montrer} \ \mathrm{que} \ \mathrm{si} \ X \in \mathrm{Ker}(A), \ \mathrm{alors} \ \binom{X}{0} \in \mathrm{Ker}(B). \ \mathrm{En} \ \mathrm{d\'eduire} \ \mathrm{que} \ \mathrm{d\'em}(\mathrm{Ker}(B)) \geqslant 2 \ \mathrm{d\'em}(\mathrm{Ker}(A)).$
- e. Diagonaliser B pour $\alpha = 1$, $\beta = 2$ et $\gamma = 3$.

(66) CCINP PSI 2024 Martin Mayot I

Soit
$$n\geqslant 1,\,A\in \mathfrak{M}_n(\,\mathbb{R})$$
 et $M=\left(egin{array}{cc}A&A\\0&A\end{array}
ight)\in \mathfrak{M}_{2n}(\,\mathbb{R}).$

- a. Soit $Q \in \mathbb{R}[X]$ et U et V des matrices semblables de $\mathfrak{M}_n(\mathbb{R})$. Montrer que P(U) et P(V) sont semblables.
- **b.** Soit $k \in \mathbb{N}$, calculer M^k .
- c. Pour $P \in \mathbb{R}[X]$, donner une expression de P(M) en fonction de A, P(A) et P'(A).
- d. Montrer que si M est diagonalisable, alors A l'est aussi.
- e. Étudier la réciproque si A est inversible.
- **f.** Montrer que si M est diagonalisable et A n'est pas inversible, alors A = 0.

[67] <u>CCINP PSI 2024</u> Jasmine Meyer II

Soit
$$n \in \mathbb{N}^*$$
, $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^3 - A^2 + A - I_n = 0$.

- a. Montrer que les valeurs propres de A sont des racines de $P = X^3 X^2 + X 1$.
- **b.** Calculer det(A).
- **c.** Prouver que Tr $(A) \in \mathbb{N}$.

[68] <u>CCINP PSI 2024</u> Tom Sanchez II

Soit $n \in \mathbb{N}^*$, $(A, B) \in (\mathfrak{M}_n(\mathbb{C}))^2$ et $U \in \mathfrak{M}_n(\mathbb{C})$ telles que AU = UB et $U \neq \emptyset$.

- a. Montrer que si $P \in \mathbb{C}[X]$ vérifie P(A) = 0, alors Sp(A) est inclus dans l'ensemble des racines de P.
- **b.** Montrer que $\forall P \in \mathbb{C}[X]$, P(A)U = UP(B).
- c. En déduire A et B possèdent une valeur propre commune.
- **d.** Montrer que si deux matrices C, D de $\mathcal{M}_n(\mathbb{C})$ ont une valeur propre commune, il existe une matrice non nulle $M \in \mathcal{M}_n(\mathbb{R})$ telle que CM = MD.

(69) Mines-Télécom PSI 2024 Clément Lacoste II

Soit
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 5 & 5 & 9 \end{pmatrix}$$
.
a. Donner les valeurs propres et les vecteurs propres de A .

- **b.** Soit $M \in M_3(\mathbb{R})$ telle que $M^2 = A$, montrer que les vecteurs propres de A sont aussi des vecteurs propres de M. La matrice M est-elle diagonalisable?
- **c.** Donner toutes les matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que $M^2 = A$.

70 Mines-Télécom PSI 2024 Romane Mioque I

Soit E un espace vectoriel de dimension finie $n \ge 2$, $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et $u = \sum_{k=1}^n e_k$.

Soit
$$f \in \mathcal{L}(E)$$
 tel que $\forall i \in [[1; n]], f(e_i) = e_i + u$.

- a. Trouver les valeurs propres et les vecteurs propres de f.
- **b.** L'endomorphisme f est-il diagonalisable?
- c. Déterminer la valeur de det(f) et Tr (f).

PRÉPARATION ORAUX 2025 THÈME 6 THÉORÈMES DE DOMINATION

(71) Centrale Maths1 PSI 2024 Thomas Favant

Soit $\lambda \in \mathbb{R}$ tel que $2\lambda > -1$. On définit $g_{\lambda} : \mathbb{R} \times]0; \pi[\to \mathbb{R} \text{ par } g_{\lambda}(x,\theta) = e^{-ix\cos(\theta)}\sin^{2\lambda}(\theta)$.

- **a.** Montrer que la fonction $\theta \mapsto g_{\lambda}(x,\theta)$ est intégrable sur $]0;\pi[$.
- $\textbf{b.} \ \, \text{Montrer que} \ \, \forall x \in \mathbb{R}, \ \, f_{\lambda}(x) = \int_{0}^{\pi} g_{\lambda}(x,\theta) d\theta = 2 \int_{0}^{\pi/2} \cos(x\cos(\theta)) \sin^{2\lambda}(\theta) d\theta.$
- $\textbf{c.} \ \text{Montrer que } f \text{ est de classe } C^{\infty} \text{ sur } \mathbb{R} \text{ et que } \forall x \in \mathbb{R}, \ f_{\lambda}''(x) = f_{\lambda+1}(x) f_{\lambda}(x).$

(72) <u>Centrale Maths1 PSI 2024</u> Antoine Métayer

Soit $\alpha \in \mathbb{R}$ et $(\mathfrak{u}_n)_{n \in \mathbb{N}^*}$ une suite de réels strictement positifs telle que $\frac{\mathfrak{u}_{n+1}}{\mathfrak{u}_n} = 1 - \frac{\alpha}{n} + O\Big(\frac{1}{n^2}\Big)$.

Pour tout entier $n \in \mathbb{N}^*$, on pose $b_n = ln(n^{\alpha}u_n)$ et $a_n = b_{n+1} - b_n$.

On définit aussi $f:]-1;0[\to \mathbb{R} \text{ par } f(x)=\int_0^1 \frac{1-(1-t)^x}{t}dt.$

- $\textbf{a.} \ \text{Montrer que} \ \sum_{n\geqslant 1} \alpha_n \ \text{converge.} \ \text{En d\'eduire qu'il existe} \ \lambda \in \ \mathbb{R}_+^* \ \text{tel que} \ \mathfrak{u}_n \underset{+\infty}{\sim} \frac{\lambda}{\mathfrak{n}^\alpha}.$
- **b.** Montrer que f est bien définie et que $\forall x \in]-1; 0[, f(x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x(x-1)\cdots(x-n+1)}{n.n!}.$

73 Mines PSI 2024 Jules Campistron II

Pour $x \in \mathbb{R}$, en cas de convergence, on pose $f(x) = \int_0^1 |\ln(t)|^x dt$.

- a. Déterminer le domaine de définition D de f.
- **b.** Montrer que f est de classe C^{∞} sur D.
- **c.** Calculer f(n) pour tout $n \in \mathbb{N}$.
- **d.** Trouver un équivalent de f(x) quand x tend vers $+\infty$.

(74) Mines PSI 2024 Tristan Cheyrou II

Pour tout entier $n \ge 2$, on pose $I_n = \int_0^{+\infty} \frac{dx}{1 + x^n}$.

- a. Justifier que la suite $(I_n)_{n\geqslant 2}$ est bien définie.
- **b.** Montrer que la suite $(I_n)_{n\geqslant 2}$ converge vers une limite $\ell\in\mathbb{R}$ à déterminer.
- c. Trouver un équivalent de $I_n \ell$ quand n tend vers $+\infty$.
- **d.** En déduire la nature de $\sum_{n>2} (I_n \ell)$.

75 Mines PSI 2024 Lucie Girard I

Pour $n \in \mathbb{N}^*$, on pose $H_n = \sum\limits_{k=1}^n \frac{1}{k}$ et $I_n = \int_0^n \left(1 - \frac{t}{n}\right)^{n-1} ln(t) dt$.

- a. Montrer la convergence de la suite $(H_n ln(n))_{n \ge 1}$. On note γ sa limite.
- **b.** Établir la convergence absolue de $\int_0^{+\infty} \ln(t)e^{-t}dt$. On note $I = \int_0^{+\infty} \ln(t)e^{-t}dt$.
- c. Prouver l'existence de I_n et trouver un lien simple entre I_n et H_n .
- **d.** Déterminer la limite de la suite $(I_n)_{n\in\mathbb{N}^*}$ et trouver un lien entre γ et I.

76 Mines PSI 2024 Valentine Girard III

Montrer que $\int_0^1 \frac{\ln(x) \ln(1-x)}{x} dx = \sum_{n=1}^{+\infty} \frac{1}{n^3}.$

77 Mines PSI 2024 Manech Leroux I

Pour $x \in \mathbb{R}$, en cas de convergence, on pose $f(x) = \int_0^{+\infty} Arctan(xt)e^{-t}dt$.

- a. Déterminer le domaine de définition D de f.
- **b.** Montrer que f est de classe C¹ sur D.

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0\in\mathbb{R}_+^*$ et $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n).$

- $\boldsymbol{c.}$ Montrer que la suite $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
- **d.** Déterminer un équivalent de u_n quand n tend vers $+\infty$.

(78) Mines PSI 2024 Mathias Pisch I

Soit la fonction $\Gamma:\,\mathbb{R}_+^*\to\mathbb{R}$ définie par $\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt.$

- a. Montrer que Γ est bien définie sur \mathbb{R}_+^* , et qu'elle y est strictement positive et de classe \mathbb{C}^2 .
- **b.** Prouver que Γ et $\operatorname{ln} \circ \Gamma$ sont convexes sur \mathbb{R}_+^*
- $\mathbf{c.} \text{ } \acute{\mathrm{E}}\mathrm{tablir}, \ \mathrm{pour} \ x>0, \ \mathrm{que} \ \Gamma(x) = \lim_{n \to +\infty} \int_0^n t^{x-1} \left(1-\frac{t}{n}\right)^n dt.$
- d. Trouver une relation entre $\int_0^n t^{x-1} \left(1 \frac{t}{n}\right)^n dt$ et $\int_0^1 u^{x-1} (1 u)^n du$.
- e. En déduire que $\forall x>0,\ \Gamma(x)=\lim_{n\to+\infty}\frac{n!n^x}{x(x+1)\cdots(x+n)}.$

79 <u>CCINP PSI 2024</u> Edward Bauduin et Jasmine Meyer I

Soit la fonction f définie par $f(x)=\int_0^{+\infty}\frac{te^{-x\,t}}{e^t-1}dt.$

- a. Déterminer le domaine de définition de f.
- **b.** Trouver la valeur de $\lim_{x \to +\infty} f(x)$.
- **c.** Pour x > 0, calculer f(x 1) f(x).
- d. En déduire un développement de f en somme de séries de fonctions.
- e. Trouver ce développement d'une autre manière.

PRÉPARATION ORAUX 2025 THÈME 7 ESPACES PRÉHILBERTIENS RÉELS ET ESPACES EUCLIDIENS

80 X PSI 2024 Jules Campistron I

- **a.** Soit $\alpha, \lambda_1, \lambda_2, D_1, D_2$ des réels tels que $\lambda_1 \geqslant \lambda_2$ et $D_1 \geqslant D_2$. Soit $A = \begin{pmatrix} D_1 & \alpha \\ \alpha & D_2 \end{pmatrix} \in \mathfrak{M}_2(\mathbb{R})$ dont les valeurs propres sont λ_1, λ_2 . Montrer que $\lambda_1 + \lambda_2 = D_1 + D_2$ et $\lambda_1 \geqslant D_1$.
- **b.** Réciproquement, soit $A \in \mathcal{M}_2(\mathbb{R})$ symétrique dont les deux valeurs propres sont $\lambda_1 \geqslant \lambda_2$ et soit D_1, D_2 des réels tels que $\lambda_1 + \lambda_2 = D_1 + D_2$, $D_1 \geqslant D_2$ et $\lambda_1 \geqslant D_1$. Montrer qu'il existe $\alpha \in \mathbb{R}$ tel que les matrices A et $\begin{pmatrix} D_1 & \alpha \\ \alpha & D_2 \end{pmatrix}$ soient orthosemblables.

(81) <u>ENS Cachan PSI 2024</u> Thomas Favant

Soit un entier $n \ge 2$, on note $|.|_2$ la norme 2 sur l'espace vectoriel des vecteurs colonnes de $\mathfrak{M}_{\mathfrak{n},1}(\mathbb{R})$ et, pour toute matrice $M \in \mathfrak{M}_{\mathfrak{n}}(\mathbb{R})$, on note $||M||_2 = \sup_{\substack{X \in \mathfrak{M}_{\mathfrak{n},1}^+(\mathbb{R}) \\ X \ne 0}} \frac{|MX|_2}{|X|_2}$.

Soit $A \in GL_n(\mathbb{R})$, on définit le conditionnement $\kappa(A) = ||A||_2 ||A^{-1}||_2$.

- a. Rappeler la définition de $|.|_2$ et montrer que $||M||_2 = \sup_{|X|_2=1} |MX|_2$.
- $\mathbf{b.} \ \operatorname{Montrer} \ \operatorname{que} \ M \mapsto ||M||_2 \ \operatorname{est} \ \operatorname{une} \ \operatorname{norme} \ \operatorname{sur} \ \mathfrak{M}_{\mathfrak{n}}(\ \mathbb{R}) \ \operatorname{et} \ \forall (M_1,M_2) \in \mathfrak{M}_{\mathfrak{n}}(\ \mathbb{R})^2, \ ||M_1M_2||_2 \leqslant ||M_1||_2||M_2||_2.$
- **c.** Montrer que pour toute $M \in \mathcal{M}_n(\mathbb{R})$, il existe $X \neq 0 \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $|MX|_2 = ||M||_2 |X|_2$.
- **d.** Montrer que A^TA est une matrice symétrique définie positive.
- $\textbf{e. On note } \sigma_n \text{ (resp. } \sigma_1) \text{ la plus grande (resp la plus petite) valeur propre de } A^TA, \text{ montrer que } \kappa(A) = \sqrt{\frac{\sigma_n}{\sigma_1}}.$
- **f.** On suppose dans cette question seulement que A est symétrique définie positive, et on note λ_n (resp. λ_1) sa plus grande (resp. sa plus petite) valeur propre. Calculer $||A||_2$ et en déduire $\kappa(A)$.
- **g.** Montrer que $\kappa(A) = 1$ si et seulement s'il existe $\alpha \in \mathbb{R}^*$ et $Q \in O(n)$ tels que $A = \alpha Q$.
- **h.** On suppose que A=QR avec $Q\in O(n)$ et $R\in \mathfrak{M}_n(\mathbb{R})$. Montrer que $\kappa(A)=\kappa(R)$.
- i. Soit $(B, \overline{B}) \in \mathcal{M}_{n,1}(\mathbb{R})^2$ tel que $B \neq 0$ et X, \overline{X} les solutions de AX = B et $A\overline{X} = \overline{B}$. Majorer l'erreur relative $\frac{|X \overline{X}|_2}{|X|_2}$ sur les solutions en fonction du conditionnement $\kappa(A)$ et de l'erreur relative $\frac{|B \overline{B}|_2}{|B|_2}$ sur les entrées.
- j. Illustrer avec une matrice A bien choisie le principe suivant : "une matrice mal conditionnée (telle que $\kappa(A)$ est grand) entraı̂ne de grandes erreurs numériques".

82 ENS Cachan PSI 2024 Tiago Genet

 $\mathrm{Soit}\left(E,(.|.)\right) \mathrm{\ un\ espace\ euclidien\ de\ dimension\ } d\geqslant 2.\ \mathrm{Pour\ } u\in E \mathrm{\ unitaire\ } et\ \mathfrak{a}\in \mathbb{R}, \mathrm{soit\ } f_{\mathfrak{a}}: x\mapsto x+\mathfrak{a}(x|u)u.$

- a. Montrer que $\forall (a,b) \in \mathbb{R}^2, \ f_a \circ f_b = f_{a+b+ba}.$
- **b.** En déduire que $f_a \circ f_b = f_b \circ f_a$.
- **c.** Montrer que $\forall a \in \mathbb{R}, \ \forall p \in \mathbb{N}, \ f_a^p = f_{(a+1)^p-1}$.
- **d.** Montrer que f_{α} est inversible si et seulement si $\alpha \neq -1$.
- e. Montrer que $f_{\mathfrak{a}}$ est autoadjoint pour tout réel $\mathfrak{a}.$
- **f.** Montrer que f_{α} est une isométrie si et seulement si $\alpha = 0$ ou $\alpha = -2$.

Question supplémentaire :

- soit $(A_n)_{n\in\mathbb{N}}$ une suite d'évènements disjoints, montrer que $\lim_{n\to+\infty}\mathbb{P}(A_n)=0$.

83 Centrale Maths1 PSI 2024 Axel Corbière

Soit E un espace euclidien dont on note ||.|| la norme euclidienne associée au produit scalaire (.|.) et f un endomorphisme de E. On dit que f est une contraction si $\forall x \in E, \ ||f(x)|| \le ||x||$.

- a. Si f est autoadjoint, montrer l'équivalence entre des deux assertions suivantes :
 - (i) f est une contraction.
 - (ii) $\forall \lambda \in Sp(f), |\lambda| \leq 1.$
- **b.** Soit $P \in \mathbb{R}[X]$, montrer que si f est autoadjoint et $x \in E$, $||P(f)(x)|| \le \left(\sup_{\lambda \in Sp(f)} (|P(\lambda)|)\right)||x||$.

84 Centrale Maths 1 PSI 2024 Nathan Jung

Soit E un espace euclidien de dimension $p \ge 1$ dont on note (.|.) le produit scalaire et ||.|| la norme euclidienne associée. Soit u un endomorphisme autoadjoint de E dont on note $\lambda_1 \le \cdots \le \lambda_p$ les valeurs propres. On note enfin $S = \{x \in E \mid ||x|| = 1\}$ la sphère unité de E.

- **a.** Montrer que $x \mapsto (u(x)|x)$ admet un minimum sur S.
- **b.** Montrer que $\lambda_1 = \underset{x \in S}{\text{Min}} ((u(x)|x)).$
- $\textbf{c.} \ \text{Montrer que } \lambda_2 = \underset{F \in \mathcal{E}_2}{\text{Min}} \left(\underset{x \in S \cap F}{\text{Max}} \left((\mathfrak{u}(x)|x) \right) \right) \ \text{où } \mathcal{E}_2 \ \text{est l'ensemble des plans vectoriels de E.}$

(85) Centrale Maths1 PSI 2024 Guillaume Leduc

Soit E un espace euclidien pour un produit scalaire (.|.), $\lambda \in \mathbb{R}^*$, ν un vecteur non nul de E et $f: E \to E$ définie par $\forall x \in E$, $f(x) = x - \lambda(x|\nu)\nu$.

- a. f est-il un endomorphisme autoadjoint de E?
- b. Pour quelles valeurs de λ l'endomorphisme f est-il une isométrie vectorielle ?
- c. On suppose que f est une isométrie vectorielle, déterminer les éléments caractéristiques de f.
- d. Donner une condition nécessaire et suffisante pour que deux réflexions commutent.

86 Centrale Maths 1 PSI 2024 Clément Reiner

Soit
$$\mathbb{U}' = \{z \in \mathbb{C} \setminus \{-1\} \mid |z| = 1\}$$
 et $h : \mathbb{C} \setminus \{-1\} \to \mathbb{C}$ définie par $h(z) = \frac{1-z}{1+z}$.

- a. Montrer que h réalise une bijection de $\mathbb{C} \setminus \{-1\}$ dans lui-même.
- **b.** Montrer que h induit une bijection de \mathbb{U}' dans i \mathbb{R} .
- c. Former une représentation de \mathbb{U}' dans le plan complexe.
- **d.** Pour $\theta \in]-\pi;\pi[$, représenter dans le plan complexe le point d'affixe $h(e^{i\theta})$.

On note O' l'ensemble des matrices orthogonales de O(2) dont -1 n'est pas valeur propre et on définit $H:O'\to \mathcal{M}_2(\mathbb{R})$ par $H(M)=(I_2-M)(I_2+M)^{-1}$.

- e. Justifier que H est bien définie et donner le spectre de h(M) si $M \in O'$.
- **f.** Montrer que H réalise une bijection entre O' et les matrices antisymétriques de $\mathcal{M}_2(\mathbb{R})$.

87 Centrale Maths1 PSI 2024 Guilhem Thébault

Soit $\mathfrak{D}_{\mathfrak{n}}(\mathbb{R})$ l'ensemble des matrices $M=(\mathfrak{m}_{i,j})_{1\leqslant i,j\leqslant \mathfrak{n}}$ de $\mathfrak{M}_{\mathfrak{n}}(\mathbb{R})$ telles que $Sp(M)=\{\mathfrak{m}_{1,1},\cdots,\mathfrak{m}_{\mathfrak{n},\mathfrak{n}}\}$ (valeurs propres comptées avec leur ordre de multiplicité) : ces matrices sont dites à diagonale propre.

On note S_n (resp. A_n) l'ensemble des matrices symétriques (resp. antisymétriques) de $\mathfrak{M}_n(\mathbb{R})$.

- a. Donner une condition nécessaire et suffisante pour que $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ soit à diagonale propre.
- **b.** Déterminer $\mathfrak{D}_{\mathfrak{n}}(\mathbb{R}) \cap S_{\mathfrak{n}}$.
- **c.** Trouver $\mathfrak{D}_{\mathfrak{n}}(\mathbb{R}) \cap A_{\mathfrak{n}}$.
- **d.** Montrer que si un sous-espace F de $\mathfrak{M}_n(\mathbb{R})$ vérifie $F \subset \mathfrak{D}_n(\mathbb{R})$, alors $dim(F) \leqslant \frac{n(n+1)}{2}$.

88 <u>Centrale Maths1 PSI 2024</u> Antoine Vergnenègre

Soit $n \in \mathbb{N}^*$ et $M \in \mathfrak{M}_n(\mathbb{Z})$ telle que les coefficients diagonaux de M sont impairs et tous les autres pairs.

a. Montrer que det(M) est impair. En déduire rang (M).

Soit P_1, \dots, P_k des parties distinctes de [1; n] et, pour $j \in [1; k]$, le vecteur colonne $X_j \in \mathcal{M}_{n,1}(\mathbb{R})$ défini par $X_i^T = (x_{1,j} \cdots x_{n,j})$ avec $x_{i,j} = 1$ si $i \in P_j$ et $x_{i,j} = 0$ sinon.

Soit $X \in \mathcal{M}_{n,k}(\{0,1\})$ dont les colonnes sont, dans l'ordre, X_1, \dots, X_k .

- **b.** Montrer que X et X^TX ont même rang.
- c. Calculer les coefficients de X^TX en fonction des parties P_1, \dots, P_k .

[89] Mines PSI 2024 Jules Campistron I

Soit $X \neq 0 \in \mathbb{R}^n$ et $\Phi : \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ définie par $\Phi(M) = \langle MX, X \rangle$.

- **a.** Déterminer $\Phi(\mathfrak{M}_n(\mathbb{R}))$.
- **b.** Déterminer $\Phi(O_n(\mathbb{R}))$.

(90) Mines PSI 2024 Armand Dépée I

On définit la suite $(f_n)_{n\geqslant 0}$ par $f_0=0$, $f_1=1$ et $\forall n\in\mathbb{N},\ f_{n+2}=f_{n+1}+f_n$. Pour un entier $n\geqslant 2$, on note $A_n=(f_{i+j-2})_{1\leqslant i,j\leqslant n}\in\mathcal{M}_n(\mathbb{R})$.

- **a.** Exprimer A_2 , A_3 , A_4 .
- **b.** Pour $n \ge 2$, quelle est la multiplicité de 0 pour A_n .
- c. Montrer qu'il existe deux valeurs propres de A_n non nulles α_n et β_n , telles que $\alpha_n < 0 < \beta_n$.
- **d.** Quelle est la nature de la suite $(\alpha_n)_{n\geq 2}$? Et de $(\beta_n)_{n\geq 2}$?

91 Mines PSI 2024 Lucie Girard II

Soit E un espace préhilbertien réel et F un sous-espace de E.

a. Montrer que $F \subset (F^{\perp})^{\perp}$.

On prend, pour les deux prochaines questions, $E = \mathbb{R}[X]$ et $F = \{P \in \mathbb{R}[X] \mid P(1) = P'(1) = \emptyset\}$.

- **b.** Déterminer F^{\perp} et $(F^{\perp})^{\perp}$ si on munit E du produit scalaire (.|.) défini par $(P|Q) = \sum_{k=0}^{+\infty} P^{(k)}(1)Q^{(k)}(1)$.
- c. Déterminer F^{\perp} et $(F^{\perp})^{\perp}$ si on munit E du produit scalaire (.|.) défini par $(P|Q) = \int_0^1 P(t)Q(t)dt$.
- **d.** Donner une condition suffisante pour que $F = (F^{\perp})^{\perp}$.
- e. La condition suffisante de la question précédente est-elle nécessaire ?

Question supplémentaire :

- si F est un sous-espace vectoriel d'un espace préhilbertien E, est-ce que F est un ouvert ou un fermé ?

[92] <u>Mines PSI 2024</u> Valentine Girard II

Soit $n \in \mathbb{N}^*$, trouver les matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que $M^TMM^T = I_n$.

93 Mines PSI 2024 Mathis Laruelle I

On considère \mathbb{R}^3 muni de sa base canonique $\mathcal{B} = (\overrightarrow{v}, \overrightarrow{y}, \overrightarrow{k})$. Soit $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 2z = 0\}$ et p la projection orthogonale sur F et s la symétrie orthogonale par rapport à F.

- a. Trouver une base orthonormale de F et la compléter en une base orthonormale \mathcal{B}' de \mathbb{R}^3 .
- **b.** Déterminer les matrices de p et s dans la base \mathcal{B}' .
- c. Déterminer les matrices de p et s dans la base \mathcal{B} .

(94) Mines PSI 2024 Guillaume Leduc II

Soit $n \in \mathbb{N}^*$ et $M \in \mathfrak{M}_n(\mathbb{R})$ telle que $M^2 - M + M^T = I_n$.

- a. Montrer que M est symétrique.
- b. (question rajoutée) Que représente f canoniquement associé à M dans l'espace euclidien \mathbb{R}^n canonique?

(95) Mines PSI 2024 Manech Leroux II

Soit $n \in \mathbb{N}^*$ et $A \in \mathfrak{M}_n(\mathbb{R})$. On considère $\varphi_A : M \mapsto AMA^T$. Donner une condition nécessaire et suffisante pour que φ_A soit une isométrie de $\mathfrak{M}_n(\mathbb{R})$ muni de sa structure euclidienne canonique.

[96] Mines PSI 2024 Antoine Métayer I

Soit $n \in \mathbb{N}^*$ et $E = \mathbb{R}_n[X]$. Pour $(P,Q) \in E^2$, on pose $< P,Q >= \int_{-1}^1 P(t)Q(t)dt$. Si $A \neq 0 \in E$, on définit l'application f_A qui à un polynôme $P \in E$ associe le reste de la division euclidienne de P par A.

- a. Montrer que <.,.> définit un produit scalaire sur E.
- $\mathbf{b}.$ Montrer que f_A est un endomorphisme de E.
- ${f c.}$ Trouver une condition nécessaire et suffisante sur A pour que f_A soit un projecteur orthogonal.
- d. Trouver tous les polynômes A tel que f_A est un projecteur orthogonal si n = 3.

97 <u>Mines PSI 2024</u> Jasmine Meyer II

Soit E un espace euclidien, ||.|| la norme euclidienne associée et $\mathfrak p$ un projecteur de E.

Montrer que p est orthogonal si et seulement si p est 1-lipschitzien.

98 CCINP PSI 2024 Yasmine Azzaoui II

Soit $n \in \mathbb{N}^*$ et $A \in \mathfrak{M}_n(\mathbb{R})$ telle que A et A^T commutent.

- **a.** Montrer que $Ker(A) = Ker(A^T)$.
- b. Montrer que Ker(A) et Im(A) sont supplémentaires orthogonaux.
- $\textbf{c.} \text{ En d\'eduire qu'il existe } r \in \llbracket 0; n \rrbracket \text{ et } P \in O(n) \text{ tels que } A = PBP^T \text{ avec } B = \begin{pmatrix} 0 & 0 \\ 0 & U \end{pmatrix} \text{ et } U \in GL_r(\mathbb{R}).$

99 <u>CCINP PSI 2024</u> Mathéo Demongeot-Marais II

Soit E un espace euclidien de dimension $n \ge 1$, $\mathcal{B} = (\nu_1, \dots, \nu_n)$ une base orthonormale de E et p un projecteur orthogonal de E tel que rang (p) = r.

- **a.** Montrer que $\forall x \in E$, (p(x)|p(x)) = (x|p(x)).
- **b.** Montrer que $\sum_{i=1}^{n} ||p(v_i)||^2 = r$.

(100) <u>CCINP PSI 2024</u> Clément Lacoste II

- a. Montrer que $\varphi:(P,Q)\mapsto \int_{-1}^1 P(t)Q(t)dt$ définit un produit scalaire sur $\mathbb{R}[X]$.
- **b.** Pour tout $n \in \mathbb{N}$, montrer que $\exists ! U_n \in \mathbb{R}_n[X], \ \forall P \in \mathbb{R}_n[X], \ P(0) = \int_{-1}^1 P(t) U_n(t) dt$.
- c. Déterminer U_2 .

(**101**) <u>CCINP PSI 2024</u> Romane Mioque I

Soit $M \in \mathcal{M}_2(\mathbb{R})$ telle que $M^TM = MM^T$ et $M^2 + 2I_2 = 0$.

- **a.** La matrice M^TM est-elle diagonalisable?
- **b.** Montrer que $Sp(M^TM) \subset \{-2, 2\}$.
- **c.** Montrer que si $\lambda \in Sp(M^TM)$, alors $\lambda \ge 0$. En déduire $Sp(M^TM)$.
- **d.** Montrer que $\frac{1}{\sqrt{2}}$ M est orthogonale.
- e. Quelles sont les matrices $M \in \mathcal{M}_2(\mathbb{R})$ telles que $M^TM = MM^T$ et $M^2 + 2I_2 = 0$.

(102) <u>Mines-Télécom PSI 2024</u> Mattéo Aumaitre II

Soit $S \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique définie positive, $X \in \mathcal{M}_{n,1}(\mathbb{R})$ un vecteur colonne non nul et la suite de vecteurs colonnes $(Y_k)_{k \in \mathbb{N}}$ définie par $\forall k \in \mathbb{N}, \ Y_k = \frac{S^k X}{||S^k X||}$.

Montrer que la suite $(Y_k)_{k\in\mathbb{N}}$ converge vers un vecteur propre de S.

(103) Mines-Télécom PSI 2024 Émile Gauvrit I

Soit l'espace vectoriel $E = \mathbb{R}^4$ dans lequel on considère $F = \{(x,y,z,t) \in E \mid x+y-z-t=x-y+z-t=0\}$.

- a. Déterminer la matrice A dans la base canonique de la symétrie orthogonale par rapport à F.
- **b.** Que constate-t-on sur cette matrice? Était-ce prévisible?

PRÉPARATION ORAUX 2025 THÈME 8 PROBABILITÉ ET VARIABLES ALÉATOIRES

(104) ENS Cachan PSI 2024 Jules Campistron

Soit $n \in \mathbb{N}^*$, l'ensemble $\Omega = \{\omega_1, \dots, \omega_n\}$, \mathbb{P} la probabilité uniforme sur Ω et des variables aléatoires réelles X_1, \dots, X_{n-1} sur Ω et indépendantes deux à deux, d'espérance nulle et de variance 1. Soit Z une variable aléatoire réelle sur Ω telle que $Z(\Omega) = \{\alpha_1, \dots, \alpha_m\}$ avec $m \geq 3$ et les réels $\alpha_1, \dots, \alpha_m$ distincts deux à deux.

On pose, pour $i \in [1; n-1]$, $x_i = (X_i(\omega_1), \dots, X_i(\omega_n))$, $x_n = (1, \dots, 1)$ et $z = (Z(\omega_1), \dots, Z(\omega_n))$.

- **a.** Montrer que $\mathbb{E}(Z) = \frac{1}{n} < z, x_n >$.
- **b.** Montrer que $\exists (\beta_1, \dots, \beta_m) \in \mathbb{R}^m \setminus \{(0, \dots, 0)\}, \sum_{k=1}^m \mathbb{P}(Z = \alpha_k)\beta_k = \sum_{k=1}^m \mathbb{P}(Z = \alpha_k)\alpha_k\beta_k = 0.$
- $\textbf{c.} \ \, \text{En d\'eduire qu'il existe } Q \in \, \mathbb{R}_{m-1}[X] \ \, \text{tel que } Q(Z)(\Omega) \neq \{0\}, \, \, \mathbb{E}(Q(Z)) = \, \mathbb{E}(Q(Z)Z) = 0.$
- $\mathbf{d.} \text{ Montrer que } \forall i \in [\![1;n-1]\!], \ < x_i, x_i> = n \text{ et que } \forall (i,j) \in [\![1;n-1]\!]^2, \ i \neq j \Longrightarrow < x_i, x_j> = 0.$
- e. Montrer que $\sum_{k=1}^{n-1} X_k^2 = n-1$. En déduire que $\sum_{k=1}^{n-1} X_k^3 = 0$.

(105) ENS Cachan/Rennes PSI 2024 Jonathan Filocco et Mathias Pisch

Soit une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires identiquement distribuées et indépendantes à valeurs dans \mathbb{Z} telles que $\mathbb{P}(X_n=1)=\mathbb{P}(X_n=-1)=\frac{1}{2}$. On pose $S_n=X_1+\cdots+X_n$.

- a. Calculer la loi de S_n, son espérance, sa variance.
- **b.** Montrer que $\forall \alpha > 0$, $\mathbb{P}(S_n \geqslant n\alpha) \leqslant \frac{1}{n\alpha^2}$.
- $\textbf{c. Soit } X \text{ une variable aléatoire réelle, montrer } \forall \alpha > 0, \ \forall s > 0, \ \mathbb{P}(X \geqslant \alpha) \leqslant \frac{\mathbb{E}(e^{sX})}{e^{s\,\alpha}}.$
- $\mathbf{d.} \ \mathrm{Montrer} \ \mathrm{que} \ \forall s>0, \ \mathbb{P}(S_n\geqslant n\mathfrak{a})\leqslant \left(\frac{\mathrm{ch}\,(s)}{e^{s\,\mathfrak{a}}}\right)^n.$
- e. Montrer que $\forall s \in \mathbb{R}, \text{ ch}(s) \leqslant e^{\frac{s^2}{2}}$.
- **f.** En déduire que $\forall a > 0$, $\mathbb{P}(S_n \ge na) \le e^{\frac{-na^2}{2}}$.
- **g.** Montrer que la fonction $g: \mathbb{R}_+^* \to \mathbb{R}$ définie par $\forall x > 0, \ g(x) = \frac{e^x 1 x}{x^2}$ se prolonge par continuité en 0 et qu'elle est alors croissante sur \mathbb{R}_+ .

106 Centrale Maths1 PSI 2024 Tristan Cheyrou

 $\textbf{a. Donner le rayon de convergence } R \text{ de } \sum_{n\geqslant 0} \binom{2n}{n} \frac{x^{2n}}{4^n}. \text{ Montrer : } \forall x\in]-R; \\ R[, \ \sum_{n=0}^{+\infty} \binom{2n}{n} \frac{x^{2n}}{4^n} = \frac{1}{\sqrt{1-x^2}}.$

Soit $(X_k)_{k\geqslant 1}$ une suite de variables aléatoires indépendantes telles que $\mathbb{P}(X_k=\pm 1)=\frac{1}{2}$ pour tout $k\in\mathbb{N}^*$.

On pose $S_n = \sum_{k=1}^n X_k$ et $T = Min(\{n \in \mathbb{N}^* \mid S_n = 0\})$ si $\{n \in \mathbb{N}^* \mid S_n = 0\} \neq \emptyset$ et $T = +\infty$ sinon.

b. Pour $k \in \mathbb{N}^*$, on pose $Y_k = \frac{1+X_k}{2}$. Donner la loi de Y_k , puis celle de $Z_n = \sum_{k=1}^n Y_k$.

 $\mathbf{c}.$ En déduire la loi de $S_{\mathfrak{n}},$ son espérance et sa variance. Que représente $S_{\mathfrak{n}}$?

On pose $\mathfrak{p}_0=1$ et, pour tout entier $\mathfrak{n}\in\mathbb{N},$ $\mathfrak{p}_\mathfrak{n}=\mathbb{P}(S_{2\mathfrak{n}}=0).$ On pose aussi $\mathfrak{q}_k=\mathbb{P}(T=2k)$ pour $k\in\mathbb{N}.$

- **d.** Montrer que $\sum_{n\geqslant 0} \mathfrak{p}_n x^n$ est convergente pour |x|<1. On pose alors $\mathfrak{p}(x)=\sum_{n=0}^{+\infty} \mathfrak{p}_n x^n$.
- $\textbf{e.} \ \mathrm{Montrer} \ \mathrm{que} \ \forall n \geqslant 1, \ p_n = \sum_{k=1}^n p_{n-k} q_k. \ \mathrm{Montrer} \ \mathrm{que} \ \forall x \in]-1; 1[, \ G_T(x) = \frac{p(x^2)-1}{p(x^2)}.$
- f. En déduire la loi de T et son espérance.

(107) Centrale Maths 1 PSI 2024 Mathéo Demongeot-Marais

Dans une marche aléatoire symétrique (autant de chance d'aller à gauche qu'à droite) sur \mathbb{Z} démarrant en 0, on note X_n la variable aléatoire désignant l'abscisse du marcheur après le n-ième pas. On a donc $X_0 = 0$. Pour $k \in \mathbb{N}$, on pose $E_k =$ "le marcheur est revenu à l'origine au moins k fois au cours de la marche entière". Soit B_i la variable aléatoire qui vaut 1 si le marcheur est revenu en 0 après le i-ième pas et 0 sinon.

- a. Pour tout entier $n \in \mathbb{N}$, déterminer $\mathbb{P}(X_n = 0)$.
- **b.** Déterminer la nature de $\sum_{n \in \mathbb{N}} \mathbb{P}(X_n = 0)$.
- c. Déterminer la loi de B_i et, pour $p \in \mathbb{N}$, calculer $\sum\limits_{k=1}^{+\infty} \mathbb{P}\Big(\sum\limits_{i=0}^{p} B_i \geqslant k\Big)$.
- **d.** Trouver un lien entre $\left(\sum\limits_{i=0}^p B_i\geqslant k\right)$ et E_k . En déduire que $\sum\limits_{k\geqslant 0}\mathbb{P}(E_k)$ diverge.

108 <u>Centrale Maths1 PSI 2024</u> Armand Dépée

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et X une variable aléatoire de cet espace à valeurs dans \mathbb{N} .

On note $A = \{X \text{ variable aléatoire de } \Omega \text{ dans } \mathbb{N} \mid G_X \text{ est définie sur } \mathbb{R} \}.$

- a. Soit $X \in A$, montrer que X^p admet une espérance finie.
- **b.** Soit $X \in A$, exprimer $\mathbb{E}(X)$ et $\mathbb{V}(X)$ à l'aide de G_X .

On note $A_1 = \{X \in A \mid \mathbb{E}(X) = 1, \mathbb{E}(X^2) = 2, \mathbb{E}(X^3) = 5\}.$

c. Montrer que l'ensemble $\{\mathbb{P}(X=0)\mid X\in A_1\}$ admet un minimum et le déterminer.

Question supplémentaire :

- Donner le théorème spectral dans sa version matricielle et étudier la validité de sa réciproque.

109 Centrale Maths1 PSI 2024 Valentine Girard

Soit E l'ensemble des suites réelles $(a_n)_{n\in\mathbb{N}}$ telles que $\sum_{n\geqslant 0}a_n^2$ converge.

Pour deux suites $a = (a_n)_{n \in \mathbb{N}}$ et $b = (b_n)_{n \in \mathbb{N}}$ de E, on pose $< a, b > = \sum_{n=0}^{+\infty} a_n b_n$.

 ${\bf a.}\,$ Montrer que E muni de <.,.> est un espace préhilbertien réel.

Soit X une variable aléatoire à valeurs dans \mathbb{N} , on pose $\mathfrak{u}_k=\mathbb{P}(X=k)$ pour tout $k\in\mathbb{N}$ et on prend $\mathfrak{u}_{-1}=0$ par convention. On dit que X vérifie la propriété (*) si :

-
$$X(\Omega) = \mathbb{N}$$
,

- X admet un moment d'ordre 2,

-
$$\sum_{n\geqslant 0} \frac{\left(u_n-u_{n-1}\right)^2}{u_n}$$
 converge (on note $S(X)$ sa somme).

b. Si X suit la loi de Poisson de paramètre λ , montrer que X vérifie (*).

c. Si X suit la loi de Poisson de paramètre λ , calculer $S(X) \mathbb{V}(X)$.

110 Mines PSI 2024 Yasmine Azzaoui III

Sur 1000 électeurs, 700 votent pour A et 300 pour B.

Quelle est la probabilité pour que A soit toujours en tête (au sens strict) lors du dépouillement ?

(111) Mines PSI 2024 Tristan Cheyrou I

Soit deux réels $q \in]0;1[$ et $a \in \mathbb{R}_+$ et deux variables aléatoires X et Y à valeurs dans \mathbb{N} telles que l'on ait $\forall (i,j) \in \mathbb{N}^2, \ \mathbb{P}(X=i,Y=j) = aq^{i+j}.$

a. Exprimer a en fonction de p = 1 - q.

b. Déterminer les lois marginales de X et Y. Calculer $\mathbb{E}(X)$ et $\mathbb{V}(X)$.

c. Trouver Cov(X, Y).

d. Pour $n \in \mathbb{N}$, déterminer la loi de U = Max(X,Y) sachant X + Y = 2n + 1.

112 Mines PSI 2024 Armand Coiffe I

Dans une urne, il y a b boules blanches, 1 boule rouge et n - b - 1 boules noires.

On tire une boule avec remise dans cette urne jusqu'à tirer la boule rouge à l'instant T.

On note X le nombre de boules blanches tirées pendant ce processus.

a. Pour $r \in \mathbb{N}$, donner le rayon de convergence R et la somme S de la série entière $\sum_{n \geqslant r} \binom{n}{r} x^{n-r}$.

b. Déterminer la loi de T.

c. Que vaut $\mathbb{P}_{(T=k)}(X=i)$ pour $(i,k) \in \mathbb{N} \times \mathbb{N}^*$.

d. Déterminer la loi de X.

(113) Mines PSI 2024 Axel Corbière II

On considère une pièce qui fait pile avec une probabilité $p \in]0;1[$ et qu'on lance indéfiniment. On note X la variable aléatoire qui compte le nombre de face obtenus pour faire deux fois pile.

a. Donner la loi de X.

b. Montrer que X admet une espérance finie et la calculer.

Si X = n, on place n+1 boules numérotées de 0 à n dans une urne et on en pioche une. On note Y le numéro de la boule piochée.

c. Donner la loi de Y.

d. Calculer l'espérance et la variance de Y.

114 Mines PSI 2024 Olivier Farje II

Soit $\mathfrak{p} \in]0;1[$ et $(X_{\mathfrak{n}})_{\mathfrak{n} \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivant la loi de Bernoulli de paramètre $\mathfrak{p}.$ On pose $A=\Big\{\omega \in \Omega \ \Big| \ \sum_{k\geqslant 1} \frac{X_k(\omega)}{k} \text{ converge}\Big\}.$ Calculer $\mathbb{P}(A).$

(115) Mines PSI 2024 Thomas Favant II

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes sur un espace probabilisé $(\Omega,\mathcal{A},\mathbb{P})$ telle que chaque X_n suit une loi de Poisson de paramètre $\lambda_n\geqslant 0$ et $S:\Omega\to [0;+\infty]$ définie par $S(\omega)=\sum_{n=1}^{+\infty}X_n(\omega)$. Déterminer la loi de S. Indication : commencer par calculer $\mathbb{P}(S=0)$.

[116] <u>Mines PSI 2024</u> Jonathan Filocco II

Une urne contient au début une bille blanche et une bille rouge. On répète indéfiniment des tirages selon le mode suivant : on tire une bille, et on remet dans l'urne deux billes de la couleur obtenue.

- a. Quelle est la probabilité qu'on n'obtienne que des boules rouges lors des n premiers tirages ?
- b. Quelle est la probabilité qu'on obtienne indéfiniment seulement des boules rouges ?
- c. Quelle est la probabilité d'obtenir une boule blanche au 42-ième tirage ?
- d. Est-ce que le résultat du b. change si on remet trois billes de la couleur obtenue ou lieu de deux ?
- \mathbf{e} . Est-ce que le résultat de la question \mathbf{b} . change si on remet k billes de la couleur obtenue ou lieu de deux au k-ième tirage ?

(117) Mines PSI 2024 Guillaume Leduc I

On considère deux urnes contenant chacune r boules rouges et b boules bleues. À chaque tirage, on tire sans remise une boule dans chaque urne. On note X le nombre de tirages lors desquels les boules tirées dans les deux urnes sont de couleurs différentes.

- a. Déterminer la loi de X.
- **b.** Déterminer $\mathbb{E}(X)$.

[118] Mines PSI 2024 Bilal Mrani I

Soit $(X_k)_{k \in \mathbb{N}^*}$ une famille de variable aléatoires indépendantes identiquement distribuées telle que pour tout $k \in \mathbb{N}^*$, on ait $P(X_k = 1) = p$ et $P(X_k = -1) = 1 - p$ avec $p \in]0;1[$. On pose $S_0 = 0$ et pour tout $k \geq 1$, $S_k = X_1 + \cdots + X_{2k}$. On note $p(k) = \mathbb{P}(S_k = 0)$ pour $k \in \mathbb{N}$.

- a. Déterminer l'expression de p(k) et en donner un équivalent quand k tend vers $+\infty$.
- **b.** On suppose dans cette question $p \neq \frac{1}{2}$. Montrer que le nombre de retour à l'origine (le nombre d'indices n tels que $S_n = 0$) est presque sûrement fini. Indication : on pourra commencer par traduire mathématiquement le fait qu'il existe une infinité de retour à l'origine.

119 Mines PSI 2024 Adrien Saugnac I

Soit E un ensemble non vide et $\mathfrak p$ une application de E dans E. On suppose que $\mathfrak p$ est idempotente, c'est-à-dire que $\mathfrak p \circ \mathfrak p = \mathfrak p$.

- **a.** Montrer que si p est injective, on a $p = id_E$.
- **b.** Montrer que si p est surjective, on a $p = \operatorname{id}_E$.
- c. Si card (E) = 2, trouver une application idempotente de E dans E qui ne soit pas id E.
- **d.** Trouver 3 applications idempotentes de E si card(E) = 2.
- e. Trouver 10 applications idempotentes de E si card(E) = 3.
- **f.** Prouver que si $p : E \to E$, on a p idempotente si et seulement si $(\forall x \in p(E), p(x) = x)$.
- g. Dénombrer les applications idempotentes de E dans E si card (E) = n.

(**120**) <u>Mines PSI 2024</u> Arya Tabrizi II

Dans une urne, il y a une boule blanche et une boule noire indiscernables au toucher. On prend une boule :

- si elle est blanche, on arrête.
- si elle est noire, on la remet dans l'urne et on ajoute une boule blanche.

On note Y le rang du tirage d'une boule blanche en convenant que Y=0 si on n'obtient jamais de boule blanche. Déterminer la loi et l'espérance de Y.

(121) CCINP PSI 2024 Mattéo Aumaitre I

Soit $p \in]0;1[$, q=1-p et $r \in \mathbb{N}$. Soit $(p_n)_{n \in \mathbb{N}}$ la suite définie par $p_n=q^rp^n\binom{n+r-1}{r-1}$ et X une variable aléatoire à valeurs dans \mathbb{N}^* telle que $\forall n \in \mathbb{N}^*$, $\mathbb{P}(X=n)=p_n$.

- a. Rappeler le développement en série entière de $\frac{1}{1-x}$ (vous donnerez le rayon de convergence).
- **b.** En déduire celui de $\frac{1}{(1-x)^r}$.
- **c.** Vérifier que $(p_n)_{n \in \mathbb{N}^*}$ est une distribution de probabilité.
- d. Déterminer la fonction génératrice de X.
- e. Calculer l'espérance et la variance de X.

122 CCINP PSI 2024 Mathéo Demongeot-Marais I

On considère une urne de $n \ge 2$ boules numérotées de 1 à n. On réalise des tirages avec remise.

On note X_n le premier rang tel qu'une autre boule que la première soit tirée.

- ${\bf a}.$ Montrer que X_n est une variable aléatoire discrète et déterminer la loi de $X_n.$
- $\mathbf{b.}$ Montrer que $X_{\mathfrak{n}}$ admet une espérance et la calculer.
- c. Trouver $\lim_{n\to+\infty} \mathbb{E}(X_n)$. Interpréter.

Soit Y_n le premier rang tel que toutes les boules de l'urne aient été tirées au moins une fois.

- \mathbf{d} . Déterminer la loi de Y_2 .
- e. Soit $(i,j) \in (\mathbb{N}^*)^2$ tel que i < j, déterminer $\mathbb{P}_{(X_3=i)}(Y_3=j)$. En déduire la loi de Y_3 .

123 CCINP PSI 2024 Émile Gauvrit II

Soit $\lambda > 0$ et une variable aléatoire X suivant la loi de Poisson de paramètre λ .

- **a.** Montrer que $\forall t \in \mathbb{R}$, $G_X(t) = e^{\lambda(t-1)}$.
- $\mathbf{b.} \ \mathrm{Montrer} \ \mathrm{que} \ \forall \alpha > 0, \ \forall t \geqslant 1, \ \mathbb{P}(X \geqslant \alpha) \leqslant \frac{G_X(t)}{t^\alpha}.$
- $\mathbf{c.} \ \mathrm{En} \ \mathrm{d\acute{e}duire} \ \mathrm{que} \ \mathbb{P}(X \geqslant 2\lambda) \leqslant \left(\frac{\underline{e}}{4}\right)^{\lambda}.$

124 CCINP PSI 2024 Tom Sanchez I

Soit $N \in \mathbb{N}^*$ et $r \in [1; N]$. On considère une urne avec N - r boules blanches et r boules noires. On tire une boule successivement et sans remise dans cette urne, on note X_N le numéro du tirage lors duquel on retire la dernière boule noire.

a. Donner la loi de X_N et l'espérance de X_N dans les cas particuliers r=1 et r=N.

On suppose dorénavant que 1 < r < N.

- **b.** Pour $k \in [1; N]$, déterminer la valeur de $\mathbb{P}(X_N = k)$.
- c. En déduire $\mathbb{E}(X_N)$ en fonction de N et r.

[125] <u>Mines-Télécom PSI 2024</u> Mattéo Aumaitre I

Soit X et Y deux variables aléatoires indépendantes suivant la loi géométrique de paramètre $\mathfrak{p} \in]0;1[$. On pose $S=\begin{pmatrix} X & Y \\ Y & X \end{pmatrix}$ et $\lambda < \mu$ ses deux valeurs propres.

- a. Calculer λ et μ en fonction de X et Y.
- b. Quelle est la probabilité pour que S soit inversible ?
- c. Quelle est la probabilité pour que S soit définie positive ?

[**126**] <u>Mines-Télécom PSI 2024</u> Eva Rojo II

On dispose d'un dé blanc non truqué et d'un dé noir pipé avec lequel la probabilité de faire 6 est $\frac{1}{3}$. Le joueur 1 prend un dé au choix et le lance, le joueur 2 lance l'autre dé. Celui qui a fait strictement plus que l'autre a gagné, et si le score est égal, le dé blanc gagne.

Quelle est la meilleure stratégie pour le joueur 1?

PRÉPARATION ORAUX 2025 THÈME 9 ÉQUATIONS DIFFÉRENTIELLES ET CALCUL DIFFÉRENTIEL

127 X PSI 2024 Guilhem Thébault II

Soit $\varphi: \mathbb{R} \to \mathbb{R}$ une fonction continue et 2π -périodique et l'équation différentielle (E) : $y'' + \varphi y = 0$.

- a. Montrer que l'ensemble des solutions de (E) est $Vect(y_1, y_2)$ où $y_1(0) = 0$, $y_1'(0) = 1$, $y_2(0) = 1$, $y_2'(0) = 0$.
- **b.** Montrer que si $f: \mathbb{R} \to \mathbb{R}$ est solution de (E), alors $g: x \mapsto f(x+2\pi)$ est aussi solution de (E).
- **c.** Quelle est la nature de l'application $\psi : f \to g$?
- **d.** Montrer que si un réel λ est valeur propre de l'endomorphisme ψ , alors λ est solution de l'équation polynomiale (P) : $\chi^2 (y_1'(2\pi) + y_2(2\pi))\chi + (y_1'(2\pi)y_2(2\pi) y_2'(2\pi)y_1(2\pi)) = 0$.

128 Centrale Maths1 PSI 2024 Yasmine Azzaoui

On définit, pour un vecteur $(x,y) \in \mathbb{R}^2$, sa norme infinie $||(x,y)||_{\infty} = Max(|x|,|y|)$.

On définit $B(O,1)=\{(x,y)\in\mathbb{R}^2\mid ||(x,y)||_\infty<1\}$ et $\overline{B(O,1)}=\{(x,y)\in\mathbb{R}^2\mid ||(x,y)||_\infty\leqslant1\}$ les boules unité ouverte ou fermée pour cette norme infinie et $f:\overline{B(O,1)}\to\mathbb{R}$ par $f(x,y)=(x^2+y^2)^2-\frac{3}{2}(x^2+y^2)+1$.

Soit la surface $S = \{(x, y, f(x, y)) \in \mathbb{R}^3 \mid (x, y) \in B(O, 1)\}$ représentative de f.

- a. Exprimer B(0,1) et $\overline{B(0,1)}$ sous la forme d'un produit cartésien de parties de \mathbb{R} .
- **b.** Montrer que f est C^1 sur B(O,1), calculer son gradient et déterminer les points critiques de f sur B(O,1).
- c. En déduire les extrema de f sur B(O, 1).
- **d.** Déterminer les points $(x, y) \in B(0, 1)$ où le plan tangent à S en (x, y, f(x, y)) est normal à $\overrightarrow{v} = (0, 1, -1)$.

[129] <u>Centrale Maths1 PSI 2024</u> Edward Bauduin

Soit $f:(\mathbb{R}_+^*)^2\to\mathbb{R}$ définie par $f(x,y)=xy+\frac{1}{x}+\frac{1}{y}.$

- $\textbf{a.} \ \ \text{Donner l'équation du plan tangent à } S = \left\{ (x,y,z) \in \mathbb{R}^3 \mid (x,y) \in (\mathbb{R}_+^*)^2 \ \text{et } z = f(x,y) \right\} \ \text{en } (\mathfrak{a},\mathfrak{b},\mathfrak{c}) \in S.$
- **b.** Montrer que f admet un minimum local en un unique point $(x_0,y_0)\in(\mathbb{R}_+^*)^2$ à déterminer.
- **c.** Montrer que $K = \left\{ (x,y) \in (\mathbb{R}_+^*)^2 \mid xy \leqslant 3 \text{ et } x \geqslant \frac{1}{3} \text{ et } y \geqslant \frac{1}{3} \right\}$ est un fermée borné de $(\mathbb{R}_+^*)^2$.
- **d.** En déduire que f admet en (x_0, y_0) un minimum absolu.

[130] Centrale Maths1 PSI 2024 Amjad Belmiloud

Soit les ensembles $\mathcal{E}=\{(x,y)\in\mathbb{R}^2\mid x^2+2y^2=8\}$ et $\Delta=\{(x,y)\in\mathbb{R}^2\mid x^2+2y^2\leqslant 8\}$. Soit les fonctions $\Phi:\mathbb{R}\to\mathbb{R}^2$ et $f:\mathbb{R}^2\to\mathbb{R}$ définies par $\Phi(t)=\left(2\cos(t),\sqrt{2}\sin(t)\right)$ et $f(x,y)=\sqrt{1+x^2+y^2}+x^2$.

- a. Montrer que Φ réalise une bijection de classe C^1 de $[0; 2\pi[$ dans \mathcal{E} .
- **b.** Montrer que f admet un minimum et un maximum sur Δ .
- c. Déterminer $\min_{\Delta}(f)$. Montrer que le maximum de f sur Δ est atteint sur \mathcal{E} .
- **d.** Trouver la valeur de $\underset{\Lambda}{\text{Max}}(f)$.

131 Centrale Maths 1 PSI 2024 Lou Goiffon et Tom Sanchez

Soit $H = [-1;1] \times [0;1], \ O =]-1;1[\times]0;1[$ et $f:H \rightarrow \mathbb{R}$ définie par $f(x,y) = \sqrt{y-yx^2}\,(x-xy).$

- a. Montrer que f admet un minimum et un maximum sur H.
- b. Trouver les extrema de f sur O.
- c. Calculer la valeur du maximum global de f sur H.

(132) <u>Centrale Maths1 PSI 2024</u> Martin Mayot

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(0,0) = 1 et $\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \ f(x,y) = (x^2 + y^2)^x$.

- **a.** Étudier les variations de la fonction $x \mapsto x^x$ sur \mathbb{R}_+^* .
- **b.** Montrer que f est continue sur \mathbb{R}^2 .
- c. Trouver les points critiques de f.
- **d.** Déterminer les extrema de f sur \mathbb{R}^2 .

133 Mines PSI 2024 Martin Mayot II

Soit un entier $n \geqslant 2$ et $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^1 sur \mathbb{R}^n telle que $\lim_{||x|| \to +\infty} \frac{f(x)}{||x||} = +\infty$.

- a. Montrer que f admet un minimum global sur \mathbb{R}^n .
- **b.** Montrer que l'application $x \mapsto \nabla f(x)$ est surjective.

(134) <u>Mines PSI 2024</u> Mathis Laruelle II

Pour $k \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose $F_k(x) = \int_0^{+\infty} e^{-kt} \sin(xe^t) dt$.

- a. La fonction F_k est-elle définie sur \mathbb{R} ? Est-elle continue sur \mathbb{R} ?
- **b.** Déterminer les solutions sur \mathbb{R} de (E_k) : $xy' ky = \sin(x)$ pour $k \ge 2$.
- c. Déterminer les solutions sur \mathbb{R} de (E_1) : $xy' y = \sin(x)$.

(135) <u>Mines PSI 2024</u> Clément Reiner I

Soit la fonction f définie par $f(x) = \int_0^1 Arctan^2(xt) dt$ et l'équation différentielle (E) : $xy' + y = Arctan^2(x)$.

- a. Montrer que f est définie et continue sur \mathbb{R} . Donner la valeur de f(0).
- **b.** Montrer que f est de classe C^1 sur \mathbb{R} .
- **c.** Soit $x \in \mathbb{R}^*$, montrer que $f'(x) = -\frac{f(x)}{x} + \frac{\operatorname{Arctan}^2(x)}{x}$.
- **d.** Déterminer les solutions de (E) sur \mathbb{R}_{+}^{*} et \mathbb{R}_{+}^{*} .
- e. Trouver les solutions de (E) sur \mathbb{R} .

(136) CCINP PSI 2024 Olivier Farje II

Soit
$$A = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 2 & -1 \\ -3 & 1 & 2 \end{pmatrix}$$
.

- a. La matrice A est-elle diagonalisable ?
- **b.** Résoudre (S) : $\begin{cases} x'' = -x + y \\ y'' = -x + 2y z \\ z'' = -3x + y + 2z \end{cases}$

137 CCINP PSI 2024 Émile Gauvrit I

Soit la matrice
$$A = \begin{pmatrix} -2 & 4 & 1 \\ -1 & 3 & 1 \\ -4 & 4 & 3 \end{pmatrix}$$
 et les deux systèmes différentiels associés $(S_1): \begin{cases} x' = -2x + 4y + z \\ y' = -x + 3y + z \\ z' = -4x + 4y + 3z \end{cases}$ et $(S_2): \begin{cases} x'' = -2x + 4y + z \\ y'' = -x + 3y + z \end{cases}$. On définit la fonction $X: \mathbb{R} \mapsto \mathfrak{M}_{3,1}(\mathbb{R})$ par $X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$.

$$\operatorname{et}\left(S_{2}\right) : \begin{cases} x'' = -2x + 4y + z \\ y'' = -x + 3y + z \\ z'' = -4x + 4y + 3z \end{cases}. \text{ On definit la fonction } X : \mathbb{R} \mapsto \mathfrak{M}_{3,1}(\mathbb{R}) \operatorname{par} X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}.$$

- **a.** La matrice A est-elle diagonalisable?
- **b.** En posant $Y = P^{-1}X$ pour une matrice $P \in GL_3(\mathbb{R})$ bien choisie, déterminer un système différentiel (S_1') tel que X solution de (S_1) sur $\mathbb{R} \iff Y$ solution de (S_1') sur \mathbb{R} .
- c. En déduire une expression des solutions de (S_1) sur \mathbb{R} .
- **d.** Résoudre (S₂).
- e. Les solutions réelles et bornées de (S_2) forment-elles un \mathbb{R} -espace vectoriel ? Si oui, déterminer la dimension de cet espace.

138 CCINP PSI 2024 Romane Mioque II

On considère l'équation différentielle (E) : $t(t^2 - 1)y' + 2y = t^2$.

- $\textbf{a. Trouver des réels } \alpha,b,c, \text{ tels que } \forall t\notin\{-1,0,1\}, \ \frac{1}{t(t^2-1)}=\frac{\alpha}{t}+\frac{b}{t+1}+\frac{c}{t-1}.$
- a. Résoudre (E) sur les intervalles où elle peut être mise sous forme normalisée.
- **b.** Résoudre (E) sur]-1;1[, puis sur \mathbb{R} .

139 Mines-Télécom PSI 2024 Clément Lacoste I

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que $\forall x \in \mathbb{R}$, $f(2x) = 1 + \int_0^x (x-t)f(2t)dt$.

- a. Montrer que f est dérivable sur \mathbb{R} et calculer f'(x).
- b. Justifier que f est solution d'une équation différentielle du second degré (E) qu'on déterminera.
- c. Conclure.