TD 01 : SÉRIES NUMÉRIQUES

PSI 1 2025-2026

vendredi 5 septembre 2025

[1.1] Règle de DUHAMEL-RAABE Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs.

- $\textbf{a.} \ \text{Montrer que si} \ \frac{\mathfrak{u}_{n+1}}{\mathfrak{u}_n} \underset{+\infty}{=} 1 \frac{\alpha}{n} + o\left(\frac{1}{n}\right) \ \text{avec} \ \alpha > 1 \ \text{alors} \ \underset{n\geqslant 0}{\sum} \mathfrak{u}_n \ \text{converge}.$
- **b.** Montrer que si $\frac{u_{n+1}}{u_n} = 1 \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$ avec $\alpha < 1$ alors $\sum_{n \geqslant 0} u_n$ diverge.
- $\textbf{c.} \ \, \text{Montrer que si} \ \, \frac{\mathfrak{u}_{n+1}}{\mathfrak{u}_n} \underset{+\infty}{=} 1 \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right) \ \, \text{alors} \, \, \exists A \in \, \mathbb{R}, \, \, \mathfrak{u}_n \underset{+\infty}{\sim} \frac{A}{n^\alpha}.$
- **d.** Nature de la série de terme général $u_n = \frac{(2n)!}{2^{2n}(n!)^2}$.

(1.2) <u>Critère de Cauchy</u> Soit $\sum_{n\geqslant 0} u_n$ une série à termes positifs, on suppose que $\sqrt[n]{u_n} \to \ell \in \mathbb{R}^+$.

- $\begin{tabular}{ll} \textbf{a.} & \begin{tabular}{ll} Montrer que si $\ell > 1$ alors $\sum_{n\geqslant 0}u_n$ est divergente. \\ \begin{tabular}{ll} \textbf{b.} & \begin{tabular}{ll} Montrer que si $\ell < 1$ alors $\sum_{n\geqslant 0}u_n$ est convergente. \\ \end{tabular}$
- c. Observer que, lorsque $\ell = 1$, on ne peut rien conclure.

[1.3] Mines PSI 2015 Guillaume Leroy

Soit $(a_n)_{n \in \mathbb{N}^*}$ une suite de réels strictement positifs.

- **a.** Si la série $\sum_{n>1} a_n^{1-\frac{1}{n}}$ converge, montrer que $\sum_{n>1} a_n$ converge.
- **b.** Si la série $\sum_{n\geq 1} a_n$ converge, soit $\lambda\in]1;+\infty[$, en considérant les ensembles $I=\{n\in\mathbb{N}^*\mid a_n^{1-\frac{1}{n}}\leqslant\lambda a_n\}$ et $J=\{n\in\mathbb{N}^*\mid a_n^{1-\frac{1}{n}}>\lambda a_n\}, \text{ montrer que } \sum_{n\geq 1}a_n^{1-\frac{1}{n}} \text{ converge et majorer sa somme en fonction de }\lambda.$
- c. Que dire des séries $\sum\limits_{n\geqslant 1} \alpha_n^{1-\frac{1}{n}}$ et $\sum\limits_{n\geqslant 1} \alpha_n$?

Obtenir une inégalité (avec des racines carrées) sur leurs sommes quand elles existent.

1.4 OdlT 2015/2016 ENSEA planche 282I

Montrer que $P_n(x) = \left(\sum_{k=1}^n x^k\right) - 1$ admet une unique racine $x_n \ge 0$ et étudier la suite (x_n) .

1.5 Mines PSI 2018 Sonia-Laure Hadj-Sassi I

a. Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in\mathbb{R}$ et $\forall n\in\mathbb{N},\ u_{n+1}=e^{u_n}-1$.

Soit $(\nu_n)_{n\in\mathbb{N}}$ définie par $\nu_0=1$ et $\forall n\in\mathbb{N},\ \nu_{n+1}=\ln(e^{\nu_n}-\nu_n)$.

b. Montrer la convergence de la suite $(\nu_n)_{n\in\mathbb{N}}$, de $\sum_{n\geq 0}\nu_n$. Déterminer la valeur exacte de $\sum_{n=0}^{+\infty}\nu_n$.

Compléments OdlT 2018/2019 ENTPE PSI planche 430I

- a. Montrer que $\forall n \in \mathbb{N}^*$, $f_n(x) = xe^x n$ admet un unique zéro u_n strictement positif.
- $\textbf{b.} \ \, \text{Montrer que } \forall n \geqslant 3, \, 1 \leqslant u_n \leqslant \ln n. \, \, \text{Puis que } u_n \underset{+\infty}{\sim} \ln n \, \, \text{quand } n \, \, \text{tend vers } +\infty.$
- c. Trouver un équivalent de $\mathfrak{u}_n \ln n$.

1.7 Mines PSI 2022 Margaux Millaret II

Pour $n \in \mathbb{N}^*$, on pose $u_n = \frac{n^{n+\frac{1}{2}}}{n!e^n}$.

- $\mathbf{a.}\ \mathrm{Montrer}\ \mathrm{que}\ \sum_{n\geqslant 1}\ln\left(\frac{\mathfrak{u}_{n+1}}{\mathfrak{u}_{n}}\right)\ \mathrm{converge}.$
- $\mathbf{b.} \ \, \mathrm{En} \, \, \mathrm{d\'eduire} \, \, l'existence \, \, d'une \, \, \mathrm{constante} \, \, C > 0 \, \, \mathrm{telle} \, \, \mathrm{que} \, \, n! \underset{+\infty}{\sim} \, C \sqrt{n} \Big(\frac{n}{e}\Big)^n.$
- c. Donner sans preuve la valeur de C. Puis le prouver avec les intégrales de WALLIS.

1.8 CCINP PSI 2022 Louis Lacarrieu II

Soit $(a_n)_{n \in \mathbb{N}^*}$ une suite de réels positifs et la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par $u_n = \frac{a_n}{(1+a_1) \times \cdots \times (1+a_n)}$.

- $\mathbf{a.}$ Calculer $\mathfrak{u}_1+\mathfrak{u}_2.$ Généraliser.
- **b.** Montrer que $\sum_{n\geqslant 1} u_n$ converge.
- c. Dans cette question, on suppose que $a_n = \frac{1}{\sqrt{n}}$. Calculer $\sum_{n=1}^{+\infty} u_n$.

1.9 <u>Mines PSI 2024</u> Amélia Arangoits I

Soit la suite $(x_n)_{n\in\mathbb{N}^*}$ définie par $x_1\in\mathbb{R}_+^*$ et $\forall n\geqslant 1,\ x_{n+1}=x_n+\frac{n}{x_n}.$

- a. Montrer que la suite $(x_n)_{n\geqslant 1}$ est bien définie et que $\lim_{n\to +\infty} x_n = +\infty$.
- **b.** Montrer que $\forall n \geq 2, \ x_n \geq n.$ En déduire que $x_n \underset{+\infty}{\sim} n.$
- c. Montrer qu'il existe un réel c tel que $x_n = n + c + o(1)$.
- **d.** Montrer que c = 0.

(1.10) Mines-Télécom PSI 2024 Tom Sanchez I

Pour $n \in \mathbb{N}^*$, on considère l'équation (E_n) : $x^n + x\sqrt{n} - 1 = 0$.

- **a.** Montrer que, pour tout $n \in \mathbb{N}^*$, (E_n) admet une unique solution dans \mathbb{R}_+^* qu'on notera x_n .
- **b.** Montrer que la suite $(x_n)_{n\geqslant 1}$ converge vers 0.
- c. Quelle est la nature de $\sum_{n\geqslant 1} x_n$?