TD 02 : SÉRIES NUMÉRIQUES

PSI 1 2025-2026

vendredi 12 septembre 2025

2.1 Mines PSI 2015 Arnaud Dubessay

Nature, selon $\alpha \in \mathbb{R}$, de $\sum_{n \geqslant 1} \alpha^{\lfloor \ln n \rfloor}$.

(2.2) Mines PSI 2017 Élio Garnaoui I

Déterminer la nature de $\sum_{n\geqslant 1}u_n$ où $u_n=Arcsin\left(\frac{1}{2}+\frac{(-1)^n}{n^\alpha}\right)-\frac{\pi}{6}$ et $\alpha>0.$

2.3 Mines PSI 2017 Claire Raulin I

Soit a>0, étudier la convergence de la série $\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}\sin\left(\frac{n\pi}{5}\right)$.

(2.4) Mines PSI 2018 Antoine Secher II

Pour tout entier $n \geqslant 1$, on pose $u_n = Arccos\left(\frac{1}{n}\right) - Arccos\left(\frac{1}{n^2}\right)$.

Étudier les convergences des séries numériques $\sum_{n\geqslant 1} u_n$ et $\sum_{n\geqslant 1} (-1)^n u_n.$

(2.5) ENS Cachan PSI 2019 Louis Destarac

 $\mathrm{Soit}\ (\mathfrak{u}_n)_{n\in\mathbb{N}}\ \mathrm{une}\ \mathrm{suite}\ \mathrm{strictement}\ \mathrm{positive}\ \mathrm{et}\ \alpha>1\ \mathrm{tels}\ \mathrm{que}\ \lim_{n\to+\infty}\mathfrak{u}_n=0\ \mathrm{et}\ \lim_{n\to+\infty}\frac{\mathfrak{u}_n-\mathfrak{u}_{n+1}}{\mathfrak{u}_n^\alpha}=\ell>0.$

On cherche à montrer que $\sum_{n\geq 0} u_n$ converge si et seulement si $\alpha<2$.

a. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante à partir d'un certain rang N.

$$\mathbf{b.} \ \mathrm{Si} \ \alpha < 2, \ \mathrm{montrer} \ \mathrm{que} \ \forall n \geqslant N, \ \frac{u_n - u_{n+1}}{u_n^{\alpha - 1}} \leqslant \int_{u_{n+1}}^{u_n} \frac{1}{t^{\alpha - 1}} dt.$$

En déduire que $\sum_{n\geqslant 0}\frac{u_n-u_{n+1}}{u_n^{\alpha-1}}$ converge ; puis que $\sum_{n\geqslant 0}u_n$ converge.

c. Si $\alpha \geqslant 2$, montrer que $\sum_{n\geqslant 0} \frac{\mathfrak{u}_n-\mathfrak{u}_{n+1}}{\mathfrak{u}_{n+1}^{\alpha-1}}$ diverge ; puis que $\sum_{n\geqslant 0} \mathfrak{u}_n$ diverge.

2.6 ENS Cachan PSI 2019 Mathis Girard

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle strictement positive et décroissante tendant vers 0 telle que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=1$ et $\forall n\in\mathbb{N},\ u_{n+2}-u_{n+1}\geqslant u_{n+1}-u_n$. Pour tout entier $n\in\mathbb{N}$, on pose $R_n=\sum_{k=n+1}^{+\infty}(-1)^ku_k$.

- **a.** Montrer que $(|R_n|)_{n \geqslant -1}$ est monotone $(R_{-1}$ est la somme de la série).
- $\mathbf{b.} \ \mathrm{Montrer} \ \mathrm{que}: \ \forall n \in \ \mathbb{N}, \ \frac{u_{n+1}}{2} \leqslant |R_n| \leqslant \frac{u_n}{2}.$
- c. Déterminer un équivalent de R_n.
- **d.** Déterminer un équivalent de $\sum\limits_{k=n+1}^{+\infty} (-1)^k \frac{\ln(k)}{k}.$

2.7 *CCP PSI 2019* Thomas Crété I

a. Montrer l'existence, pour tout entier $n \in \mathbb{N}$, du réel $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k!}$.

 $\mathbf{b.}\ \mathrm{Montrer}\ \mathrm{que}\ \lim_{n\to+\infty}(n+1)!R_n=1.$

c. Quelle est la nature de la série $\sum_{n\geqslant 0}\sin(2\pi\epsilon n!)$?

(2.8) <u>Mines-Télécom PSI 2022</u> Jade Mirassou II

Pour $k\in\,\mathbb{N},$ on définit, en cas d'existence, $u_k=\int_0^{\pi/4}(t\mathfrak{a}\mathfrak{n}(x))^kdx.$

a. Étudier la monotonie de la suite $(u_k)_{k \in \mathbb{N}}$.

b. Déterminer la limite de la suite $(u_k)_{k \in \mathbb{N}}$.

c. Donner une expression simple de $u_k + u_{k+2}$ pour tout entier $k \in \mathbb{N}$.

d. Calculer u_0 et u_1 . En déduire des expressions de u_{2n} et u_{2n+1} sous forme de somme.

e. En déduire la convergence et la valeur de la somme de $\sum_{n\geqslant 1}\frac{(-1)^{n-1}}{n}$ et $\sum_{n\geqslant 0}\frac{(-1)^n}{2n+1}$.

(2.9) <u>Mines PSI 2024</u> Guilhem Thébault II

Soit
$$r \in \left]0; \frac{1}{2}\right[$$
 et $u=(u_n)_{n\in\mathbb{N}}\in\{-1,1\}^{\mathbb{N}},$ on pose alors $x(u)=\sum\limits_{n=0}^{+\infty}u_nr^n.$

Montrer que l'application x ainsi construite est injective.

(2.10) CCINP PSI 2024 Martin Mayot II

Soit la suite $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ définie par $\mathfrak{u}_0\in\left]0;\frac{\pi}{2}\right[$ et $\forall n\in\mathbb{N},\ \mathfrak{u}_{n+1}=sin(\mathfrak{u}_n).$

a. Étudier la convergence et la limite de la suite $(\mathfrak{u}_n)_{n\in\mathbb{N}}.$

b. Étudier la convergence de $\sum_{n\geqslant 0} u_n^3.$ Indication : considérer $u_{n+1}-u_n.$

c. Montrer que $\sum_{n\geqslant 0} u_n^2$ diverge. Indication : considérer $ln(u_{n+1})-ln(u_n)$.

d. Déterminer un équivalent de u_n quand n tend vers $+\infty$ grâce au théorème de CESARO (question rajoutée). Indication : considérer $u_{n+1}^{-2} - u_n^{-2}$.