RELATIONS D'ORDRE ET D'ÉQUIVALENCE

Définition et caractéristiques d'une relation binaire

DÉFINITION: Soit E un ensemble non vide, on appelle **relation binaire** sur E une application qui à chaque couple (x,y) de $E \times E$ associe une valeur de vérité : vrai ou faux. On note une relation binaire $\mathbb R$ de la manière suivante : $si(x,y) \in E^2$, on note $x\mathbb Ry$ cette valeur de vérité.

EXEMPLE:

- si E est l'humanité, on peut définir la relation \mathcal{R}_1 par $x\mathcal{R}_1y$ si x a déjà vu (en vrai) y.
- si E est l'ensemble des français, on peut définir la relation \mathcal{R}_2 par $x\mathcal{R}_2y$ si x est né dans le même département (ou pays si la personne est née à l'étranger) que y.
- si $E = \mathbb{N}^*$ on peut définir \mathcal{R}_3 par $\mathfrak{n}\mathcal{R}_3\mathfrak{m}$ si tous les diviseurs premiers de \mathfrak{n} sont des diviseurs premiers de \mathfrak{m} . Par exemple 60 \mathcal{R}_3 30 alors que $\mathfrak{non}(6\ \mathcal{R}_3\ 10)$.
- si $E = \mathcal{F}(\mathbb{R}, \mathbb{C})$, on peut définir \mathcal{R}_4 par $f\mathcal{R}_4g$ si $f(x) \underset{+}{=} O(g(x))$.
- si $E = \mathbb{R}$, on peut définir \Re_5 par $x \Re_5 y$ si $x \leqslant y$.
- si $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, on peut définir \mathcal{R}_6 par $f\mathcal{R}_6 g$ si $\forall x \in \mathbb{R}, f(x) \leq g(x)$.
- si $E = \mathcal{P}(X)$ où X est un ensemble non vide, on peut définir \mathcal{R}_7 par $A\mathcal{R}_7B$ si tous les éléments de A sont aussi dans B, qu'on note bien sûr $A \subset B$.
- ullet si E est l'ensemble des cercles du plan, on peut définir la relation \mathcal{R}_8 par $C_1\mathcal{R}_8C2$ si le cercle C_1 (de centre O_1 et de rayon R_1) est strictement intérieur au cercle C_2 (de centre O_2 et de rayon R_2), ce qui se traduit par $O_1O_2+R_1< R_2$.
- si $E = \mathfrak{M}_{n,m}(\mathbb{C})$, on peut définir \mathfrak{R}_9 par $A\mathfrak{R}_9B$ si'il existe des matrices inversibles $P \in GL_n(\mathbb{C})$ et $Q \in GL_m(\mathbb{C})$ telles que $A = PBQ^{-1}$.
- si $E = \mathbb{Z}$ on peut définir \mathcal{R}_{10} par $n\mathcal{R}_{10}m$ si l'entier n m est un multiple de 5.

DÉFINITION: Pour une relation binaire R définie sur un ensemble E, on dit que :

- \Re est réflexive $si \ \forall x \in E, \ x\Re x$.
- \Re est symétrique $si \ \forall (x,y) \in E^2, \ x\Re y \iff y\Re x.$
- \Re est antisymétrique $si \ \forall (x,y) \in E^2$, $(x\Re y \ \text{et} \ y\Re x) \Longrightarrow x = y$.
- \Re est transitive $si \ \forall (x, y, z) \in E^3$, $(x\Re y \ \text{et} \ y\Re z) \Longrightarrow x\Re z$.

EXEMPLE: Dans l'exemple précédent :

	\mathcal{R}_1	\Re_2	\mathcal{R}_3	\mathcal{R}_4	\mathcal{R}_5	R_6	\mathcal{R}_7	\mathcal{R}_8	R9	R ₁₀
réflexive	NON	OUI	OUI	OUI	OUI	OUI	OUI	NON	OUI	OUI
symétrique	NON	OUI	OUI	OUI	NON	NON	NON	NON	OUI	OUI
antisymétrique	NON	NON	NON	NON	OUI	OUI	OUI	OUI	NON	NON
transitive	NON	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI

Relation d'ordre

DÉFINITION: Soit \Re une relation binaire sur un ensemble E, on dit que \Re est une **relation d'ordre** si elle est réflexive, antisymétrique et transitive. On dit que \Re est une relation d'ordre **total** si, de plus, on a $\forall (x,y) \in E^2$, $(x\Re y \ ou \ y\Re x)$. Un ordre qui n'est pas total est dit **partiel**.

EXEMPLE:

- La relation d'égalité = est une relation d'ordre dans n'importe quel ensemble.
- La relation d'inclusion dans un $\mathcal{P}(X)$ est une relation d'ordre partiel.
- La relation \leq dans \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} est une relation d'ordre total.
- La relation \leq dans $\mathcal{F}(X, \mathbb{R})$ est une relation d'ordre partiel si X n'est pas un singleton.
- La relation de divisibilité | dans N* est une relation d'ordre partiel.
- L'ordre lexicographique (ou alphabétique) du dictionnaire en français est un ordre total.
- Les relations \mathcal{R}_5 , \mathcal{R}_6 et \mathcal{R}_7 sont des relations d'ordre, pas les autres.

DÉFINITION: Soit E un ensemble ordonné par \Re , A une partie de E et x un élément de E. On dit que x est un minorant (resp. majorant) de A si $\forall a \in A$, $x\Re a$ (resp. $\forall a \in A$, $a\Re x$). On dit que A est minorée (resp. majorée) s'il existe un minorant de A (resp. majorant).

<u>REMARQUE 1.1</u>: Si x est un majorant de A et que $y \in E$ vérifie x $\Re y$ alors par transitivité on a aussi y est un majorant de A : il y a donc rarement unicité du majorant si A est majorée.

DÉFINITION: Soit E un ensemble ordonné par R, A une partie de E et x un élément de E.

On dit que x est le plus grand élément de A (ou le maximum de A) si x vérifie deux propriétés : $x \in A$ et x est un majorant de A. On note dans ce cas : x = Max(A).

On dit que x est le plus petit élément de A (ou le minimum de A) si x vérifie deux propriétés : $x \in A$ et x est un minorant de A. On note dans ce cas : x = Min(A).

<u>REMARQUE 1.2</u>: Pour avoir le droit d'appeler un tel élément <u>le</u> plus grand élément, il faut vérifier que son existence implique son unicité ce qui se fait sans problème par antisymétrie de \Re .

DÉFINITION: Soit E et F ordonnés respectivement par \Re et \Re' et f : E \rightarrow F. On dit que :

- f est croissante $si \ \forall (x,y) \in E^2, \ x \mathcal{R}y \Longrightarrow f(x) \mathcal{R}' f(y).$
- f est décroissante $si \ \forall (x,y) \in E^2, \ x\Re y \Longrightarrow f(y)\Re' f(x)$.
- f est strictement croissante $si \ \forall (x,y) \in E^2$, $(x\Re y \ et \ x \neq y) \Longrightarrow (f(x)\Re'f(y) \ et \ f(x) \neq f(y))$.
- f est strictement décroissante $si \ \forall (x,y) \in E^2$, $(x \mathcal{R}y \ et \ x \neq y) \Longrightarrow (f(y) \mathcal{R}'f(x) \ et \ f(x) \neq f(y))$.

EXEMPLE: L'application $f: \mathbb{N}^* \to \mathcal{P}(\mathbb{N}^*)$ définie par : $\forall n \in \mathbb{N}^*$, $f(n) = \mathcal{D}_n$ (l'ensemble des diviseurs positifs de n) est strictement croissante si on munit \mathbb{N}^* de | et $\mathcal{P}(\mathbb{N}^*)$ de \subset .

PROPOSITION 1.1:

Avec ces notations, on a les implications:

 $(f \text{ strictement croissante}) \Longrightarrow (f \text{ croissante}) ; (f \text{ strictement décroissante}) \Longrightarrow (f \text{ décroissante}).$

REMARQUE~1.3: Si la relation d'ordre \Re est totale, on a même :

f est strictement croissante
$$\iff$$
 $\Big(\forall (x,y) \in E^2, \ (x\Re y \text{ et } x \neq y) \iff (f(x)\Re' f(y) \text{ et } f(x) \neq f(y)) \Big)$
 $\iff \Big(\forall (x,y) \in E^2, \ x\Re y \iff f(x)\Re' f(y) \Big).$

Bornes supérieures et inférieures et éléments extrémaux

DÉFINITION: Soit E un ensemble ordonné par R, A une partie de E et x un élément de E.

On note M_a l'ensemble des majorants de A (resp. M_i l'ensemble des minorants de A).

On dit que x est la **borne supérieure** (resp. **inférieure**) de A, noté x = Sup(A) (resp. x = Inf(A)) si M_{α} admet un minimum et que ce minimum est x (resp. M_i admet un maximum et que ce maximum est x).

On a donc dans ce cas $x = Sup(A) = Min(M_{\mathfrak{a}})$ (resp. $x = Inf(A) = Max(M_{\mathfrak{i}})$).

REMARQUE 1.4:

- Comme le maximum et le minimum sont uniques, il y a aussi unicité de la borne supérieure (resp. inférieure) si elle existe.
- Pour un élément $(x \in A, x = Min(A) \iff x = Inf(A))$ et $(x = Max(A) \iff x = Sup(A))$.

Clairement $\mathfrak{O}_{\mathcal{L}(\mathsf{E})}$ est le minimum \mathfrak{P} et id_{E} en est le maximum. Un exercice intéressant est de démontrer que si $(\mathfrak{p},\mathfrak{q}) \in \mathfrak{P}^2$ vérifie $\mathfrak{p} \circ \mathfrak{q} = \mathfrak{q} \circ \mathfrak{p}$, on a $Sup(\{\mathfrak{p},\mathfrak{q}\}) = \mathfrak{p} + \mathfrak{q} - \mathfrak{p} \circ \mathfrak{q}$ et $Inf(\{\mathfrak{p},\mathfrak{q}\}) = \mathfrak{p} \circ \mathfrak{q}$.

DÉFINITION : Soit E un ensemble ordonné par \Re et $x \in E$; on dit que x est un élément maximal (resp. minimal) de E si $\forall y \in E$, $x\Re y \iff x = y$ (resp. $\forall y \in E$, $y\Re x \iff x = y$). (hors hors programme)

<u>REMARQUE 1.5</u>: Bien sûr être un élément maximum implique qu'on est maximal.

 $\underline{EXEMPLE}$: Dans $\mathbb{N}^* \setminus \{1\}$ muni de la relation d'ordre divisibilité, les éléments minimaux sont les nombres premiers et il n'y a pas d'élément maximal.

Relation d'équivalence

DÉFINITION: Soit \mathcal{R} une relation binaire sur un ensemble \mathcal{E} , on dit que \mathcal{R} est une **relation d'équivalence** si elle est réflexive, symétrique et transitive.

EXEMPLE:

- L'égalité est une relation d'équivalence dans n'importe quel ensemble.
- Pour les noms en français, la relation "être un anagramme de" est une relation d'équivalence.
- Sur l'ensemble des suites complexes, la relation $u_n \underset{+\infty}{\sim} v_n$ est une relation d'équivalence.
- Sur $\mathfrak{M}_{\mathfrak{n},p}(\mathbb{K})$, la relation \mathfrak{e} définie par $A\mathfrak{e}B \iff (\exists (P,Q) \in GL_p(\mathbb{K}) \times GL_n\mathbb{K})$, $A = QBP^{-1})$ (on dit que A et B sont équivalentes) est une relation d'équivalence : A et B sont équivalentes si et seulement si elles ont même rang.
- Sur l'ensemble des matrices $\mathfrak{M}_n(\mathbb{K})$, la relation s définie par $AsB \iff (\exists P \in GL_n(\mathbb{K}), A = PBP^{-1})$ (on dit que A et B sont semblables) est une relation d'équivalence.

DÉFINITION: Soit E un ensemble muni d'une relation d'équivalence \Re et $x \in E$. On définit la classe d'équivalence de x, noté \overline{x} , par $\overline{x} = \{ y \in E \mid x\Re y \}$.

PROPOSITION 1.2:

Soit E un ensemble muni d'une relation d'équivalence \Re et $(x,x') \in E^2$, alors on a l'alternative :

- $x\Re x' \Longleftrightarrow \overline{x} = \overline{x'}$
- $non(x\Re x') \iff \overline{x} \cap \overline{x'} = \emptyset$.

L'ensemble des différentes classes d'équivalence constitue une partition de E.

<u>REMARQUE 1.6</u>: Réciproquement, si $\{P_i \mid i \in I\}$ est une partition d'un ensemble E, on peut lui associer la relation d'équivalence \Re définie par $x\Re y \iff \exists i \in I, \ (x,y) \in P_i^2$.

Il y a donc autant de relations d'équivalences que de partitions de E. Si E est un ensemble fini de cardinal n, ce nombre de partitions de E s'appelle le nombre de BELL, noté B_n. La suite des nombres de BELL peut se voir sur le site OEIS (On-line Encyclopedia of Integer Sequences) à la référence A000110.

 $\underline{EXEMPLE}$: Soit $\mathfrak{m} \in \mathbb{N}^*$, si on on définit la relation de **congruence modulo** \mathfrak{m} **dans** \mathbb{Z} , pour $(\mathfrak{a},\mathfrak{b}) \in \mathbb{Z}^2$, $\mathfrak{a} \equiv \mathfrak{b}$ $[\mathfrak{m}] \iff (\exists k \in \mathbb{Z}, \ \mathfrak{a} - \mathfrak{b} = k\mathfrak{m})$ alors c'est une relation d'équivalence.

Elle vérifie les compatibilités suivantes, pour $(a, b, c, d) \in \mathbb{Z}^2$ et $p \in \mathbb{N}$:

- $a \equiv b \ [m] \implies -a \equiv -b \ [m] \ ;$
- $(a \equiv b \ [m] \ \text{et} \ c \equiv d \ [m]) \Longrightarrow a + c \equiv b + d \ [m];$
- $(a \equiv b \ [m] \ et \ c \equiv d \ [m]) \Longrightarrow ac \equiv bd \ [m];$
- $a \equiv b \ [m] \Longrightarrow a^p \equiv b^p \ [m].$

Par la division euclidienne, tout entier $n \in \mathbb{Z}$ s'écrit n = mq + r avec $r \in [0; m-1]$ donc il n'existe que m classes d'équivalence pour cette relation : $\overline{0}, \overline{1}, \dots, \overline{m-1}$.

On note $\mathbb{Z}/m\mathbb{Z}$ l'ensemble contenant ces m classes d'équivalence : $\mathbb{Z}/m\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$.