TD 01: SÉRIES NUMÉRIQUES

PSI 1 2025-2026

vendredi 5 septembre 2025

- $\begin{array}{l} \textbf{1.1} \ \textbf{a.} \ \text{Soit} \ \beta \ \text{tel que} \ 1 < \beta < \alpha, \ \text{posons} \ \nu_n = n^\beta u_n > 0, \ \text{alors} \ \ln(\nu_{n+1}) \ln(\nu_n) = \ln\left(\frac{u_{n+1}}{u_n}\right) + \beta \ln\left(1 + \frac{1}{n}\right) \ \text{donc} \\ \ln(\nu_{n+1}) \ln(\nu_n) \underset{+\infty}{=} \ln\left(1 \frac{\alpha}{n} + o\left(\frac{1}{n}\right)\right) + \frac{\beta}{n} + o\left(\frac{1}{n}\right) \underset{+\infty}{=} \frac{\beta \alpha}{n} + o\left(\frac{1}{n}\right) \ \text{car} \ \ln(1+x) \underset{0}{=} x + o(x). \ \text{Comme} \ \beta \alpha < 0, \\ \text{la suite} \ (\ln(\nu_{n+1}) \ln(\nu_n))_{n \in \mathbb{N}} \ \text{devient négative à partir d'un certain rang et} \ \ln(\nu_{n+1}) \ln(\nu_n) \underset{+\infty}{\sim} \frac{\beta \alpha}{n}. \\ \text{Par comparaison à la série harmonique,} \ \sum_{n \geqslant 0} \left(\ln(\nu_{n+1}) \ln(\nu_n)\right) \ \text{diverge et on a même plus précisément} \\ \lim_{n \to +\infty} \sum_{k=0}^{n-1} \left(\ln(\nu_{k+1}) \ln(\nu_k)\right) = -\infty \ \text{donc} \ \lim_{n \to +\infty} \ln(\nu_n) = -\infty \ \text{par télescopage. On en déduit en passant à} \\ \text{l'exponentielle que} \ \lim_{n \to +\infty} \nu_n = 0 \ \text{donc que} \ u_n \underset{+\infty}{=} o\left(\frac{1}{n^\beta}\right) \ \text{ce qui garantit la convergence de la série} \ \sum_{n \geqslant 0} u_n \\ \text{par comparaison aux séries de RIEMANN.} \end{array}$
 - $\begin{array}{ll} \mathbf{b.} \ \ \mathrm{Dans} \ \mathrm{la} \ \ \mathrm{m\^{e}me} \ \ \mathrm{i}\mathrm{d\^{e}e}, \ \mathrm{posons} \ \nu_n = n u_n > 0, \ \mathrm{alors} \ \ln(\nu_{n+1}) \ln(\nu_n) = \ln\left(\frac{u_{n+1}}{u_n}\right) + \ln\left(1 + \frac{1}{n}\right) \ \mathrm{donc} \\ \ln(\nu_{n+1}) \ln(\nu_n) \mathop{=}\limits_{+\infty} \ln\left(1 \frac{\alpha}{n} + o\left(\frac{1}{n}\right)\right) + \frac{1}{n} + o\left(\frac{1}{n}\right) \mathop{=}\limits_{+\infty} \frac{1-\alpha}{n} + o\left(\frac{1}{n}\right). \quad \mathrm{Comme} \ 1 \alpha > 0, \ \mathrm{la} \ \mathrm{suite} \\ (\ln(\nu_{n+1}) \ln(\nu_n))_{n \in \mathbb{N}} \ \mathrm{devient} \ \mathrm{positive} \ \grave{a} \ \mathrm{partir} \ \mathrm{d}'\mathrm{un} \ \mathrm{certain} \ \mathrm{rang} \ n_0 \ \mathrm{donc} \ \forall n \geqslant n_0, \ \nu_{n+1} \geqslant \nu_n. \ \mathrm{On} \ \mathrm{en} \\ \mathrm{d\acute{e}duit} \ \mathrm{que} \ \forall n \geqslant n_0, \ \nu_n \geqslant \nu_{n_0} \ \mathrm{d}'\mathrm{o\grave{u}} \ u_n \geqslant \frac{n_0 u_{n_0}}{n} \ \mathrm{et} \ \sum_{n \geqslant 0} u_n \ \mathrm{diverge} \ \mathrm{par} \ \mathrm{comparaison} \ \grave{a} \ \mathrm{la} \ \mathrm{s\acute{e}rie} \ \mathrm{harmonique}. \end{array}$
 - c. Posons cette fois-ci $\nu_n = n^\alpha u_n > 0$, alors $\ln(\nu_{n+1}) \ln(\nu_n) = \ln\left(\frac{u_{n+1}}{u_n}\right) + \alpha \ln\left(1 + \frac{1}{n}\right)$ donc il vient $\ln(\nu_{n+1}) \ln(\nu_n) = \ln\left(1 \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right)\right) + \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right) = O\left(\frac{1}{n^2}\right)$ car $\ln(1+x) = x + O(x^2)$. Comme $\ln(\nu_{n+1}) \ln(\nu_n) = O\left(\frac{1}{n^2}\right)$, on en déduit la convergence absolue de $\sum_{n \geqslant 0} (\ln(\nu_{n+1}) \ln(\nu_n))$. Par le théorème de dualité suite/série, on a donc la convergence de la suite $(\ln(\nu_n))_{n \in \mathbb{N}}$ vers un réel ℓ d'où, par continuité de la fonction exp, la convergence de $(\nu_n)_{n \in \mathbb{N}}$ vers $A = e^{\ell} > 0$. Ceci nous permet de conclure que $u_n \sim \frac{A}{n^\alpha}$.
 - **d.** On calcule $\frac{u_{n+1}}{u_n} = \frac{(2n+2)(2n+1)}{4(n+1)^2} = \frac{2n+1}{2n+2} = 1 \frac{1}{2n+2} = 1 \frac{1}{2n} + O\left(\frac{1}{n^2}\right)$ donc $\sum_{n\geqslant 0} u_n$ diverge avec la question **b.** et il existe même une constante A > 0 telle que $u_n \sim \frac{A}{\sqrt{n}}$ d'après la question **c.**.

Plus simplement, on utilise l'équivalent de Stirling pour avoir $u_n \sim \frac{\sqrt{4\pi n}(2n/e)^{2n}}{2^{2n}(2\pi n)(n/e)^{2n}}$ d'où $u_n \sim \frac{1}{\sqrt{\pi n}}$ avec une conclusion plus précise. Toujours est-il que $\sum_{n\geqslant 0} u_n$ diverge par RIEMANN.

- **1.2** a. Si $\ell > 1$, comme $\lim_{n \to +\infty} \sqrt[n]{u_n} \to \ell > 1$ il existe un rang $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0, \sqrt[n]{u_n} \ge 1$ ce qui donne aussi $u_n \ge 1$. Ainsi, $(u_n)_{n \in \mathbb{N}}$ ne tend pas vers 0 et $\sum_{n \ge 0} u_n$ divergente grossièrement.
 - $\textbf{b.} \text{ Si } \ell < 1, \text{ en posant } k = \frac{1+\ell}{2}, \ \ell < k < 1 \text{ et il existe } n_0 \in \mathbb{N} \text{ tel que } \forall n \geqslant n_0, \ \sqrt[n]{u_n} \leqslant k \Longrightarrow 0 \leqslant u_n \leqslant k^n.$ Et comme $\sum\limits_{n\geqslant 0} k^n$ converge, on a bien $\sum\limits_{n\geqslant 0} u_n$ convergente par comparaison aux séries géométriques.
 - c. Si $\alpha \in \mathbb{R}$ et $u_n = \frac{1}{n^{\alpha}}$ pour $n \ge 1$, on a $\sqrt[n]{u_n} = n^{\frac{-\alpha}{n}}$ donc $\lim_{n \to +\infty} \sqrt[n]{u_n} = \ell = 1$ alors qu'on ne peut rien dire de la convergence de $\sum_{n \ge 1} u_n$. En effet, par RIEMANN, $\sum_{n \ge 1} u_n$ converge si $\alpha > 1$ et diverge si $\alpha \le 1$.

Ainsi $\exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ \alpha_n \leqslant 1 \ \mathrm{et} \ \alpha_n \leqslant \alpha_n^{1-\frac{1}{n}} \ \mathrm{car} \ 1 - \frac{1}{n} \leqslant 1 \ \mathrm{donc} \ \left(1 - \frac{1}{n}\right) \ln(\alpha_n) \geqslant \ln(\alpha_n) \ \mathrm{car} \ \ln(\alpha_n) \leqslant 0$ et que la fonction exp est croissante. On conclut à la convergence de $\sum_{n\geqslant 1} \alpha_n$ par comparaison.

b. D'abord, les conditions définissant l'appartenance à I et J sont la négation l'une de l'autre donc $I \cap J = \emptyset$ et $I \cup J = \mathbb{N}^*$. Les ensembles I et J constituent donc une partition de \mathbb{N}^* . Traitons les deux cas :

 $\underline{Si\ n\in I},\ \mathrm{on}\ a\ a_n^{1-\frac{1}{n}}\leqslant \lambda a_n\ \mathrm{par}\ \mathrm{d\acute{e}finition}.$

$$\underline{\mathrm{Si}\ n\in J},\ \mathrm{on}\ \mathrm{a}\ \alpha_n^{1-\frac{1}{n}}>\lambda\alpha_n\Longleftrightarrow\alpha_n^{\frac{1}{n}}<\frac{1}{\lambda}\Longleftrightarrow\alpha_n^{1-\frac{1}{n}}<\left(\frac{1}{\lambda}\right)^{n-1}\ \mathrm{car}\ \alpha_n>0.$$

Ainsi, pour tout $n \in \mathbb{N}^*$, $0 < \alpha_n^{1-\frac{1}{n}} \leqslant Max\left(\lambda\alpha_n, \left(\frac{1}{\lambda}\right)^{n-1}\right) \leqslant \lambda\alpha_n + \left(\frac{1}{\lambda}\right)^{n-1}$. La série $\sum_{n\geqslant 1} \lambda\alpha_n$ converge par hypothèse et la série géométrique $\sum_{n\geqslant 1} \left(\frac{1}{\lambda}\right)^{n-1}$ converge car $0 < \frac{1}{\lambda} < 1$ donc, par somme et comparaison,

 $\textstyle\sum_{n\geqslant 1} \alpha_n^{1-\frac{1}{n}} \text{ converge aussi. En sommant l'inégalité obtenue pour } n\in\mathbb{N}^*, \; \sum_{n=1}^{+\infty} \alpha_n^{1-\frac{1}{n}}\leqslant \lambda\Big(\sum_{n=1}^{+\infty} \alpha_n\Big) + \frac{\lambda}{\lambda-1}.$

c. Les deux séries $\sum_{n\geqslant 1} a_n^{1-\frac{1}{n}}$ et $\sum_{n\geqslant 1} a_n$ sont donc de même nature d'après les questions a. et b.. On suppose

que $\sum_{n\geqslant 1}a_n$ converge et on note $S=\sum_{n=1}^{+\infty}a_n>0$. Soit $\phi:]1;+\infty[\to\mathbb{R}$ définie par $\phi(\lambda)=\lambda S+\frac{\lambda}{\lambda-1}$. ϕ est dérivable sur $]1;+\infty[$, $\lim_{\lambda\to 1^+}\phi(\lambda)=\lim_{\lambda\to +\infty}\phi(\lambda)=+\infty$. Or $\phi'(\lambda)=S-\frac{1}{(\lambda-1)^2}$. En étudiant les variations

de φ , on se rend compte que φ est minimale en $\lambda_0 = 1 + \frac{1}{\sqrt{S}}$ et comme $S' = \sum_{n=1}^{+\infty} a_n^{1-\frac{1}{n}} \leqslant \varphi(\lambda_0)$, on a

 $S'\leqslant (\sqrt{S}+1)^2, \text{ ce qui se traduit par l'inégalité attendue, à savoir } \sqrt{\sum\limits_{n=1}^{+\infty}\alpha_n^{1-\frac{1}{n}}}\leqslant 1+\sqrt{\sum\limits_{n=1}^{+\infty}\alpha_n}.$

1.4 Pour tout $n \in \mathbb{N}^*$, la fonction polynomiale P_n est strictement croissante sur \mathbb{R}_+ car elle y est dérivable et que $\forall x \in \mathbb{R}_+$, $P'_n(x) = \sum_{k=1}^n kx^{k-1} > 0$. Comme $P_n(0) = -1$ et $\lim_{x \to +\infty} P_n(x) = +\infty$, P_n induit une bijection entre \mathbb{R}_+ et $[-1; +\infty[$ d'après le théorème du même nom donc il existe bien un unique $x_n \in \mathbb{R}_+$ tel que $P_n(x_n) = 0$ et on a même $x_n > 0$ car $P_n(x_n) = 0 > -1 = P_n(0)$. Comme $P_1(x) = x - 1$ et $P_2 = x^2 - x - 1$, on a $x_1 = 1$ et $x_2 = \frac{\sqrt{5}-1}{2}$ car le discriminant de P_2 vaut $\Delta = 5$ et que $x_2 > 0$.

On constate que $\forall x \geqslant 0$, $P_n(x) \leqslant P_{n+1}(x) = P_n(x) + x^{n+1}$. Ainsi $P_n(x_{n+1}) \leqslant P_{n+1}(x_{n+1}) = 0 = P_n(x_n)$. Comme P_n est strictement croissante sur \mathbb{R}_+ , on en déduit que $x_{n+1} \leqslant x_n$ et la suite $(x_n)_{n\geqslant 1}$ est décroissante.

Puisque $(x_n)_{n\in\mathbb{N}^*}$ est décroissante minorée par 0, elle converge vers un réel $\ell\in[0;1[$ d'après le théorème de la limite monotone. Si $n\geqslant 2$, $P_n(1)>0=P_n(x_n)$ donc $x_n\in]0;1[$ par stricte croissance de P_n . On a alors $P_n(x_n)=x_n\Big(\frac{1-x_n^n}{1-x_n}\Big)-1=\frac{2x_n-1-x_n^{n+1}}{1-x_n}$ car $x_n\ne 1$ donc $2x_n-1-x_n^{n+1}=0$ (1).

Or $\forall n \geq 2$, $x_n \leq x_2$ donc $0 \leq x_n^{n+1} < x_2^{n+1} \underset{n \to +\infty}{\longrightarrow} 0$ car $0 < x_2 < 1$ et on en déduit par encadrement que $\lim_{n \to +\infty} x_n^{n+1} = 0$. En passant à la limite (elles existent) dans (1), on a $2\ell - 1 = 0$ donc $\lim_{n \to +\infty} x_n = \frac{1}{2}$.

- **1.5** a. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = e^x 1$. Il est clair que f est croissante. On montre par une petite étude de fonction, ou par convexité de la fonction \exp , que $\forall x \in \mathbb{R}$, $e^x \ge 1 + x$, c'est-à-dire $f(x) \ge x$ et que $f(x) = x \iff x = 0$. Pour toute valeur de $u_0 \in \mathbb{R}$, la suite $(u_n)_{n \in \mathbb{N}}$ est donc bien définie et croissante car elle vérifie $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n) \ge u_n$. Il y a alors deux cas :
 - Si $u_0 \le 0$. S'il existe $n \in \mathbb{N}$ tel que $u_n \le 0$, alors $u_{n+1} = f(u_n) = e^{u_n} 1 \le 0$. Ainsi, la suite $(u_n)_{n \in \mathbb{N}}$ est croissante et majorée par 0 donc elle converge vers $\ell \le 0$. En passant à la limite dans $u_{n+1} = f(u_n)$, par continuité de f, on a $\ell = f(\ell)$ donc $\ell = 0$ d'après ce qui précède. Ainsi, $\lim_{n \to +\infty} u_n = 0$.
 - Si $u_0 > 0$. La suite $(u_n)_{n \in \mathbb{N}}$ est encore croissante. Supposons qu'elle converge vers un réel ℓ , alors forcément $\ell \geqslant u_0 > 0$. À nouveau, on aurait $\ell = f(\ell)$ donc $\ell = 0$: impossible. Donc $\lim_{n \to +\infty} u_n = +\infty$.
 - b. Comme $\forall x \in \mathbb{R}, \ e^x \geqslant x+1 > x, \ (\nu_n)_{n\geqslant 0}$ est bien définie par $\nu_0 = 1$ et $\forall n \in \mathbb{N}, \ \nu_{n+1} = \ln(e^{\nu_n} \nu_n)$. De plus, si $\nu_n > 0$, $e^{\nu_n} \nu_n > 1$ donc $\nu_{n+1} > \ln(1) = 0$. La suite $(\nu_n)_{n\geqslant 0}$ est donc strictement positive. Ainsi, $\forall n \in \mathbb{N}, \ \nu_{n+1} = \ln(e^{\nu_n} \nu_n) < \ln(e^{\nu_n}) = \nu_n$ donc la suite $(\nu_n)_{n\in\mathbb{N}}$ est aussi strictement décroissante. Comme elle est décroissante et minorée par 0, la suite $(\nu_n)_{n\in\mathbb{N}}$ converge vers un réel $\ell \geqslant 0$. En passant à la limite dans la relation $\nu_{n+1} = \ln(e^{\nu_n} \nu_n)$, on obtient $\ell = \ln(e^{\ell} \ell)$ d'où $e^{\ell} = e^{\ell} \ell$ donc $\ell = 0$. Enfin, $\nu_n = e^{\nu_n} e^{\nu_{n+1}}$, or $(e^{\nu_n})_{n\geqslant 0}$ converge vers 1 donc, par dualité suite/série, $\sum_{n\geqslant 0} \nu_n$ converge. Or, par télescopage, $\sum_{k=0}^n \nu_k = \sum_{k=0}^n (e^{\nu_k} e^{\nu_{k+1}}) = e^{\nu_0} e^{\nu_{n+1}}$, en passant à la limite, on obtient $\sum_{n=0}^{+\infty} \nu_n = e 1$.
- 1.6 a. Pour $n \ge 1$, $f_n : \mathbb{R}_+ \to \mathbb{R}$ est continue et strictement croissante car $\forall x \ge 0$, $f'_n(x) = (1+x)e^x > 0$. De plus, par croissances comparées, $f_n(0) = -n < 0$ et $\lim_{x \to +\infty} f_n(x) = +\infty$. Par le théorème de la bijection, f_n réalise une bijection de \mathbb{R}_+ dans $[-n; +\infty[$ donc $\exists ! u_n > 0$, $f_n(u_n) = 0$ car $0 \in [-n; +\infty[$ et $f_n(0) \ne 0$.

 b. Soit $n \ge 3$, on a $f_n(1) = e n < 0$ car $e \sim 2$,72 et $f_n(\ln(n)) = n \ln(n) n = n(\ln(n) 1) > 0$ car n > e donc $f_n(1) < f_n(u_n) < f_n(\ln(n))$ et on conclut par stricte croissance de f_n que $1 < u_n < \ln(n)$.

 Comme $u_n e^{u_n} = n$, on obtient $\ln(u_n) + u_n = \ln(n)$ donc $0 \le \ln(n) u_n = \ln(u_n) \le \ln(\ln(n))$. Or, par croissances comparées, $\ln(\ln(n)) = o(\ln(n))$ donc, par encadrement, $\ln(n) u_n = o(\ln(n))$ ce qui est la définition de l'équivalence $u_n \sim \ln(n)$.
 - c. Comme $u_n \ln n = -\ln(u_n)$, on peut espérer montrer que $u_n \ln(n) \underset{+\infty}{\sim} -\ln(\ln(n))$. On étudie donc $u_n \ln(n) + \ln(\ln(n)) = \ln\left(\frac{\ln(n)}{u_n}\right)$ qui tend vers 0 car $\lim_{n \to +\infty} \frac{\ln(n)}{u_n} = 1$ par la question précédente. Ainsi, $u_n \ln(n) + \ln(\ln(n)) \underset{+\infty}{=} o(1) \underset{+\infty}{=} o(\ln(\ln(n)))$ ce qui, encore une fois, se traduit par $u_n \ln(n) \underset{+\infty}{\sim} -\ln(\ln(n))$.
- $\begin{array}{ll} \textbf{1.7} \ \textbf{a.} \ \text{Par construction, on a } u_n > 0 \ \text{pour tout entier } n \in \mathbb{N}^* \ \text{donc ln} \left(\frac{u_{n+1}}{u_n} \right) \ \text{est bien d\'efini.} \ \text{De plus,} \\ & \ln \left(\frac{u_{n+1}}{u_n} \right) = \ln(u_{n+1}) \ln(u_n) = \left(n + \frac{3}{2} \right) \ln(n+1) \left(n + \frac{1}{2} \right) \ln(n) \ln(n+1) 1 \ \text{apr\`es simplifications.} \\ & \text{Alors, ln} \left(\frac{u_{n+1}}{u_n} \right) = \left(n + \frac{1}{2} \right) \ln\left(1 + \frac{1}{n} \right) 1 = \left(n + \frac{1}{2} \right) \left(\frac{1}{n} \frac{1}{2n^2} + O\left(\frac{1}{n^3} \right) \right) 1 = O\left(\frac{1}{n^2} \right). \ \text{Ainsi, par comparaison aux s\'eries de Riemann,} \\ & \sum_{n\geqslant 1} \ln\left(\frac{u_{n+1}}{u_n} \right) \ \text{converge absolument donc converge.} \end{array}$
 - **b.** Comme $\sum_{n\geqslant 1} \left(\ln(u_{n+1}) \ln(u_n)\right)$ converge, par dualité suite-série, la suite $\left(\ln(u_n)\right)_{n\in\mathbb{N}^*}$ converge vers une réel k. Par continuité de l'exponentielle, comme $u_n = exp\left(\ln(u_n)\right)$, la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers

 $c = e^k > 0$. Par conséquent, $\frac{n^{n+\frac{1}{2}}}{n!e^n} \underset{+\infty}{\sim} c$, ce qui équivaut à $n! \underset{+\infty}{\sim} C\sqrt{n} \left(\frac{n}{e}\right)^n$ avec $C = \frac{1}{c} > 0$.

c. On sait d'après la formule de STIRLING que $C=\sqrt{2\pi}$. Pour le montrer, on définit, pour un entier $n\in\mathbb{N}$, l'intégrale de WALLIS $W_n=\int_0^{\pi/2}\sin^n(t)dt$, qui est bien définie car $f_n:I=\left[0;\frac{\pi}{2}\right]\to\mathbb{R}$ telle que $f_n(t) = sin^n(t) \text{ est continue sur le segment I. De plus, } \forall t \in I, \ 0 \leqslant sin(t) \leqslant 1 \text{ donc } 0 \leqslant f_{n+1}(t) \leqslant f_n(t) \text{ ce qui, } 1 \text{ donc } 0 \leqslant f_{n+1}(t) \leqslant f_n(t) \text{ donc } 0 \leqslant f_{n+1}(t) \leqslant f_n(t) \text{ donc } 0 \leqslant f_n(t) \text{ donc } 0$ par croissance de l'intégrale, donne $0 \leq W_{n+1} \leq W_n$. La suite $(W_n)_{n \in \mathbb{N}}$ est donc positive et décroissante.

Pour $n \in \mathbb{N}$, en posant $u : t \mapsto \sin^{n+1}(t)$ et $v : t \mapsto (-\cos(t))$ dans $W_{n+2} = \int_0^{\pi/2} u(t)v'(t)dt$, comme u et v sont de classe C^1 sur I, on a $W_{n+2} = [-\cos(t)\sin^{n+1}(t)]_0^{\pi/2} + \int_0^{\pi/2} (n+1)\cos^2(t)\sin^n(t)dt$ donc $W_{n+2} = (n+1) \int_0^{\pi/2} (1-\sin^2(t)) \sin^n(t) dt = (n+1)(W_n - W_{n+2}) \text{ ce qui montre que } W_{n+2} = \frac{n+1}{n+2} W_n.$

Ainsi, $(n+2)W_{n+1}W_{n+1} = (n+1)W_nW_{n+1}$ donc la suite $((n+1)W_nW_{n+1})_{n\in\mathbb{N}}$ est constante et, comme $W_0 = \frac{\pi}{2}$ et $W_1 = \int_0^{\pi/2} \sin(t) dt = [-\cos(t)]_0^{\pi/2} = 1$, on a $\forall n \in \mathbb{N}$, $(n+1)W_nW_{n+1} = \frac{\pi}{2}$.

Pour $n \ge 1$, comme $W_{n+1} \le W_n \le W_{n-1}$, en multipliant par W_n , on a $\underline{W_n}W_{n+1} \le W_n^2 \le W_{n-1}W_n$ donc $\frac{\pi}{2(n+1)} \leqslant W_n^2 \leqslant \frac{\pi}{2n} \text{ car } W_n \geqslant 0. \text{ Par encadrement, on a donc } W_n \underset{+\infty}{\sim} \sqrt{\frac{\pi}{2n}}.$

Pour tout entier $n \in \mathbb{N}$, $W_{2n} = \frac{(2n-1)}{2n}W_{2n-2} = \cdots = \frac{(2n-1)\times\cdots\times 1}{(2n)\times\cdots\times 2}W_0 = \frac{(2n)!\pi}{2^{2n+1}(n!)^2}$. D'après la

question \mathbf{b} , on a $W_{2n} \underset{+\infty}{\sim} \frac{\langle e \rangle}{2^{2n+1} \left(C\sqrt{n}\left(\frac{n}{-}\right)^n\right)^2} \underset{+\infty}{\sim} \frac{\pi}{C\sqrt{2n}}$ après simplifications. Mais d'après ce qui précède,

on a $W_{2n} \sim \sqrt{\frac{\pi}{4n}} \sim \sqrt{\frac{\pi}{2}} \times \frac{1}{\sqrt{2n}}$. Par conséquent, on a $\sqrt{\frac{\pi}{2}} = \frac{\pi}{C}$ ce qui donne $C = \sqrt{2\pi}$ et on retrouve la formule de Stirling bien connue : $n! \sim_{+\infty} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

(1.8) La suite $(\mathfrak{u}_n)_{n\geqslant 1}$ est bien définie car $\forall k\in\mathbb{N}^*,\ 1+\mathfrak{a}_k>0$ par hypothèse.

 $\mathbf{a.} \ \underline{\mathrm{Initialisation}} : \ \mathrm{D'abord}, \ u_1 = \frac{\alpha_1}{1+\alpha_1} = 1 - \frac{1}{1+\alpha_1}. \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + 1, \ \mathrm{De \ plus}, \ \mathrm{comme} \ (1+\alpha_1)(1+\alpha_2) = \alpha_1 + \alpha_1\alpha_2 + \alpha_2 + \alpha_2 + \alpha_2 + \alpha_1\alpha_2 + \alpha_2 + \alpha_2 + \alpha_1\alpha_2 + \alpha_2 +$ $\mathrm{on} \; \mathrm{a} \; \mathrm{la} \; \mathrm{relation} \; \mathfrak{u}_1 + \mathfrak{u}_2 = \frac{\mathfrak{a}_1}{1+\mathfrak{a}_1} + \frac{\mathfrak{a}_2}{(1+\mathfrak{a}_1)(1+\mathfrak{a}_2)} = \frac{\mathfrak{a}_1 + \mathfrak{a}_1\mathfrak{a}_2 + \mathfrak{a}_2 + 1 - 1}{(1+\mathfrak{a}_1)(1+\mathfrak{a}_2)} = 1 - \frac{1}{(1+\mathfrak{a}_1)(1+\mathfrak{a}_2)}.$

<u>Hérédité</u>: soit $n \ge 1$, supposons que $\sum_{k=1}^n u_k = 1 - \prod_{k=1}^n \frac{1}{1+a_k}$. Alors $\sum_{k=1}^{n+1} u_k = \left(\sum_{k=1}^n u_k\right) + u_{n+1}$ donc $\sum_{k=1}^{n+1}u_k=1-\prod_{k=1}^n\frac{1}{1+a_k}+a_{n+1}\prod_{k=1}^{n+1}\frac{1}{1+a_k}\text{ par hypoth\`ese de r\'ecurrence et d\'efinition de }u_{n+1}.\text{ Ainsi, en }$

regroupant les deux derniers termes, $\sum_{k=1}^{n+1} u_k = 1 - \frac{1 + a_{n+1} - a_{n+1}}{\prod_{k=1}^{n+1} (1 + a_k)} = 1 - \prod_{k=1}^{n+1} \frac{1}{1 + a_k}$.

Par principe de récurrence, on a $\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n u_k = 1 - \prod_{k=1}^n \frac{1}{1+\alpha_k}$

b. Comme $(a_n)_{n \in \mathbb{N}^*}$ une suite de réels positifs, la suite $\left(\prod_{k=1}^n \frac{1}{1+a_k}\right)_{n \geqslant 1}$ est décroissante donc convergente par le théorème de la limite monotone car elle est minorée par 0. Ainsi, d'après a., la suite de ses sommes partielles étant convergente, la série $\sum_{n>1} u_n$ converge.

c. Posons, $v_n = \prod_{k=1}^n \frac{1}{1+\frac{1}{\sqrt{k}}} > 0$. D'après **b.**, $\sum_{k=1}^n u_k = 1 - v_n$. Or on a $\ln(v_n) = -\sum_{k=1}^n \ln\left(1+\frac{1}{\sqrt{k}}\right)$ et $\ln\left(1+\frac{1}{\sqrt{k}}\right) \sim \frac{1}{\sqrt{k}}$. Comme $\sum_{k\geqslant 1} \frac{1}{\sqrt{k}}$ diverge par RIEMANN, par comparaison des séries à termes positifs, $\sum_{k\geqslant 1} \ln\left(1+\frac{1}{\sqrt{k}}\right)$ diverge, ses sommes partielles tendent donc vers $+\infty$ d'où $\lim_{n\to +\infty} \ln(v_n) = -\infty$. Ainsi, puisque $v_n = e^{\ln(v_n)}$, puisque $\lim_{x\to -\infty} e^x = 0$, par composition des limites, $\lim_{n\to +\infty} v_n = 0$. Par conséquent, si on suppose que $\forall n\geqslant 1$, $a_n=\frac{1}{\sqrt{n}}>0$, on a $\sum_{n=1}^{+\infty} u_n = 1$.

1.9 a. $x_1 > 0$ par hypothèse. Soit $n \ge 1$ tel que $x_n > 0$ est bien défini, alors $x_{n+1} = x_n + \frac{n}{x_n} > 0$ est aussi bien défini. Par principe de récurrence, la suite $(x_n)_{n \ge 1}$ est bien définie et strictement positive. De plus, $\forall n \ge 1$, $x_{n+1} - x_n = \frac{n}{x_n} > 0$ donc $(x_n)_{n \ge 1}$ est strictement croissante. D'après le théorème de la limite monotone, soit $\lim_{n \to +\infty} x_n = +\infty$, soit $\lim_{n \to +\infty} x_n = \ell \in \mathbb{R}$. Si on avait $\lim_{n \to +\infty} x_n = \ell \in \mathbb{R}$, comme $\ell \ge x_1 > 0$ car $(x_n)_{n \ge 1}$ est croissante, on aurait $\lim_{n \to +\infty} \frac{n}{x_n} = +\infty$ alors que $\lim_{n \to +\infty} (x_{n+1} - x_n) = \ell - \ell = 0$, ce qui est absurde. On en déduit donc que $(x_n)_{n \in \mathbb{N}^*}$ tend vers $+\infty$.

b. Soit $f_n : \mathbb{R}_+^* \to \mathbb{R}$ définie par $f_n(x) = x + \frac{n}{x}$ de sorte $\forall n \in \mathbb{N}^*$, $x_{n+1} = f_n(x_n)$. Les fonctions f_n sont dérivables par théorèmes généraux sur \mathbb{R}_+^* et $f_n'(x) = 1 - \frac{n}{x^2}$ donc, en traçant le tableau de variations de f_n , cette fonction est décroissante sur $]0; \sqrt{n}]$ et croissante sur $[\sqrt{n}; +\infty[$. Ainsi, $\min_{\mathbb{R}_+^*} f_n = f_n(\sqrt{n}) = 2\sqrt{n}$.

 $\underline{\mathrm{Initialisation}}: \mathrm{comme} \ x_2 = x_1 + \frac{1}{x_1} = f_1(x_1) \ \mathrm{et} \ \mathrm{que} \ \underset{\mathbb{R}_+^*}{\mathrm{Min}} \ f_1 = 2, \ \mathrm{on} \ \mathrm{a} \ x_2 = f_1(x_1) \geqslant 2\sqrt{1} = 2.$

 $\underline{\text{H\'er\'edit\'e}}$: soit un entier $n \geq 2$ tel que $x_n \geq n$, comme $n \geq \sqrt{n}$ et que la fonction f_n est croissante sur $[\sqrt{n}; +\infty[$, on obtient $x_{n+1} = f(x_n) \geq f(n) = n+1$.

Par principe de récurrence, on peut conclure que $\forall n \geq 2, \ x_n \geq n$.

De plus, comme on vient de montrer que $\forall k \ge 2$, $\frac{k}{x_k} \le 1$, pour tout entier $n \ge 2$, on obtient la majoration

$$x_n - x_2 = \sum_{k=2}^{n-1} (x_{k+1} - x_k) = \sum_{k=2}^{n-1} \frac{k}{x_k} \leqslant \sum_{k=2}^{n-1} 1 = n-2 \text{ par t\'elescopage de sorte que } x_n \leqslant x_2 + n-2.$$

Comme $\forall n \geq 2$, $n \leq x_n \leq x_2 + n - 2$ et que $x_2 + n - 2 \sim n$, on a $x_n \sim n$ par encadrement.

c. Posons $u_n = x_n - n$ pour tout entier $n \ge 2$. D'après la question précédente, la suite $(u_n)_{n \in \mathbb{N}^*}$ est positive. Comme $u_{n+1} - u_n = x_{n+1} - x_n - 1 = \frac{n}{x_n} - 1 = \frac{n - x_n}{x_n} \le 0$ d'après **b.** donc la suite $(u_n)_{n \in \mathbb{N}^*}$ est décroissante. Comme $(u_n)_{n \in \mathbb{N}^*}$ est décroissante et minorée par 0, par le théorème de la limite monotone, elle converge. Notons $c = \lim_{n \to +\infty} u_n \in \mathbb{R}_+$, on a donc $u_n = c + o(1)$ donc $x_n = n + c + o(1)$ comme attendu. d. On a $u_{n+1} - u_n = x_{n+1} - x_n - 1 = \frac{n - x_n}{x_n}$. Si on avait $c \ne 0$, alors on aurait $u_{n+1} - u_n \approx -\frac{c}{n}$ donc, par comparaison à la série harmonique, la série $\sum_{n \ge 1} (u_{n+1} - u_n)$ divergerait et, par dualité suite-série, la suite $(u_n)_{n \in \mathbb{N}^*}$ divergerait aussi, contredisant le résultat de la question précédente. On peut donc conclure que c = 0, ce qui s'écrit $x_n = n + o(1)$.

- **1.10 a.** Soit $f_n : \mathbb{R}_+ \to \mathbb{R}$ définie par $f_n(x) = x^n + x\sqrt{n} 1$. La fonction polynomiale f_n est dérivable sur \mathbb{R}_+ et on a $\forall x \geq 0$, $f'_n(x) = nx^{n-1} + \sqrt{n} \geq \sqrt{n} > 0$. Ainsi, la fonction f_n est strictement croissante sur l'intervalle \mathbb{R}_+ , f(0) = -1 < 0 et $\lim_{x \to +\infty} f_n(x) = +\infty$ donc, par le théorème de la bijection continue, f_n réalise une bijection de \mathbb{R}_+ dans $[-1; +\infty[$ donc il existe un unique $x_n \in]0; +\infty[$ tel que $f_n(x_n) = 0$.
 - $\begin{array}{l} \textbf{b.} \ \text{Comme} \ f_1(x) = 2x 1, \ \text{on a} \ x_1 = \frac{1}{2}. \ \text{Puisque} \ f_2(x) = x^2 + x\sqrt{2} 1, \ \text{on a} \ x_2 = \frac{-\sqrt{2} + \sqrt{6}}{2} = \frac{\sqrt{3} 1}{\sqrt{2}} \sim 0, 52. \\ \text{La monotonie de la suite} \ (x_n)_{n\geqslant 1} \ \text{ne peut donc pas servir ici, ou alors à partir d'un certain rang. Par contre, } \\ \text{comme} \ f_n\left(\frac{1}{\sqrt{n}}\right) = \left(\frac{1}{\sqrt{n}}\right)^n > 0 = f_n(x_n) > -1 = f_n(0), \ \text{on en déduit que } 0 < x_n < \frac{1}{\sqrt{n}} \ \text{par stricte} \\ \text{croissance de } f_n \ \text{sur} \ \mathbb{R}_+. \ \text{Comme} \ \lim_{n\to +\infty} \frac{1}{\sqrt{n}} = 0, \ \text{on a bien } \lim_{n\to +\infty} x_n = 0 \ \text{par encadrement.} \end{array}$
 - c. Par construction, $f_n(x_n) = 0$ donc $\sqrt{n} \, x_n = 1 x_n^n$. Mais $x_n < \frac{1}{\sqrt{n}}$ donc $0 < x_n^n < \left(\frac{1}{\sqrt{n}}\right)^n$ ce qui prouve que $x_n^n = o\left(\frac{1}{\sqrt{n}}\right)$. Par conséquent, $x_n = \frac{1}{\sqrt{n}} \frac{x_n^n}{\sqrt{n}} = \frac{1}{\sqrt{n}} + o\left(\frac{1}{n}\right) = \frac{1}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)$ ce qui montre que $x_n \underset{+\infty}{\sim} \frac{1}{\sqrt{n}}$. Par comparaison aux séries de RIEMANN, la série à termes positifs $\sum_{n \ge 1} x_n$ diverge car $\frac{1}{2} \le 1$.