DM 02: ENDOMORPHISMES CYCLIQUES

PSI 1 2025/2026

pour le mardi 23 septembre 2025

Soit E un \mathbb{R} -espace vectoriel de dimension finie \mathfrak{n} et $\mathfrak{u} \in \mathcal{L}(E)$, on dit que \mathfrak{u} est un **endomorphisme** cyclique si et seulement s'il existe un vecteur $x_0 \in E$ tel que $(x_0, \mathfrak{u}(x_0), \dots, \mathfrak{u}^{n-1}(x_0))$ est une base de E.

PARTIE 1 : EXEMPLES ET PREMIÈRE PROPRIÉTÉ

- Analyse : soit $F = \mathcal{F}(\mathbb{R}, \mathbb{R})$ et $E = Vect(\sin, \cos, 1) \subset F$, $u : E \to E$ définie par : $\forall f \in F$, u(f) = f'. On pose aussi la famille $\mathcal{B} = (1, \sin, \cos)$ (1 est compris ici comme la fonction constante égale à 1). Montrer que la famille \mathcal{B} est une base de E. Justifier que E est un endomorphisme de E. E u est-il cyclique?
- **2** Géométrie : soit $u : \mathbb{R}^3 \to \mathbb{R}^3$ définie par : $\forall (x,y,z) \in \mathbb{R}^3, \ u(x,y,z) = (y,x,z).$

Caractériser géométriquement u. u est-il cyclique ?

On revient dans les deux questions qui suivent à un espace E quelconque.

- **3** Nilpotence : soit $u \in \mathcal{L}(E)$ nilpotent d'indice $p \ge 1$, c-à-d que $u^p = 0$ (endomorphisme nul) et $u^{p-1} \ne 0$
 - **3.1** Montrer l'existence d'un vecteur $x_0 \in E$ tel que la famille $(x_0, \dots, u^{p-1}(x_0))$ soit libre.
 - **3.2** En déduire que : $(\mathfrak{u} \text{ est cyclique}) \iff (\mathfrak{p} = \mathfrak{n}).$
- $\boxed{4}$ Minoration du rang d'un cyclique : soit donc u cyclique et $(x_0,u(x_0),\cdots,u^{n-1}(x_0))$ une base de E
 - **4.1**] Comparer rang (u) et le rang de la famille de vecteurs $(u(x_0), u^2(x_0), \cdots, u^{n-1}(x_0), u^n(x_0))$.
 - [4.2] Quelles sont donc les deux seules valeurs possibles de rang (u)?

PARTIE 2 : C'EST DU PROPRE

Soit encore E un \mathbb{R} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$; on suppose qu'il existe $(\lambda_1, \cdots, \lambda_n) \in \mathbb{R}^n$ deux à deux distincts tels que : $\forall i \in [\![1;n]\!]$, $\exists e_i \in E$, $e_i \neq 0$ et $u(e_i) = \lambda_i e_i$.

On dit que λ_i est une valeur propre de u et e_i est un vecteur propre de u associé à la valeur propre λ_i .

On suppose que la famille (e_1, \dots, e_n) est liée ; soit alors r le plus <u>petit</u> entier tel que (e_1, \dots, e_r) est liée et $(\alpha_1, \dots, \alpha_r) \in \mathbb{R}^r$ <u>non tous nuls</u> telle que $\alpha_1 e_1 + \dots + \alpha_r e_r = 0$.

- 1 Prouver que $r \ge 2$ et que $\alpha_1(\lambda_1 \lambda_r)e_1 + \cdots + \alpha_{r-1}(\lambda_{r-1} \lambda_r)e_{r-1} = 0$.
- **2** Que peut-on donc dire de la famille (e_1, \dots, e_n) ?

On pose dorénavant $x_0 = e_1 + \cdots + e_n$.

- **3** Pour tout entier $k \in \mathbb{N}$, exprimer $u^k(x_0)$ en fonction de e_1, \dots, e_n .
- 4 Montrer que u est cyclique.

PARTIE 3: POLYNÔMES ANNULATEURS

- Polynôme minimal d'un endomorphisme cyclique : soit E un \mathbb{R} -espace vectoriel de dimension \mathfrak{n} , $\mathfrak{u} \in \mathcal{L}(E)$ un endomorphisme cyclique et $x_0 \in E$ tel que $(x_0, \cdots, \mathfrak{u}^{n-1}(x_0))$ soit une base de E.
 - $\textit{On note} \ \mathsf{Ann}(\mathfrak{u}) \ \textit{l'ensemble des polynômes annulateurs de } \mathfrak{u} \ : \ \textit{c'est-\`a-dire} \ \mathsf{Ann}(\mathfrak{u}) = \{P \in \mathbb{R}[X] \mid P(\mathfrak{u}) = \emptyset\}.$
 - **1.1** Rappeler la structure de Ann(u) dans l'anneau $\mathbb{R}[X]$.
 - Justifier l'existence d'un unique polynôme π_u unitaire tel que Ann(u) soit l'ensemble des multiples de π_u ; ce qu'on écrit $\text{Ann}(u) = \pi_u \mathbb{R}[X] = \{P \in \mathbb{R}[X] \mid \exists R \in \mathbb{R}[X], P = \pi_u R\}.$
 - $\boxed{\textbf{1.2}} \text{ Justifier l'existence de réels } \alpha_0, \cdots, \alpha_{n-1} \text{ tels que } \mathfrak{u}^n(x_0) + \alpha_{n-1}\mathfrak{u}^{n-1}(x_0) + \cdots + \alpha_1\mathfrak{u}(x_0) + \alpha_0x_0 = 0.$
 - 1.3 En déduire que $\pi_{\mathfrak{u}}=X^n+\sum\limits_{k=0}^{n-1}\alpha_kX^k$ ($\pi_{\mathfrak{u}}$ est le polynôme minimal de \mathfrak{u}).
 - $\boxed{\textbf{1.4}}$ En déduire que $\mathbb{R}[\mathfrak{u}] = \mathbb{R}_{\mathfrak{n}-1}[\mathfrak{u}]$. Justifier que $(\mathrm{id}_{E},\mathfrak{u},\cdots,\mathfrak{u}^{n-1})$ est une base de $\mathbb{R}[\mathfrak{u}]$.
- **2** Réunion de sous-espaces : pour $m \in \mathbb{N}^*$, soit $\mathcal{P}_m =$ "si un \mathbb{R} -espace F vérifie dim(F) = m et $F = \bigcup_{k=1}^r G_k$ avec $r \in \mathbb{N}^*$ et G_1, \dots, G_r des sous-espaces de F, alors $\exists k \in [1; r]$, $F = G_k$ "
 - $\boxed{\mathbf{2.1}}$ Montrer que \mathcal{P}_1 est vraie. Justifier que tout espace de dimension $\geqslant 2$ possède une infinité d'hyperplans.
 - **[2.2]** Établir que $\mathcal{P}_{\mathfrak{m}}$ est vraie pour tout entier $\mathfrak{m} \geqslant 1$.
- **3** Réciproque : soit maintenant $u \in \mathcal{L}(E)$ tel que son polynôme minimal π_u soit de degré $n = \dim(E)$. On pose, pour $x \in E$ non nul, $A_x = \{P \in \mathbb{R}[X] \mid P(u)(x) = \emptyset\}$
 - 3.1 Montrer que A_x est un idéal de $\mathbb{R}[X]$, et qu'il existe un unique polynôme unitaire π_X de $\mathbb{R}[X]$ tel que $A_x = \pi_X \mathbb{R}[X]$ et tel que π_X divise π_u .
 - On écrit la décomposition en polynômes irréductibles de π_u : $\pi_u = \prod\limits_{k=1}^r (X \alpha_k)^{m_k} \prod\limits_{k=1}^s (X^2 + \beta_k X + \gamma_k)^{n_k}$ avec $r \geq 0$, $s \geq 0$, des réels $\alpha_1, \cdots, \alpha_r$ distincts deux à deux avec $(m1, \cdots, m_r) \in (\mathbb{N}^*)^r$, des couples $(\beta_1, \gamma_1), \cdots, (\beta_s, \gamma_s)$ de réels distincts deux à deux tels que $\forall k \in [\![1;s]\!]$, $b_k 4\gamma_k < 0$ et $(n_1, \cdots, n_s) \in (\mathbb{N}^*)^s$.
 - **3.2** Combien y-a-t-il de polynômes unitaires réels qui divisent $\pi_{\mathfrak{u}}$? En déduire qu'il existe un nombre fini de vecteurs non nuls de E, notons les ν_1, \dots, ν_p , tels que pour tout $x \in E$ non nul, on ait $\pi_x \in \{\pi_{\nu_1}, \dots, \pi_{\nu_p}\}$.
 - **3.3** Montrer qu'il existe un entier $k \in [1; p]$ tel que $E = Ker(\pi_{v_k}(u))$.
 - **3.4** En déduire enfin que u est cyclique.

PARTIE 4: COMMUTANT DES CYCLIQUES

Soit $u \in \mathcal{L}(E)$ un endomorphisme cyclique de E et $x_0 \in E$ tel que $\left(x_0, u(x_0), \cdots, u^{n-1}(x_0)\right)$ est une base de E. Soit C(u) le **commutant** de u : $C(u) = \{v \in \mathcal{L}(E) \mid v \circ u = u \circ v\}$ (les $v \in \mathcal{L}(E)$ qui commutent avec u).

- $\boxed{1}$ Montrer que $\mathcal{C}(\mathfrak{u})$ est une sous-algèbre $\mathcal{L}(\mathsf{E})$ (sous-espace vectoriel et sous-anneau) et $\mathfrak{n} \leqslant \dim (\mathcal{C}(\mathfrak{u})) \leqslant \mathfrak{n}^2$.
- - $\boxed{\textbf{2.1}} \ \ \text{Prouver qu'il existe} \ (\alpha_0,\cdots,\alpha_{n-1}) \in \ \mathbb{R}^n \ \ \text{tel que} \ \nu(x_0) = \alpha_0 x_0 + \alpha_1 u(x_0) + \cdots + \alpha_{n-1} u^{n-1}(x_0).$
 - $\boxed{\textbf{2.2}} \ \, \text{Montrer que}: \ \, \forall k \in [\![0; \mathfrak{n}-1]\!], \ \, \nu \circ \mathfrak{u}^k = \mathfrak{u}^k \circ \nu.$

 - $\fbox{\textbf{2.4}}$ En déduire la valeur de $dim(\mathfrak{C}(\mathfrak{u}))$.