ÉNONCÉS EXERCICES CORRIGÉS 1 SÉRIES NUMÉRIQUES

1.1 Séries à termes positifs

- Étudier la suite $(u_n)_{n\in\mathbb{N}}$. Trouver $k\in]0$; 1[tel que : $\forall n\in\mathbb{N},\ x_{n+1}\leqslant kx_n$. En déduire la nature de $\sum_{n\geq 0}x_n$.
- <u>Mines PSI 2008 d'après RMS</u> On suppose que la série de terme général $a_n > 0$ est divergente. Soit, pour tout entier n, $S_n = a_0 + \cdots + a_n$ et $b_n = \frac{a_{n+1}}{S_n}$. Déterminer la nature de la série de terme général b_n .
- Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle strictement positive telle que la série de terme général u_n converge. Étudier la nature des séries de termes généraux $\frac{u_n}{R_n}$ et $\frac{u_n}{R_{n-1}}$
- Soit une suite $(u_n)_{n \in \mathbb{N}^*}$ décroissante de réels positifs telle que $\lim_{n \to +\infty} u_n = 0$.
 - $\textbf{a.} \text{ Pour } n \in \mathbb{N}^*, \text{ trouver une relation simple entre } S_n = \sum_{k=1}^n u_k \text{ et } T_n = \sum_{k=1}^n k(u_k u_{k+1}). \text{ En déduire que } \\ \sum_{n\geqslant 1} u_n \text{ et } \sum_{n\geqslant 1} n(u_n u_{n+1}) \text{ sont de même nature et que, quand elles convergent, elles ont la même somme. }$
 - **b.** En déduire l'existence et la valeur de $\sum_{n=1}^{+\infty} \frac{2n+1}{n(n+1)^2}$
- - **b.** Montrer que : $\forall x \in]0;1]$, $\ln(1+x) \geqslant x-x^2$. **c.** En déduire la nature de la série $\sum_{n\geqslant 1} u_n$ quand $\alpha=1$.
- (1.6) <u>Centrale PSI 2012</u> Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs et $(b_n)_{n\in\mathbb{N}}$ telle que $b_0=1$ et $\forall n \in \mathbb{N}, \ b_{n+1} = b_n + \frac{a_n}{b_n}.$
 - a. Justifier que si $(b_n)_{n\in\mathbb{N}}$ converge (dans \mathbb{R}) alors on a $\lim_{n\to+\infty} a_n=0$.
 - **b.** Montrer que : $(\mathfrak{b}_n)_{n\in\mathbb{N}}$ converge $\iff \sum_{n\geq 0} a_n$ converge.
- Règle de DUHAMEL-RAABE Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs.
 - $\textbf{a.} \ \, \text{Montrer que si} \ \, \frac{u_{n+1}}{u_n} \underset{+\infty}{=} 1 \frac{\alpha}{n} + o\left(\frac{1}{n}\right) \ \, \text{avec} \ \, \alpha > 1 \ \, \text{alors} \ \, \sum_{n \geq n} u_n \ \, \text{converge}.$
 - **b.** Montrer que si $\frac{u_{n+1}}{u_n} = 1 \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$ avec $\alpha < 1$ alors $\sum_{n \geqslant 0} u_n$ diverge. **c.** Montrer que si $\frac{u_{n+1}}{u_n} = 1 \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right)$ alors $\exists A \in \mathbb{R}$, $u_n \sim \frac{A}{n^{\alpha}}$.

 - **d.** Nature de la série de terme général $u_n = \frac{(2n)!}{2^{2n} (n!)^2}$.

- Soit deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ de termes strictement positifs telles que les $a_n \sim b_n$. 1.8 On suppose que la série $\sum_{n>0} a_n$ est divergente, montrer que $\sum_{k=0}^n a_k \sim \sum_{k=0}^n b_k$.
- (1.9)Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs.

 - $\textbf{a.} \ \text{Pour tout } n \in \mathbb{N}, \text{ on pose } \nu_n = \frac{u_n}{1+u_n}, \text{ montrer que } \sum_{n\geqslant 0} u_n \text{ et } \sum_{n\geqslant 0} \nu_n \text{ sont de même nature.}$ $\textbf{b.} \ \text{Même question avec } \nu_n = \frac{u_n}{u_1+\dots+u_n}. \text{ On pourra \'etudier ln}(1-\nu_n) \text{ dans le cadre de la divergence.}$
- $(1.10) \underline{XMP}$ Soit $(\mathfrak{u}_n)_{n \in \mathbb{N}^*}$ une suite réelle strictement positive, décroissante, de limite nulle. On suppose que la suite de terme général $v_n = \left(\sum_{k=1}^n u_k\right) - nu_n$ est bornée. Montrer que la série de terme général u_n converge. Indication : montrer que $(\nu_n)_{n\in\mathbb{N}^*}^{\kappa-1}$ converge, puis s'intéresser au reste de la série $\sum_{n\geq 1}(u_n-u_{n+1})$.
- $\underbrace{(\mathbf{1.11})} \underline{\text{Mines PSI 2007 d'après } RMS} \text{ Soit } (x_n)_{n \geqslant 0} \text{ définie par : } x_0 = 1 \text{ et } \forall n \in \mathbb{N}, \, x_{n+1} = x_n + \frac{1}{x_n}.$ Donner un équivalent de x_n quand $n \to +\infty$.
- 1.12 Centrale PSI 2012 On se donne la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0\in\mathbb{R}$ et : $\forall n\geqslant 0$, $u_{n+1}=u_n^2+u_n$.

 - $\begin{array}{l} \textbf{a. \'Etudier le comportement de la suite } (u_n)_{n\in\mathbb{N}} \text{ selon les valeurs de } u_0. \\ \textbf{b. Soit } u_0\in]-1\,; 0[. \text{ Calculer } \lim_{n\to+\infty} \left(\frac{1}{u_{n+1}}-\frac{1}{u_n}\right) \text{ pour d\'eduire avec l'exercice } 8.3 \text{ un \'equivalent de } u_n. \end{array}$ Dorénavant, on se place dans le cas où $u_0 > 0$ et on pose, pour tout entier n, le réel $v_n = \frac{1}{2^n} \ln \left(u_n \right)$.
 - **c.** Étudier la monotonie de $(\nu_n)_{n\in\mathbb{N}}$ et justifier que : $\forall n\in\mathbb{N}, \ \nu_{n+1}-\nu_n\leqslant \frac{1}{2^{n+1}\mu_0}$

- En déduire que la suite $(\nu_n)_{n\in\mathbb{N}}$ converge vers un réel $\alpha>0$. **d.** Montrer que si $p\in\mathbb{N}$ est fixé : $\forall n\geqslant p,\ \nu_n-\nu_p\leqslant \frac{1}{2^pu_p}$. En déduire que $u_n\underset{+\infty}{\sim}e^{2^n\alpha}$.
- $\boxed{\textbf{1.13}} \ \, \mathrm{Soit} \, \, (\mathfrak{u}_{\mathfrak{n}})_{\mathfrak{n} \in \mathbb{N}} \, \, \mathrm{definie \, par \, } \mathfrak{u}_{\mathfrak{0}} \in \left] \mathfrak{0}; \frac{\pi}{2} \right[\, \mathrm{et} \, \, \mathfrak{u}_{\mathfrak{n}+1} = \sin(\mathfrak{u}_{\mathfrak{n}}) \, \, \mathrm{pour \, tout \, } \mathfrak{n} \in \, \mathbb{N}.$
 - **a.** Montrer que $(u_n)_{n\in\mathbb{N}}$ tend vers 0. Que peut-on dire de la série $\sum_{n\geq 0} (-1)^n u_n$?
 - **b.** Montrer que $\sum_{n\geqslant 0} u_n^3$ converge.
 - c. Exploiter $ln(u_{n+1}) ln(u_n)$ pour montrer que $\sum_{n\geqslant 0} u_n^2$ diverge.
 - d. Déterminer un équivalent de u_n quand n tend vers $+\infty$ grâce à CESARO.
- (1.14) Soit $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ définie par $\mathfrak{u}_0\in\mathbb{R}_+^*$ et $\mathfrak{u}_{n+1}=1-e^{-\mathfrak{u}_n}$ pour $\mathfrak{n}\in\mathbb{N}$.
 - **a.** Montrer que $(u_n)_{n\in\mathbb{N}}$ tend vers 0. Que peut-on dire de la série $\sum_{n\geq 0} (-1)^n u_n$?

 - $\begin{array}{ll} \textbf{b.} \ \, \text{Montrer que} \ \, \sum_{n\geqslant 0} u_n^2 \ \, \text{converge.} \\ \textbf{c.} \ \, \text{Exploiter} \ \, \ln(u_{n+1}) \ln(u_n) \ \, \text{pour montrer que} \ \, \sum_{n\geqslant 0} u_n \ \, \text{diverge.} \end{array}$
 - $\mathbf{d.}$ Déterminer un équivalent de $\mathfrak{u}_{\mathfrak{n}}$ quand \mathfrak{n} tend vers $+\infty$ grâce à Cesaro.
- (1.15) <u>Critère de Cauchy</u> Soit $\sum_{n\geqslant 0} u_n$ une série à termes positifs, on suppose que $\sqrt[n]{u_n} \to \ell \in \mathbb{R}^+$.

 - **a.** Montrer que si $\ell > 1$ alors $\sum_{n \geqslant 0} u_n$ est divergente. **b.** Montrer que si $\ell < 1$ alors $\sum_{n \geqslant 0} u_n$ est convergente.
 - **c.** Observer que, lorsque $\ell = 1$, on ne peut rien conclure.

- $\boxed{\mathbf{1.16}}$ Soit $\sigma: \mathbb{N}^* \to \mathbb{N}^*$ une application bijective.
 - a. Déterminer la nature de $\sum\limits_{n\geqslant 1}\frac{1}{\sigma(n)^2}.$
 - **b.** Même question pour $\sum_{n\geq 1} \frac{1}{\sigma(n)}$.
- - a. Déterminer les réels b tels que \mathfrak{u}_n existe pour tout entier $n\geqslant 1.$
 - **b.** Dans les cas précédents, déterminer la nature de la série numérique $\sum_{n\geqslant 1} u_n$.

1.2 Séries à termes quelconques

- (1.18) <u>Centrale PSI 2012</u> Dans tout cet exercice, on se donne deux réels α et β .
 - $\textbf{a.} \ \grave{\text{A}} \ \text{quelle condition la série} \ \sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n^{\alpha}} \ \text{converge} \ ? \ \text{Si c'est le cas, quel est le signe de} \ \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k^{\alpha}} \ ?$
 - **b.** À quelle condition la série $\sum_{n\geqslant 1}\frac{1}{n^{\beta}}$ converge ? Si c'est le cas, montrer que $\sum_{k=n+1}^{+\infty}\frac{1}{k^{\beta}} \sim \frac{1}{(\beta-1)n^{\beta-1}}$.
 - c. Sous ces conditions, quand la série de terme général $w_n = \frac{\sum_{k=n+1}^{\infty} \frac{1}{k^{\beta}}}{\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{\alpha}}}$ converge-t-elle?
- 1.19 Soit z_n le terme général d'une série complexe convergente ; établir que $\sum_{n\geqslant 1}\frac{z_n}{n}$ est convergente.
- $\boxed{\textbf{1.21}} \ \, \text{Pour} \,\, \mathfrak{n} \in \, \mathbb{N}, \, \text{on pose} \,\, R_{\mathfrak{n}} = \sum_{k=\mathfrak{n}+1}^{+\infty} \frac{(-1)^k}{k}.$
 - $\textbf{a.} \ \mathrm{Montrer} \ \mathrm{que} \ \forall n \geqslant 0, \ R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}. \ \mathrm{En} \ \mathrm{d\'eduire} \ \mathrm{un} \ \mathrm{\'equivalent} \ \mathrm{de} \ R_n \ \mathrm{en} \ +\infty.$
 - $\mathbf{b.}$ Donner la nature de la série de terme général $R_{\mathfrak{n}}$

1.3 Calcul de somme

- - $\textbf{a. Justifier que les deux séries } \sum_{n\geqslant 1} u_n \text{ et } \sum_{n\geqslant 1} \left(u_{3n-2} + u_{3n-1} + u_{3n}\right) \text{ ont même nature}.$
 - b. Exprimer, pour $n\in\,\mathbb{N}^*,$ la quantité $\sum\limits_{k=1}^{3n}u_k$ en fonction de H_{3n} et $H_n.$
 - c. En déduire l'existence et la valeur de $\sum_{n=1}^{+\infty} u_n$.

- $\boxed{\textbf{1.24}} \ \, \text{Calculer la somme de la série} \, \sum_{n \geqslant 1} u_n \, \, \text{où} \, \, u_n = -\frac{2}{n} \, \, \text{si} \, \, n \equiv 0 [3] \, \, \text{et} \, \, u_n = \frac{1}{n} \, \, \text{sinon}.$
- 1.25 Justifier l'existence et calculer la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n(2n-1)}$.
- (1.26) <u>Centrale PSI 2012</u> On note d(n) le nombre de chiffres de l'écriture de n en base 10.
 - $\textbf{a.} \ \, \text{Montrer que } d(\mathfrak{n}) = \left\lfloor \frac{l\mathfrak{n}(\mathfrak{n})}{l\mathfrak{n}(10)} \right\rfloor + 1 = \left\lfloor \log_{10}(\mathfrak{n}) \right\rfloor + 1. \, \, \text{En d\'eduire que la s\'erie} \, \sum_{\mathfrak{n}\geqslant 1} \frac{d(\mathfrak{n})}{\mathfrak{n}(\mathfrak{n}+1)} \, \, \text{converge.}$
 - **b.** Déterminer la valeur de $\sum_{n=1}^{+\infty} \frac{d(n)}{n(n+1)}$.
- 1.27 <u>Centrale PSI 2012</u> Calculer $\sum_{n=1}^{+\infty} (-1)^n \ln \left(1 + \frac{1}{n}\right)$. Indication: utiliser la formule de STIRLING.
- 1.28 <u>CCP PSI 2007 d'après RMS</u> Convergence et somme de : $\sum_{n\geqslant 1} \frac{\left\lfloor \sqrt{n+1}\right\rfloor \left\lfloor \sqrt{n}\right\rfloor}{n}.$
- $\underbrace{\text{1.29}}_{\text{CCP PSI 2008 d'après RMS}} \text{Soit } R_n = \sum_{k \geqslant n+1} \frac{1}{k!}. \text{ Montrer que } R_n \underset{n \rightarrow +\infty}{\sim} \frac{1}{(n+1)!}.$ Calculer $\sum_{n=0}^p R_n$ puis $\sum_{n=0}^\infty R_n$.
- **1.30** <u>Mines MP</u>

Convergence puis calcul de la somme de la série $\sum_{n\geqslant 1}^{+\infty}\frac{1}{1^2+2^2+\cdots+n^2}$

1.4 Séries alternées

- $\boxed{\textbf{1.31}} \ \text{Déterminer la nature de} \ \underset{n\geqslant 0}{\sum} \ \mathfrak{u}_n \ \text{pour} \ \mathfrak{u}_n = \frac{\left(-1\right)^n}{\ln\left(n+(-1)^n\right)}.$
- $\boxed{\textbf{1.32}} \ \text{Déterminer la nature de} \ \sum_{n\geqslant 0} \mathfrak{u}_n \ \text{pour} \ \mathfrak{u}_n = \frac{(-1)^n}{\ln(n) + (-1)^n}.$

- $\boxed{\textbf{1.37}} \ \underline{\textit{CCP PSI 2010 d'après RMS}} \ \text{Nature selon } \mathfrak{a} \in \mathbb{R}^* \ \text{de la série de terme général } \mathfrak{u}_\mathfrak{n} = (\mathfrak{n}+2)^\mathfrak{a} 2(\mathfrak{n}+1)^\mathfrak{a} + \mathfrak{n}^\mathfrak{a} \ ?$
- $\boxed{\textbf{1.38}} \ \ \text{Déterminer la nature de la série} \ \sum_{n\geqslant 1} u_n \ \text{si} \ u_n = \frac{(-1)^n}{\sum\limits_{k=1}^n \frac{1}{\sqrt{k}} + (-1)^{n-1}}.$

1.39 <u>Centrale PSI 2012</u>

Soit $\alpha>0$, on pose, pour tout $n\in\mathbb{N}^*,$ $u_n=\sum_{k=n+1}^{+\infty}\frac{(-1)^k}{k^\alpha}.$

Étudier la convergence de la série $\sum_{n\geqslant 1}\mathfrak{u}_n.$

1.5 Comparaison série-intégrale

- $\boxed{\textbf{1.40}} \text{ Soit } \alpha > 1, \text{ on pose } u_n = \frac{1}{n^{\alpha}} \text{ pour } n \in \mathbb{N}^*. \text{ On définit aussi } S_n = \sum_{k=1}^n u_k \text{ et } R_n = \sum_{k=n+1}^{+\infty} u_k.$
 - $\textbf{a. Justifier l'existence (et les valeurs) des limites de } (S_{\mathfrak{n}})_{\mathfrak{n} \in \mathbb{N}^*} \text{ et } (R_{\mathfrak{n}})_{\mathfrak{n} \in \mathbb{N}^*}. \text{ Rappeler } \lim_{\mathfrak{n} \to +\infty} S_{\mathfrak{n}} \text{ si } \alpha = 2.$
 - b. Trouver par comparaison série-intégrale un équivalent de R_n quand n tend vers $+\infty$.
 - c. Quelle est la nature de la série $\sum_{n\geqslant 1}\frac{R_n}{S_n}$?
- $\boxed{\textbf{1.42}} \ \, \text{Pour } \alpha > 1, \, \text{on pose } S_N = \sum_{n=1}^N \frac{1}{n^\alpha} \, \, \text{et } \, R_N = \sum_{n=N+1}^{+\infty} \frac{1}{n^\alpha}. \, \, \text{\'Etudier, selon } \alpha, \, \text{la nature de la s\'erie} \, \sum_{n \geq 1} \frac{R_n}{S_n}.$
- - a. Donner un développement asymptotique à deux termes de $u_n = \sum_{p=2}^n \frac{\ln p}{p}$.
 - b. À l'aide de la constante d'Euler, calculer $\sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{n}$.
- $\underbrace{1.44}_{X MP} \text{ Soit } (\mathfrak{u}_n)_{n \in \mathbb{N}} \text{ une suite réelle strictement positive et strictement croissante.}$ Déterminer la nature de la série de terme général $\underbrace{\mathfrak{u}_{n+1} \mathfrak{u}_n}_{\mathfrak{u}_n}.$
- 1.45 Déterminer la nature de la série $\sum_{n\geqslant 1}u_n$ si $u_n=\frac{(-1)^n}{\sum\limits_{k=1}^n\frac{1}{\sqrt{k}}+(-1)^{n-1}}$.

1.6 Produit de Cauchy

5

- **1.46**) Établir que $e \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n \cdot n!} = \sum_{n=1}^{+\infty} \frac{H_n}{n!} \text{ si } H_n = \sum_{k=1}^{n} \frac{1}{k!}$
- 1.47 Existence et calcul de $\sum_{n=0}^{+\infty} (n+1)3^{-n}$.
- 1.48 Pour $n \ge 1$, on pose $u_n = v_n = \frac{(-1)^n}{\sqrt{n}}$. Montrer que les séries $\sum_{n \ge 1} u_n$ et $\sum_{n \ge 1} v_n$ convergent. Montrer la divergence de la série produit de CAUCHY des séries $\sum_{n \ge 1} u_n$ et $\sum_{n \ge 1} v_n$.

1.7 Exercices aux oraux des étudiants de PSI1

1.49 X-Cachan PSI 2013 Adrien

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels positifs, $b_n=a_n\sum_{k=0}^na_k$ et $S_n=\sum_{k=0}^na_k$. On suppose que $\lim_{n\to+\infty}b_n=1$.

- a. Montrer que $\sum_{n>0} a_n$ diverge et que $\lim_{n\to+\infty} a_n = 0$.
- **b.** Soit $(c_n)_{n\in\mathbb{N}}$ une suite réelle, a-t-on toujours $c_n \underset{+\infty}{\sim} c_{n+1}$? Montrer que $S_n \underset{+\infty}{\sim} S_{n+1}$.
- $\begin{array}{l} \textbf{c.} \ \ \text{Montrer que} \ \lim_{n \to +\infty} \left(S_{n+1}^2 S_n^2 \right) = 2. \\ \textbf{d.} \ \ \text{Soit} \ (\mathfrak{u}_n)_{n \in \mathbb{N}} \ \text{et} \ (\mathfrak{v}_n)_{n \in \mathbb{N}} \ \text{deux suites réelles positives telles que} \ \mathfrak{u}_n \underset{+\infty}{\sim} \mathfrak{v}_n \ \text{et} \ \sum_{n \geqslant 0} \mathfrak{u}_n \ \text{diverge.} \\ \end{array}$

Montrer alors que $\sum_{k=0}^{n} u_k \sim \sum_{k=0}^{n} v_k$. En déduire que $a_n \sim \frac{1}{\sqrt{2n}}$.

- $\textbf{e.} \text{ R\'eciproquement, soit une suite r\'eelle } (c_n)_{n\in\mathbb{N}} \text{ telle que } c_n \underset{+\infty}{\sim} \frac{1}{\sqrt{2n}}. \text{ Montrer que } \lim_{n\to+\infty} c_n \sum_{k=n}^n c_k = 1.$
- **f.** Que se passe-t-il si, avec ces hypothèses, on suppose que $\mathfrak{b}_n = \mathfrak{a}_n \sum_{k=0}^n \mathfrak{a}_k^{\alpha}$?

[1.50] <u>Centrale PSI 2013</u> Gérémy

Pour $n \in \mathbb{N}^*$, on note c_n le nombre de ces chiffres en base 10.

- **a.** Nature de la série $\sum_{n\geqslant 1} \frac{(-1)^{c_n}}{n}$.
- a. Nature de la série $\sum_{n>1}^{\infty} \frac{(-1)^{c_n}}{n \ln(n)}$

1.51 Mines PSI 2013 Pierre-Simon

Caractériser la convergence de la série $\sum_{n\geqslant 0} u_n$ avec $u_n=\sum_{i=1}^n (n^2+i^2)^{\alpha}$ où $\alpha\in\mathbb{R}.$

1.52 *CCP PSI 2013* Camille

Étudier la convergence de $\sum_{n>2} (-1)^n \frac{\operatorname{Arctan}(n)}{\sqrt{n} \ln(n)^a}$ où a est un réel positif.

1.53 Mines PSI 2014 Tanguy Sommet

Soit $(H_n)_{n \in \mathbb{N}^*}$ où $H_n = \sum_{k=1}^n \frac{1}{k}$ et on définit pour $p \in \mathbb{N}^*$ l'entier $n_p = Min \left(\{ n \in \mathbb{N}^* \mid H_n \geqslant p \} \right)$.

Donner un équivalent de $\mathfrak{n}_{\mathfrak{p}}$ quand \mathfrak{p} tend vers $+\infty$.

Bonus : comment démontre-t-on que $H_n = ln(n) + \gamma + o(1)$?

(1.54) <u>E3A PSI 2014</u> Aymeline

a. Donner un développement asymptotique à l'ordre 2 de u_n définie par $u_n = \sum_{k=-2}^n \frac{\ln(k)}{k}$.

6

- **b.** Calculer $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2}.$
- c. (pas dans la planche) À l'aide de la constante d'Euler, calculer $\sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{n}$.

1.55 Centrale Maths1 PSI 2015 Marin De Bonnières

a. Soit $(\alpha_n)_{n\geqslant 1}$ qui tend vers 0. On définit $\beta_n = \prod_{k=1}^n (1+\alpha_k)$.

- La suite $(\beta_n)_{n\geqslant 1}$ est-elle nécessairement convergente? **b.** On pose $u_n=\prod\limits_{k=1}^n\Big(1+\frac{(-1)^{k-1}}{\sqrt{k}}\Big)$. Prouver que $(u_n)_{n\geqslant 1}$ converge.
- c. On pose $\nu_n=\Big(\sum\limits_{k=1}^n\frac{1}{k}\Big)-ln(n).$ Montrer que $(\nu_n)_{n\geqslant 1}$ converge.
- **d.** Convergence de $\sum_{n>1}^{\infty} u_n$? Indication : on pourra trouver un équivalent de u_n .

[1.56] <u>Mines PSI 2015</u> Térence Burcelin

Soit $\alpha \in \mathbb{R}$, étudier la convergence de $\sum_{n \in A} \frac{1}{n^{\alpha}}$ où A est l'ensemble des entiers n dont l'écriture en base 10 ne contient pas le chiffre 5.

1.57 Mines PSI 2015 Arnaud Dubessay

Nature, selon $a \in \mathbb{R}$, de $\sum_{n \ge 1} a^{\lfloor \ln n \rfloor}$.

(1.58) Mines PSI 2015 Guillaume Leroy

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels strictement positifs.

- **a.** Si la série $\sum_{n\geqslant 1} a_n^{1-\frac{1}{n}}$ converge, montrer que $\sum_{n\geqslant 1} a_n$ converge.
- **b.** Si la série $\sum_{n\geq 1}a_n$ converge, soit $\lambda\in]1;+\infty[$, en considérant les ensembles $I=\{n\in\mathbb{N}^*\mid a_n^{1-\frac{1}{n}}\leqslant\lambda a_n\}$ et

 $J=\{n\in\mathbb{N}^*\mid \alpha_n^{1-\frac{1}{n}}>\lambda\alpha_n\}, \text{ montrer que } \sum_{n\geq 1}\alpha_n^{1-\frac{1}{n}} \text{ converge et majorer sa somme en fonction de }\lambda.$

c. Que dire des séries $\sum_{n\geq 1} a_n^{1-\frac{1}{n}}$ et $\sum_{n\geq 1} a_n$?

Obtenir une inégalité (avec des racines carrées) sur leurs sommes quand elles existent.

1.59 <u>Centrale Maths1 PSI 2016</u> Antoine Badet II

Pour $n \ge 3$, on pose $P_n = X^n - nX + 1$.

- $\begin{array}{l} \textbf{a.} \ \mathrm{Montrer} \ \mathrm{que}: \ \forall n \geqslant 3, \ \exists ! x_n \in]0; 1[, \ P_n(x_n) = 0. \\ \textbf{b.} \ \mathrm{Trouver} \ \alpha_n \ \mathrm{de} \ \mathrm{la} \ \mathrm{forme} \ \alpha_n = \frac{1}{n^\alpha} \ (\mathrm{avec} \ \alpha \ \mathrm{\grave{a}} \ \mathrm{d\acute{e}terminer}) \ \mathrm{tel} \ \mathrm{que} \ x_n \underset{+\infty}{\sim} \alpha_n. \end{array}$
- c. Trouver un développement asymptotique à deux termes de x_n .

(1.60) <u>Centrale Maths1 PSI 2016</u> Adrien Boudy

Soit $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ une suite positive et décroissante. On suppose pour la premiere question que pour toute suite $(\nu_n)_{n\in\mathbb{N}}\in\,\mathbb{C}^{\,\mathbb{N}}$ qui tend vers 0, la série $\sum\limits_{n\geqslant 0}u_n\nu_n$ converge.

a. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , puis que $\ell=0$.

On suppose maintenant que la série $\sum_{n\geqslant 0}\mathfrak{u}_n$ diverge.

- **b.** Montrer qu'il existe une suite d'entiers positifs $(N_i)_{i \in \mathbb{N}}$ telle que $\forall i \in \mathbb{N}, \sum_{k=N_i}^{N_{i+1}-1} u_k \geqslant 1$.
- c. En déduire qu'il existe $(\nu_n)_{n\in\mathbb{N}}$ décroissante et tendant vers 0 telle que la série $\sum_{n\geq 0} u_n \nu_n$ diverge.

7

d. Conclure.

1.61 CCP PSI 2016 Alexis Iacono I

On définit les suites $(\mathfrak{u}_n)_{n\geqslant 1}$ et $(\mathfrak{v}_n)_{n\geqslant 1}$ par $\mathfrak{u}_n=\frac{1}{3^n n!}\prod_{k=1}^n(3k-2)$ et $\mathfrak{v}_n=\frac{1}{n^{3/4}}$.

- a. Montrer qu'à partir d'un certain rang : $\frac{u_{n+1}}{u_n}\geqslant \frac{\nu_{n+1}}{\nu_n}.$
- **b.** En déduire que $\sum_{n\geq 1} u_n$ diverge.

1.62 École Navale PSI 2016 Hugo Tarlé I

- a. Déterminer un équivalent de $\mathfrak{u}_{\mathfrak{n}} = \sum\limits_{k=1}^{n} \mathfrak{ln}^2(k).$
- **b.** Nature de la série $\sum_{n \ge 1} \frac{1}{u_n}$.

1.63 Centrale Maths 1 PSI 2017 Romain Delon

- **a.** Montrer que : $\forall n \ge 1$, $\exists ! a_n \in \mathbb{R}$, $e^{a_n} + na_n = 2$.
- **b.** Quelle est la nature de $\sum_{n\geq 1} a_n$?
- c. Quelle est la nature de $\sum_{n\geqslant 1} (-1)^n \alpha_n$?

1.64 Mines PSI 2017 Élio Garnaoui I

Déterminer la nature de $\sum_{n\geqslant 1}u_n$ où $u_n=Arcsin\left(\frac{1}{2}+\frac{(-1)^n}{n^\alpha}\right)-\frac{\pi}{6}$ et $\alpha>0.$

(1.65) Mines PSI 2017 Claire Raulin I

Soit a > 0, étudier la convergence de la série $\sum_{n \ge 1} \frac{1}{n^a} \sin\left(\frac{n\pi}{5}\right)$.

(**1.66**) <u>CCP PSI 2017</u> Tom Huix I

Soit $P \in \mathbb{R}[X]$, trouver une CNS sur P pour que $\sum_{n \geqslant 0} u_n$ converge si $u_n = \sqrt[4]{n^4 + n^2} - \sqrt[3]{P(n)}$.

(1.67) <u>E3A PSI 2017</u> Joseph Dumoulin

Soit une suite $(u_n)_{n\in\mathbb{N}}$ définie par $0 < u_0 < 1$ et $\forall n\in\mathbb{N},\ u_{n+1} = u_n - u_n^2$.

- a. Calculer la limite de $(u_n)_{n\in\mathbb{N}}$.
- **b.** Déterminer un équivalent de u_n quand n tend vers $+\infty$. Indication : considérer $\frac{1}{u_{n+1}} \frac{1}{u_n}$ (analogie avec $y' = -y^2$) et utiliser le théorème de Cesaro (dont l'énoncé était rappelé).

1.68 ICNA PSI 2017 avec préparation Aloïs Blarre

Soit $f:[0;1] \to [0;1]$ continue et bijective telle que f^{-1} est continue et $\forall x \in [0;1], \ f(2x-f(x))=x.$

- a. Calculer f(0) et f(1). f est-elle croissante ou décroissante ?
- **b.** Soit $x_0 \in [0;1]$ tel que $x_1 = f(x_0) \neq x_0$ et $(x_n)_{n \geqslant 0}$ telle que $x_{n+1} = f(x_n)$. Calculer $x_n x_0$.
- c. En déduire f.

(1.69) <u>Petites Mines PSI 2017</u> Cléa Maricourt I

Pour tout entier $n \in \mathbb{N}$, on pose $u_n = \int_0^1 ln(1+t^n)dt$.

- ${\bf a.}$ Calculer ${\bf u_0}$ et ${\bf u_1}.$
- **b.** Montre que $\forall x \ge 0$, $\frac{x}{1+x} \le \ln(1+x) \le x$.
- **c.** Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers 0.
- d. Donner la nature des séries $\sum_{n\geqslant 0} u_n$ et $\sum_{n\geqslant 0} (-1)^n u_n$.

(1.70) ENS Ulm/Cachan PSI 2018 Elio Garnaoui I

Soit un réel $\alpha>0$, une fonction $f:\mathbb{R}_+\to\mathbb{R}$ décroissante, continue et telle que $\lim_{x\to+\infty}f(x)=0$. On pose, pour tout entier $n\in\mathbb{N}$, le réel $u_n=\int_{(n\pi)^{1/\alpha}}^{((n+1)\pi)^{1/\alpha}}x^{\alpha-1}f(x)\sin(x^\alpha)dx$.

- a. Montrer que la suite $(|\mathfrak{u}_n|)_{n\in\mathbb{N}}$ est décroissante.
- **b.** Montrer que $\sum_{n\geq 0} u_n$ converge.
- c. Montrer que $\int_0^{+\infty} x^{\alpha-1} f(x) \sin(x^{\alpha}) dx$ converge.

(1.71) <u>Centrale Maths1 PSI 2018</u> Jean-Baptiste Malagnoux

Soit $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ une suite réelle positive et décroissante telle que $\mathfrak{u}_0=1$. On pose $\forall n\geqslant 1,\ \mathfrak{p}_n=\mathfrak{u}_{n-1}-\mathfrak{u}_n$

- a. Donner une condition nécessaire et suffisante sur $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ pour que $\sum_{n\geqslant 1}\mathfrak{p}_n$ converge et $\sum_{n=1}^{+\infty}\mathfrak{p}_n=1$.
- **b.** Sous quelle condition a-t-on l'équivalence : $(\sum_{n\geqslant 0}\mathfrak{u}_n \text{ converge}) \Longleftrightarrow (\sum_{n\geqslant 1}\mathfrak{np}_n \text{ converge}).$
- c. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ de classe C^1 , positive et décroissante. Quelle condition sur f nous donne l'équivalence suivante : (f intégrable sur \mathbb{R}_+) \iff (f intégrable sur \mathbb{R}_+) ?

(1.72) <u>Centrale Maths1 PSI 2018</u> Paul Simon

Soit $t \in \mathbb{R}$.

- a. Déterminer la nature de $\int_1^{+\infty} \frac{\cos(t \ln(x))}{x} dx$.
- b. Déterminer la nature de $\sum_{n\geqslant 1}\frac{\cos(t\ln(n))}{n}.$

Question de cours : énoncer le théorème de comparaison série-intégrale.

1.73 Mines PSI 2018 Elisabeth Carreau-Gaschereau I

Pour $x \in \mathbb{R}$, on pose $F(x) = \int_0^x (\pi |\sin(t)| - 2) dt$.

- a. Montrer que F est bornée sur \mathbb{R} .
- $\mathbf{b.} \ \mathrm{Montrer} \ \mathrm{la} \ \mathrm{convergence} \ \mathrm{de} \ (\mathfrak{u}_{\mathfrak{n}})_{\mathfrak{n}\geqslant 1} \ \mathrm{si} \ \mathrm{on} \ \mathrm{pose} \ \mathfrak{u}_{\mathfrak{n}} = \int_{\mathfrak{n}\pi}^{+\infty} \frac{\pi |\sin(t)| 2}{t} dt \ \mathrm{pour} \ \mathrm{tout} \ \mathfrak{n} \in \ \mathbb{N}^*.$
- c. Montrer la convergence de $\sum_{n\geqslant 0} u_n$.

(1.74) Mines PSI 2018 Amélie Guyot II

Nature de la série de terme général $u_n = \left(\sqrt{n^2 + an + 2} - \sqrt{n^2 + bn + 1}\right)^n$ selon les valeurs des réels a et b.

1.75 <u>Mines PSI 2018</u> Sonia-Laure Hadj-Sassi I

a. Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in\mathbb{R}$ et $\forall n\in\mathbb{N},\ u_{n+1}=e^{u_n}-1$.

 $\mathrm{Soit}\; (\nu_n)_{n\in\mathbb{N}}\; \mathrm{d\acute{e}finie\;par}\; \nu_0=1\; \mathrm{et}\; \forall n\in\mathbb{N},\; \nu_{n+1}=ln(e^{\nu_n}-\nu_n).$

b. Montrer la convergence de la suite $(\nu_n)_{n\in\mathbb{N}}$, de $\sum_{n\geqslant 0}\nu_n$. Déterminer la valeur exacte de $\sum_{n=0}^{+\infty}\nu_n$.

1.76 Mines PSI 2018 Antoine Secher II

Pour tout entier $n \geqslant 1$, on pose $u_n = Arccos\left(\frac{1}{n}\right) - Arccos\left(\frac{1}{n^2}\right)$.

Étudier les convergences des séries numériques $\sum_{n\geqslant 1}u_n$ et $\sum_{n\geqslant 1}(-1)^nu_n$.

(1.77) <u>Petites Mines PSI 2018</u> Marie-Jeanne Paul II

Soit un réel a>0. Quelle est la nature de la série $\sum_{n\geqslant 0} \left(\text{Arctan}(n+a) - \text{Arctan}(n) \right)$?

(1.78) <u>ENS Cachan PSI 2019</u> Louis Destarac

Soit $(u_n)_{n\in\mathbb{N}}$ une suite strictement positive et $\alpha>1$ tels que $\lim_{n\to+\infty}u_n=0$ et $\lim_{n\to+\infty}\frac{u_n-u_{n+1}}{u_n^\alpha}=\ell>0$.

On cherche à montrer que $\sum_{n\geq 0} u_n$ converge si et seulement si $\alpha < 2$.

a. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante à partir d'un certain rang N.

$$\mathbf{b.} \ \mathrm{Si} \ \alpha < 2, \ \mathrm{montrer} \ \mathrm{que} \ \forall n \geqslant N, \ \frac{u_n - u_{n+1}}{u_n^{\alpha-1}} \leqslant \int_{u_{n+1}}^{u_n} \frac{1}{t^{\alpha-1}} dt.$$

En déduire que $\sum_{n\geqslant 0} \frac{u_n-u_{n+1}}{u_n^{\alpha-1}}$ converge ; puis que $\sum_{n\geqslant 0} u_n$ converge.

 $\textbf{c. Si }\alpha\geqslant2,\, \text{montrer que}\,\, \sum_{n\geqslant0}\frac{u_n-u_{n+1}}{u_{n+1}^{\alpha-1}}\,\, \text{diverge}\,\,;\, \text{puis que}\,\, \sum_{n\geqslant0}u_n\,\, \text{diverge}.$

(1.79) ENS Cachan PSI 2019 Mathis Girard

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle strictement positive et décroissante tendant vers 0 telle que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=1$ et $\forall n\in\mathbb{N},\ u_{n+2}-u_{n+1}\geqslant u_{n+1}-u_n$. Pour tout entier $n\in\mathbb{N},$ on pose $R_n=\sum_{k=n+1}^{+\infty}(-1)^ku_k$.

 $\mathbf{a.}$ Montrer que $(|R_n|)_{n\geqslant -1}$ est monotone $(R_{-1}$ est la somme de la série).

$$\mathbf{b.} \ \mathrm{Montrer} \ \mathrm{que}: \ \forall n \in \ \mathbb{N}, \ \frac{\mathfrak{u}_{n+1}}{2} \leqslant |R_n| \leqslant \frac{\mathfrak{u}_n}{2}.$$

c. Déterminer un équivalent de R_n .

d. Déterminer un équivalent de
$$\sum\limits_{k=n+1}^{+\infty} (-1)^k \frac{\ln(k)}{k}.$$

1.80 ENS Cachan PSI 2019 Thomas Méot

Soit Φ une fonction continue de \mathbb{R}_+ dans \mathbb{R} .

On suppose que $\forall k \geqslant 0$, $\exists (a_0, \dots, a_k) \in \mathbb{R}^{k+1}$, $\Phi(x) = a_0 + \frac{a_1}{x} + \dots + \frac{a_k}{x^k} + \frac{\epsilon_k(x)}{x^k}$ et $\lim_{x \to +\infty} \epsilon_k(x) = 0$.

- a. À quelles conditions $\sum_{n\geqslant 1} \Phi(n)$ converge-t-elle ?
- **b.** À quelles conditions $\prod_{\mathfrak{n}\geqslant 1}\Phi(\mathfrak{n})$ converge-t-il ?
- c. À quelles conditions $\sum_{n\geqslant 1}\prod_{i=0}^n\Phi(i)$ converge-t-elle ?
- d. Pour quelles valeurs de α la série $\sum_{n\geqslant 1}\prod_{k=1}^n\left(2-e^{\frac{\alpha}{k}}\right)$ converge-t-elle ?

1.81 Mines PSI 2019 Paul Louzier II

 $\text{Soit la suite } (x_n)_{n \in \mathbb{N}} \text{ définie par } x_0 = 0 \text{ et } \forall n \in \mathbb{N}, \ x_{n+1} = \sqrt{\frac{x_n+1}{2}}. \text{ On pose } \forall n \in \mathbb{N}, \ u_n = 1-x_n.$

- **a.** Étuier la suite $(x_n)_{n\in\mathbb{N}}$.
- $\mathbf{b.}$ Déterminer la nature de la série $\sum_{n\geqslant 0}\mathfrak{u}_n.$

1.82 Mines PSI 2019 Léo Simplet II

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement supérieurs à -1. On pose, pour $n\in\mathbb{N},\ \nu_n=\frac{u_n}{\displaystyle\prod_{k=0}^n(1+u_k)}$.

Déterminer la nature de $\sum_{n\geqslant 0} v_n$.

$(\mathbf{1.83})\,\underline{CCP\,\,PSI\,\,2019}\,\,$ Thomas Crété I

- a. Montrer l'existence, pour tout entier $n \in \mathbb{N}$, du réel $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k!}$.
- **b.** Montrer que $\lim_{n \to +\infty} (n+1)! R_n = 1$.
- c. Quelle est la nature de la série $\sum_{n\geq 0} \sin(2\pi e n!)$?

(1.84) Centrale Maths1 PSI 2021 Mathilde Arnaud

Soit $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ définie par $f(x) = xe^x$.

 ${\bf a.}$ Tracer le graphe de f. Montrer que f est bijective. Tracer le graphe de ${\bf f}^{-1}.$

 $\text{Pour } \mathfrak{a} \in \mathbb{R}_+^*, \text{ on définit la suite } \left(\mathfrak{u}_n(\mathfrak{a})\right)_{\mathfrak{n} \in \mathbb{N}} \text{ par } \mathfrak{u}_0 = \mathfrak{a} \text{ et } \forall \mathfrak{n} \in \mathbb{N}, \ \mathfrak{u}_{\mathfrak{n}+1}(\mathfrak{a}) e^{\mathfrak{u}_{\mathfrak{n}+1}(\mathfrak{a})} = \mathfrak{u}_{\mathfrak{n}}(\mathfrak{a}).$

- **b.** Étudier la convergence de la suite $(u_n(\mathfrak{a}))_{n\in\mathbb{N}}$.
- c. Étudier la convergence de la série $\sum_{n\geqslant 0}\mathfrak{u}_n(\mathfrak{a}).$

Question de cours : Rappeler la formule de Taylor reste intégral.

1.85 Mines PSI 2021 Robin Gondeau I

On admet que $\sum_{k=1}^n \frac{1}{k} = \ln(n) + \gamma + o(1)$ où γ est une constante réelle.

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1$ et, pour tout entier $n\geqslant 1,$ $u_{n+1}=\frac{2n+2}{2n+5}u_n.$

- $\textbf{a.} \ \text{Montrer qu'il existe une suite convergente } (w_{\mathfrak{n}})_{\mathfrak{n} \in \, \mathbb{N}^*} \ \text{telle que } \forall \mathfrak{n} \in \, \mathbb{N}^*, \ \mathfrak{ln}(\mathfrak{u}_{\mathfrak{n}}) = -\frac{3}{2} \, \mathfrak{ln}(\mathfrak{n}) + w_{\mathfrak{n}}.$
- **b.** En déduire la nature de la série $\sum_{n\geqslant 0} u_n$.
- **c.** Montrer que $\forall n \ge 0$, $2 \sum_{k=1}^{n+1} k u_k + 3 \sum_{k=1}^{n+1} u_k = 2 \sum_{k=0}^{n} k u_k + 2 \sum_{k=0}^{n} u_k$.
- **d.** En déduire la valeur de $\sum_{n=0}^{+\infty} u_n$.

(1.86) <u>Mines PSI 2021</u> Yuan Le Guennic III

Soit $z\in\mathbb{C}\setminus\{2\}$, étudier la convergence de la série $\sum\limits_{n\geqslant 0}e^{\frac{nz}{z-2}}$ selon la valeur de z.

(1.87) <u>Mines PSI 2021</u> Guillaume Touly III

Soit $(u_n)_{n\geqslant 1}$ une suite de réels positifs telle que $\sum_{n\geqslant 1}u_n$ converge.

Pour $\alpha \in \mathbb{R}$, que dire de la convergence de la série $\sum_{n\geqslant 1} \frac{u_n}{n^{\alpha}}$?

1.88 CCINP PSI 2021 Maëva Berland I

Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle positive. On définit $(u_n)_{n\in\mathbb{N}}$ par $u_0\in\mathbb{R}_+$ et $u_{n+1}=\frac{1}{2}\Big(u_n+\sqrt{u_n^2+a_n^2}\Big)$.

- **a.** Montrer que $\forall n \in \mathbb{N}, \ u_{n+1} u_n \leqslant \frac{a_n}{2}$.
- **b.** En déduire que la convergence de $\sum_{n\geqslant 0}a_n$ implique la convergence de $(u_n)_{n\in\mathbb{N}}$.
- **c.** La réciproque est-elle vraie ? Indication : on pourra considérer $(u_n)_{n\in\mathbb{N}}$ telle que $u_n=\frac{n}{n+1}$

1.89 <u>CCINP PSI 2021</u> Alexandre Marque et Adèle Robert II

Déterminer la nature des séries suivantes :

a.
$$\sum_{n\geqslant 1} \frac{(-1)^n}{n} \int_{n^2}^{+\infty} e^{-x^2} dx.$$

b.
$$\sum_{n\geq 1} (-1)^n \int_0^n e^{-t^2n^2} dt$$
.

(1.90) <u>Mines PSI 2022</u> Margaux Millaret II

Pour $n \in \mathbb{N}^*$, on pose $u_n = \frac{n^{n+\frac{1}{2}}}{n!e^n}$.

- a. Montrer que $\sum\limits_{n\geqslant 1} \ln\left(\frac{u_{n+1}}{u_n}\right)$ converge.
- **b.** En déduire l'existence d'une constante C>0 telle que $n! \underset{+\infty}{\sim} C\sqrt{n} \left(\frac{n}{e}\right)^n$.
- c. Donner sans preuve la valeur de C. Puis le prouver avec les intégrales de WALLIS.

1.91 CCINP PSI 2022 Amandine Darrigade et Thomas Lanne I

Soit les trois suites réelles $(\mathfrak{u}_n)_{n\geqslant 1},\, (\mathfrak{v}_n)_{n\geqslant 1},\, (w_n)_{n\geqslant 1}$ et $(x_n)_{n\geqslant 1}$ définies par :

$$u_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^{k+1}}{\sqrt{k}}, \ v_n = \frac{(-1)^n}{n} u_n, \ w_n = \frac{(-1)^n}{n} \sum_{k=1}^n \frac{(-1)^{k+1}}{\sqrt{k}} \ \text{ et } \ x_n = (-1)^n w_n.$$

- a. Justifier que $(u_n)_{n \ge 1}$ est bien définie et qu'elle tend vers 0
- **b.** Justifier que $\sum_{n\geqslant 1} \nu_n$ converge.
- c. Quelle est la nature de la série $\sum_{n\geq 1} w_n$?
- **d.** Quelle est la nature de la série $\sum_{n\geqslant 1} x_n$?

(1.92) <u>CCINP PSI 2022</u> Louis Lacarrieu II

Soit $(a_n)_{n \in \mathbb{N}^*}$ une suite de réels positifs et la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par $u_n = \frac{a_n}{(1+a_1) \times \cdots \times (1+a_n)}$.

- $\mathbf{a.}$ Calculer $\mathfrak{u}_1+\mathfrak{u}_2.$ Généraliser.
- **b.** Montrer que $\sum_{n\geqslant 1} u_n$ converge.
- c. Dans cette question, on suppose que $\mathfrak{a}_n=\frac{1}{\sqrt{n}}.$ Calculer $\sum\limits_{n=1}^{+\infty}\mathfrak{u}_n.$

(1.93) <u>Mines-Télécom PSI 2022</u> Jade Mirassou II

Pour $k\in\,\mathbb{N},$ on définit, en cas d'existence, $\mathfrak{u}_k=\int_0^{\pi/4}(t\mathfrak{a}\mathfrak{n}(x))^kdx.$

- a. Étudier la monotonie de la suite $(u_k)_{k\in\mathbb{N}}$.
- **b.** Déterminer la limite de la suite $(u_k)_{k \in \mathbb{N}}$.
- c. Donner une expression simple de $\mathfrak{u}_k+\mathfrak{u}_{k+2}$ pour tout entier $k\in\,\mathbb{N}.$
- d. Calculer u_0 et u_1 . En déduire des expressions de u_{2n} et u_{2n+1} sous forme de somme.
- e. En déduire la convergence et la valeur de la somme de $\sum_{n>1} \frac{(-1)^{n-1}}{n}$ et $\sum_{n>0} \frac{(-1)^n}{2n+1}$.

1.94 ENS Cachan PSI 2023 Raphaël Déniel

 $\mathrm{Soit}\; (\mathfrak{u}_n)_{n\in\,\mathbb{N}},\, (\nu_n)_{n\in\,\mathbb{N}}\; \mathrm{telles}\; \mathrm{qu'il}\; \mathrm{existe}\; N\in\,\mathbb{N}\; \mathrm{tel}\; \mathrm{que}\; \forall n\geqslant N,\; \mathfrak{u}_n>0,\; \nu_n>0.$

Pour tout entier $n \ge N$, on pose $w_n = v_n - \frac{v_{n+1}u_{n+1}}{u_n}$.

- **a.** On suppose que $\exists c \in \mathbb{R}_+^*$, $\forall n \geq N$, $w_n \geq c$ et que $\sum_{n \geq N} \frac{1}{v_n}$ converge, montrer que $\sum_{n \geq 0} u_n$ converge.
- **b.** On suppose que $\forall n \ge N$, $w_n \le 0$ et que $\sum_{n \ge N} \frac{1}{v_n}$ diverge, montrer que $\sum_{n \ge 0} u_n$ diverge.
- $\textbf{c.} \ \ \text{On suppose que } \exists c \in \mathbb{R}_+^*, \ \forall n \geqslant N, \ \frac{u_{n+1}}{u_n} \leqslant 1 \frac{1+c}{n}, \ \text{montrer que } \sum_{n \geqslant 0} u_n \ \text{converge}.$
- $\textbf{d.} \text{ On suppose que } \forall n \geqslant N, \ \frac{u_{n+1}}{u_n} \geqslant 1 \frac{1}{n}, \, \text{montrer que } \sum_{n \geq 0} u_n \, \, \text{diverge}.$
- e. Soit $A \in \mathbb{R}$, s > 1 et $f : \mathbb{R} \to \mathbb{R}$ bornée tels que $\forall n \geq N$, $\frac{u_{n+1}}{u_n} = 1 \frac{A}{n} + \frac{f(s)}{n^s}$. Montrer que $\sum_{n \geq 0} u_n$ converge si et seulement si A > 1.
- converge si et seulement si A>1. **f.** Pour quels $\alpha>0$ la série $\sum_{n\geqslant 1}\left(\frac{1\times 3\times \cdots \times (2n-1)}{2\times 4\times \cdots \times 2n}\right)^{\alpha}$ converge ?

1.95 Centrale Maths1 PSI 2023 Maddie Bisch

a. Existe-t-il une suite géométrique $(g_n)_{n\in\mathbb{N}}$ telle que $g_{n+1}-g_n \sim \frac{1}{\sqrt{q_n}}$?

b. Existe-t-il $(A, \alpha) \in \mathbb{R}_+^* \times \mathbb{R}$ tel qu'en posant $\nu_n = An^{\alpha}$, on ait $\nu_{n+1} - \nu_n \underset{+\infty}{\sim} \frac{1}{\sqrt{\nu_n}}$?

Soit la suite $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ définie par $\mathfrak{u}_0=1$ et $\forall n\in\mathbb{N},\ \mathfrak{u}_{n+1}=\mathfrak{u}_n+\frac{1}{\sqrt{\mathfrak{u}_n}}.$

Soit $\beta>0$ et pour tout entier $\mathfrak{n}\in\mathbb{N},$ le réel $\mathfrak{p}_{\mathfrak{n}}=\left(\frac{1}{\mathfrak{u}_{\mathfrak{n}}}\right)^{\beta}-\left(\frac{1}{\mathfrak{u}_{\mathfrak{n}+1}}\right)^{\beta}.$

c. Montrer que $\sum_{n\geq 0} p_n$ est une série convergente à termes positifs telle que $\sum_{n=0}^{+\infty} p_n = 1$.

d. Montrer que $\forall n \in \mathbb{N}^*, \ \sqrt{n} \leqslant u_n \leqslant 2n$.

 $\textbf{e.} \ \, \text{Trouver un réel } m \text{ tel que } \lim_{n \to +\infty} (\mathfrak{u}^m_{n+1} - \mathfrak{u}^m_n) = \lambda \neq 0 \in \ \mathbb{R}. \ \, \text{En déduire avec Cesaro que } \mathfrak{u}_n \underset{+\infty}{\sim} \left(\frac{3}{2}\right)^{2/3} n^{\frac{2}{3}}.$

f. Déterminer les valeurs de $\beta>0$ pour lesquelles $\sum_{n\geq 0} p_n u_n$ est convergente.

1.96 Mines PSI 2023 Tom Graciet II

Pour $n \in \mathbb{N}^*$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

a. Déterminer le développement asymptotique de H_n à la précision o(1).

b. En déduire la limite de $(H_{2n} - H_n)_{n \ge 1}$.

c. Retrouver la limite de $(H_{2n}-H_n)_{n\geqslant 1}$ avec une somme de RIEMANN.

 $\mathbf{d.} \ \ \mathrm{Gr\hat{a}ce} \ \ \mathrm{au} \ \ \mathrm{d\acute{e}veloppement} \ \ \mathrm{de} \ \ \mathsf{H}_{\mathfrak{n}}, \ \mathrm{calculer} \ \ \mathsf{S}_{1} = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}, \ \ \mathsf{S}_{2} = \sum_{n=1}^{+\infty} \frac{1}{n(2n-1)} \ \ \mathrm{et} \ \ \mathsf{S}_{3} = \sum_{n=1}^{+\infty} \frac{1}{\sum_{n=1}^{n} k^{2}}.$

1.97 CCINP PSI 2023 Armand Dépée I

Soit les trois suites réelles $(\mathfrak{u}_n)_{n\geqslant 1},\, (\mathfrak{v}_n)_{n\geqslant 1},\, (w_n)_{n\geqslant 1}$ et $(x_n)_{n\geqslant 1}$ définies par :

$$u_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^{k+1}}{\sqrt{k}}, \ v_n = \frac{(-1)^n}{n} u_n, \ w_n = \frac{(-1)^n}{n} \sum_{k=1}^n \frac{(-1)^{k+1}}{\sqrt{k}} \ \text{ et } \ x_n = (-1)^n w_n.$$

a. Justifier que $(u_n)_{n\geqslant 1}$ est bien définie et qu'elle tend vers 0.

b. Justifier que $\sum_{n\geq 1} \nu_n$ converge.

c. Quelle est la nature de la série $\sum_{n\geqslant 1}w_n$?

d. Quelle est la nature de la série $\sum\limits_{n\geqslant 1}x_n$?

(1.98) Mines PSI 2024 Amélia Arangoits I

Soit la suite $(x_n)_{n \in \mathbb{N}^*}$ définie par $x_1 \in \mathbb{R}_+^*$ et $\forall n \geqslant 1, \ x_{n+1} = x_n + \frac{n}{x_n}$.

a. Montrer que la suite $(x_n)_{n\geqslant 1}$ est bien définie et que $\lim_{n\to +\infty} x_n = +\infty$.

b. Montrer que $\forall n \geq 2, \ x_n \geq n$. En déduire que $x_n \sim n$.

c. Montrer qu'il existe un réel c tel que $x_n = n + c + o(1)$.

d. Montrer que c = 0.

1.99 <u>Mines PSI 2024</u> Guilhem Thébault II

Soit
$$r \in \left]0; \frac{1}{2}\right[$$
 et $u = (u_n)_{n \in \mathbb{N}} \in \{-1,1\}^{\mathbb{N}}$, on pose alors $x(u) = \sum_{n=0}^{+\infty} u_n r^n$.

Montrer que l'application x ainsi construite est injective.

1.100 CCINP PSI 2024 Martin Mayot II

Soit la suite $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ définie par $\mathfrak{u}_0\in\left]0;\frac{\pi}{2}\right[$ et $\forall n\in\mathbb{N},\ \mathfrak{u}_{n+1}=sin(\mathfrak{u}_n).$

- a. Étudier la convergence et la limite de la suite $(\mathfrak{u}_{\mathfrak{n}})_{\mathfrak{n}\in\,\mathbb{N}}.$
- **b.** Étudier la convergence de $\sum_{n\geqslant 0} u_n^3.$ Indication : considérer $u_{n+1}-u_n.$
- c. Montrer que $\sum_{n\geqslant 0}\mathfrak{u}_n^2$ diverge. Indication : considérer $\ln(\mathfrak{u}_{n+1})-\ln(\mathfrak{u}_n).$
- d. Déterminer un équivalent de u_n quand n tend vers $+\infty$ grâce au théorème de CESARO (question rajoutée). Indication : considérer $u_{n+1}^{-2} u_n^{-2}$.

$ig({f 1.101} ig) {\it Mines-T\'el\'ecom\ PSI\ 2024} \ \ { m Tom\ Sanchez\ I}$

Pour $n \in \mathbb{N}^*$, on considère l'équation (E_n) : $x^n + x\sqrt{n} - 1 = 0$.

- a. Montrer que, pour tout $n \in \mathbb{N}^*$, (E_n) admet une unique solution dans \mathbb{R}_+^* qu'on notera x_n .
- **b.** Montrer que la suite $(x_n)_{n\geqslant 1}$ converge vers 0.
- c. Quelle est la nature de $\sum_{n\geqslant 1}x_n$?

1.8 Officiel de la Taupe

1.102 OdlT 2012/2013 Centrale PSI planche 128 I

Démontrer le critère de condensation de CAUCHY : si $(a_n)_{n\in\mathbb{N}}$ est une suite réelle, positive et décroissante, alors $\sum\limits_{n\geqslant 0}a_n$ converge si et seulement si $\sum\limits_{n\geqslant 0}2^na_{2^n}$ converge.

En déduire la nature de la série $\sum_{n\geqslant 0}\frac{1}{\sqrt{n}(\ln n)^2}$. Retrouvez ce résultat sans utiliser ce critère.

Mêmes questions pour la série $\sum_{n\geqslant 0} \frac{1}{n(\ln n)(\ln(\ln n))}$.

1.103 OdlT 2012/2013 CCP PSI planche 212 I et CCP PSI planche 277 I

- a. Montrer que l'équation $x^n + \sqrt{n}x 1 = 0$ possède une unique solution $x_n \in [0; 1]$.
- **b.** Étudier la suite $(x_n)_{n\in\mathbb{N}}$ et montrer qu'elle converge vers 0.
- c. Trouver un équivalent de x_n et étudier la convergence de $\sum_{n>0} x_n$.

(1.104) OdlT 2013/2014 Mines PSI planche 193 II

Convergence de la série de terme général $u_n = \operatorname{Argch}(n) - \operatorname{Argsh}(n)$.

(1.105) OdlT 2014/2015 Mines PSI planche 170 I On donne $a_0 > 0$.

- a. Étudier la convergence de la suite $(a_n)_{n\in\mathbb{N}}$ définie par $a_{n+1}=1-e^{-a_n}$.
- b. Nature des séries de terme général $(-1)^n\alpha_n$ et α_n^2 .
- c. Nature de $\sum_{n\geqslant 0} a_n$ (on pourra étudier $\sum_{n\geqslant 0} ln\left(\frac{a_{n+1}}{a_n}\right)$).

1.106 OdlT 2014/2015 CCP PSI planche 274 II

On dispose d'un alphabet de n lettres avec $n \ge 1$.

On note M_n le nombre de mots contenant au plus une fois la même lettre. Montrer que $M_n = \lfloor n!e \rfloor$.

$({f 1.107})\, { m OdlT}\,\, 2014/2015\,\, { m CCP}\,\, { m PSI}\,\, { m planche}\,\, 292\,\, { m I}$

- a. Déterminer un polynôme P de degré 3 tel que $\sigma_n = \sum\limits_{k=1}^n k^2 = P(n)$
- **b.** On pose $a_n = \frac{1}{\sigma_n}$, montrer que $\sum_{n \geqslant 1} a_n$ converge.
- c. On pose $H_n = \sum_{k=1}^n \frac{1}{k}$, montrer que $\lim_{n \to +\infty} \left(H_{2n} H_n \right) = ln(2)$.
- $\mathbf{d.}$ En déduire la valeur de $\sum\limits_{n=1}^{+\infty}\alpha_{n}.$

1.108 OdlT 2014/2015 ENTPE-EIVP PSI planche 323 I

Pour $n \in \mathbb{N}^*$, on pose $a_n = \frac{cos(n)}{n}$ et $b_n = \frac{sin(n)}{n}$ et on suppose que $\sum_{n\geqslant 1} b_n$ est absolument convergente.

- a. Donner une relation entre sin(n-1) et cos(n) et en déduire que $\sum_{n\geqslant 1} \alpha_n$ est convergente.
- **b.** Montrer que $|\cos(n)| + |\sin(n)| \ge 1$. Que conclure ?

1.109 OdlT 2015/2016 X-Cachan PSI planche 44

Soit Φ continue de \mathbb{R}_+ dans \mathbb{R} , telle que $\forall k \geqslant 0$, $\Phi(x) = a_0 + \frac{a_1}{x} + \dots + \frac{a_k}{x^k} + \frac{\varepsilon_k(x)}{x^k}$ et $\lim_{x \to +\infty} \varepsilon_k(x) = 0$.

À quelles conditions sur les $\mathfrak{a}_{\mathfrak{i}},\;\sum_{\mathfrak{n}\geqslant 1}\Phi(\mathfrak{n})$ converge-t-elle ?

À quelles conditions sur les a_i , $\prod_{n\geqslant 1}\Phi(n)$ converge-t-il ?

À quelles conditions sur les a_i , $\sum_{n>1} \prod_{i=0}^n \Phi(i)$ converge-t-elle ?

Pour quelles valeurs de α , $\sum_{n\geqslant 1}\prod_{i=1}^n\left(2-e^{\frac{\alpha}{i}}\right)$ converge-t-elle?

(1.110) OdlT 2015/2016 Mines PSI planche 116I

On définit une suite (u_n) par $u_1 > 0$ et $u_{n+1} = f_n(u_n)$ avec $f_n(x) = \frac{x}{1 + nx^2}$.

Si elle existe, déterminer la limite de (\mathfrak{u}_n) . Montrer que $\forall n \geqslant 2$, $\mathfrak{u}_n \leqslant \frac{1}{n}$. Montrer que $(\mathfrak{n}\mathfrak{u}_n)$ est croissante et trouver un équivalent de \mathfrak{u}_n .

(1.111) OdlT 2015/2016 Mines PSI planche 121I Calculer $\sum_{n>0} \frac{1}{(3n)!}$

1.112 OdlT 2015/2016 CCP PSI planche 233II

On rappelle que la série harmonique alternée $\sum_{n\geqslant 1}\frac{(-1)^n}{n}$ converge et que sa somme vaut $-\ln(2)$. Montrer qu'il existe a,b,c réels tels que $\frac{1}{4X^3-X}=\frac{a}{X}+\frac{b}{2X-1}+\frac{c}{2X+1}$.

Montrer que $\sum_{k \ge 1} \left(\frac{1}{2k-1} - \frac{1}{2k} \right)$ et $\sum_{k \ge 2} \left(\frac{1}{2k+1} - \frac{1}{2k} \right)$ convergent et calculer leurs sommes.

Montrer que $\sum_{k>2} \frac{1}{4k^3 - k}$ converge et calculer sa somme. $\int_{-\infty}^{+\infty} \frac{dx}{4x^3 - x}$ converge-t-elle? Si oui, la calculer.

(1.113) OdlT 2015/2016 ENSEA planche 282I

Montrer que $P_n(x) = \left(\sum_{k=1}^n x^k\right) - 1$ admet une unique racine $x_n \ge 0$ et étudier la suite (x_n) .

1.114 OdlT 2015/2016 Télécom SudParis planche 284II

Soit une suite de terme général $u_n>0$ vérifiant $\frac{u_{n+1}}{u_n}=1-\frac{\lambda}{n}+o\left(\frac{1}{n}\right)$ quand n tend vers $+\infty$ avec $\lambda>1$.

Montrer que $\sum u_n$ converge (on pourra faire un développement limité à l'ordre 1 de $\frac{v_{n+1}}{v_n}$ où $v_n = \frac{1}{n^{\alpha}}$).

(1.115) OdlT 2016/2017 Mines PSI planche 118II

Convergence de la série de terme général $\mathfrak{u}_\mathfrak{n}=\int_0^1 cos(\mathfrak{n} t^2)dt.$

(1.116) OdlT 2016/2017 Mines PSI planche 121I abordable dès la 1^{ère} année

Par une comparaison série-intégrale, trouver un équivalent de $u_n = \sum_{k=2}^n \frac{ln(k)}{k}$, défini pour $n \geqslant 2$.

Étudier la monotonie et la convergence de la suite de terme général $\nu_n = u_n - \frac{1}{2} \ln^2(n)$.

On admet que $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$; montrer que $\sum_{k\geq 1} \frac{(-1)^k \ln(k)}{k} = \ln(2) \left(\gamma - \frac{\ln(2)}{2}\right)$.

1.117 OdlT 2016/2017 Centrale PSI planche 165 abordable dès la 1ère année

On définit une suite de réels $(x_n)_{n\geqslant 0}$ par $x_0>0$ et $\forall n\in\mathbb{N},\ x_{n+1}=x_n+\frac{1}{x_n}$ (1).

Donner la nature de $\sum_{n\geqslant 0}\frac{1}{x_n}$. Quel lien y a-t-il entre x_{n+1} et $\sum_{k=0}^n\frac{1}{x_k^2}$? Trouver un équivalent de x_n .

1.118 OdlT 2016/2017 CCP PSI planche 206I

Montrer que la suite de terme général u_n , donné par $u_0 \in [0; \pi]$ et $u_{n+1} = 1 - cos(u_n)$, converge vers 0. Déterminer la nature de la série de terme général u_n .

(1.119) OdlT 2016/2017 CCP PSI planche 214II

Soit, pour $\alpha > 1$, $S_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}$ et $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$. Montrer que $R_n \underset{+\infty}{\sim} \frac{1}{(\alpha-1)n^{\alpha-1}}$ au voisinage de $+\infty$. Étudier la convergence de $\sum_{n\geq 1} \frac{R_n}{S_n}$ suivant la valeur de α .

1.120 OdlT 2016/2017 CCP PSI planche 219I et OdlT 2015/2016 CCP PSI planche 235I

Montrer que la série de terme général $u_n = ln(2n + (-1)^n) - ln(2n)$ converge mais pas absolument.

1.121 OdlT 2016/2017 ENSEA PSI planche 250II abordable dès la 1ère année

Convergence de $\sum_{n\geq 1} ((n+(-1)^n)^{\alpha} - n^{\alpha})$ pour $\alpha \in]0;1[$.

1.122 OdlT 2017/2018 Mines PSI planche 116I

Convergence et somme de $\sum_{n\geq 1} \frac{n}{(1+2i)^n}$.

1.123 OdlT 2017/2018 CCP PSI planche 207I, abordable dès la première année

Donner un équivalent de $u_n = \sum\limits_{k=n+1}^{2n} \frac{1}{\sqrt{k}}$ quand n tend vers $+\infty$.

(1.124) OdlT 2017/2018 CCP PSI planche 208II

Convergence de $\sum_{n>2} ln(1 + \frac{(-1)^n}{n^{\alpha}})$ pour $\alpha > 0$.

(1.125) Compléments OdlT 2017/2018 Mines PSI planche 175III

Nature de $\sum_{n\geq 0} a^{\lfloor \sqrt{n} \rfloor}$ pour $a \in \mathbb{R}_+^*$.

1.126 Compléments OdlT 2017/2018 CCP PSI planche 452I et 453I

On note $H_n = \sum_{k=1}^n \frac{1}{k}$ et $a_n = \frac{1}{\sum_{k=1}^n k^2}$, montrer que $\lim_{n \to +\infty} (H_{2n+1} - H_n) = \ln 2$ et que $\sum_{n \geqslant 1} a_n$ converge.

Déterminer a,b,c réels tels que $a_n=\frac{a}{n}+\frac{b}{n+1}+\frac{c}{2n+1}.$ Calculer $\sum\limits_{n=1}^{+\infty}a_n.$

(1.127) Compléments OdlT 2017/2018 ENSEA PSI planche 5811

 $\mathrm{Convergence}\ \mathrm{de}\ (u_n)_{n\in\mathbb{N}}\ \mathrm{si}\ u_n = \int_{n\pi}^{(n+1)\pi} |\sin(x)|^x dx.\ \mathrm{Montrer}\ \mathrm{que}\ \forall t\in \Big[0;\frac{\pi}{2}\Big],\ \sin t\geqslant \frac{2}{\pi}t.$

Nature de la série $\sum_{n\geqslant 0}\mathfrak{u}_n.$ Nature de $\int_1^{+\infty}|\sin(x)|^xdx.$

(1.128) OdlT 2018/2019 Mines PSI planche 115II et compléments Centrale PSI planche 169

a. Trouver un équivalent de $u_n = \sum_{k=1}^n \frac{\ln k}{k}$ quand n tend vers $+\infty$.

b. Montrer qu'il existe $c \in \mathbb{R}$ tel que $u_n = \frac{1}{2}(\ln n)^2 + c + o(1)$.

c. Montrer que $\sum_{k=1}^{2n} (-1)^k \frac{\ln k}{k} = \sum_{k=1}^n \frac{\ln 2}{k} - \sum_{k=n+1}^{2n} \frac{\ln k}{k}$.

 $\mathbf{d.} \text{ En déduire la valeur de } \sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{n} \text{ (utiliser un développement asymptotique de la série harmonique)}.$

1.129 Compléments OdlT 2018/2019 ENTPE PSI planche 430I

a. Montrer que $\forall n \in \mathbb{N}^*$, $f_n(x) = xe^x - n$ admet un unique zéro \mathfrak{u}_n strictement positif. **b.** Montrer que $\forall n \geq 3$, $1 \leq \mathfrak{u}_n \leq \ln n$. Puis que $\mathfrak{u}_n \sim \ln n$ quand n tend vers $+\infty$.

c. Trouver un équivalent de $u_n - \ln n$.

(1.130) Compléments OdlT 2018/2019 IMT PSI planche 442II

Nature de la série de terme général $u_n = (-1)^n \sin\left(\frac{1}{n+(-1)^n}\right)$.