TD 02 : SÉRIES NUMÉRIQUES

PSI 1 2025-2026

vendredi 12 septembre 2025

$\fbox{ {f 2.1}}$ Traitons quelques cas en posant $\mathfrak{u}_\mathfrak{n}=\mathfrak{a}^{\lfloor \ln \mathfrak{n} \rfloor}$:

 $\underbrace{\mathrm{Si}\;|\alpha|=1}_{n}, \forall n\in\mathbb{N},\; |u_n|=|\alpha^{\lfloor\ln n\rfloor}|=1\;\mathrm{donc}\;(u_n)_{n\in\mathbb{N}^*}\;\mathrm{ne\;tend\;pas\;vers}\;0: \sum_{n\geqslant 1}\alpha^{\lfloor\ln n\rfloor}\;\mathrm{diverge\;grossi\`{e}rement}.$ $\underbrace{\mathrm{Si}\;|\alpha|>1}_{n\to+\infty},\;\mathrm{comme}\;\lim_{n\to+\infty}\left\lfloor\ln(n)\right\rfloor=+\infty,\;\mathrm{la\;suite}\;\left(\alpha^{\lfloor\ln n\rfloor}\right)_{n\in\mathbb{N}^*}\;\mathrm{ne\;tend\;pas\;vers}\;0\;\mathrm{car}\;\lim_{n\to+\infty}\left|\alpha^{\lfloor\ln n\rfloor}\right|=+\infty.$

et la divergence de la série $\sum_{n\geq 1} a^{\lfloor \ln n \rfloor}$ est encore grossière.

Si a = 0, comme $\forall n \ge 3$, $\lfloor \ln n \rfloor \ge 1$, on a $a^{\lfloor \ln n \rfloor} = 0$, ce qui montre la convergence de $\sum_{n \ge 1} a^{\lfloor \ln n \rfloor}$.

 $\frac{\mathrm{Si}\ \alpha\in]0;1[}{0<\alpha<1.}\ \mathrm{Or}\ \alpha^{\ln(n)}=e^{\ln(n)\ln(n)}=e^{\ln(n)\ln(n)}=n^{\ln(\alpha)}=\frac{1}{n^{-\ln(\alpha)}}.\ \mathrm{Ainsi},\ \frac{1}{n^{-\ln(\alpha)}}\leqslant \mathfrak{u}_n<\frac{1}{\alpha n^{-\ln(\alpha)}}.$

 $\frac{\mathrm{Si}-\ln(\alpha)>1 \Longleftrightarrow \alpha<1/e}{\mathrm{de}\,\,\mathrm{Riemann}\,\,\mathrm{que}\,\,\sum_{n\geq 1}\alpha^{\lfloor\ln n\rfloor}\,\,\mathrm{converge}.}$ de Riemann que $\sum_{n\geq 1}\alpha^{\lfloor\ln n\rfloor}\,\,\mathrm{converge}.$

 $\underline{\mathrm{Si}-\ln(\alpha)}\leqslant 1 \Longleftrightarrow \alpha\geqslant 1/e, \ \text{l'inégalit\'e}\ \frac{1}{n^{-\ln(\alpha)}}\leqslant u_n \ \text{montre par comparaison que}\ \sum_{n\geqslant 1}\alpha^{\lfloor\ln n\rfloor}\ \text{diverge}.$

 $\underline{\mathrm{Si}\ a\in]-1/e;0[},\ |\mathfrak{a}^{\lfloor\ln n\rfloor}|=|\mathfrak{a}|^{\lfloor\ln n\rfloor}\ \mathrm{donc},\ \mathrm{par}\ \mathrm{un}\ \mathrm{des}\ \mathrm{cas}\ \mathrm{pr\'ec\'edents},\ \sum_{\mathfrak{n}\geqslant 1}\mathfrak{a}^{\lfloor\ln n\rfloor}\ \mathrm{converge}\ \mathrm{absolument}.$

 $\underbrace{\text{Si } \alpha \in]-1;-1/e[}, \text{ on note } S_n = \sum_{k=1}^n \alpha^{\lfloor \ln k \rfloor}. \text{ L'idée est de faire des paquets de termes pour lesquels } \lfloor \ln(k) \rfloor$ est constant. Soit $p \in \mathbb{N}^*$, alors $p = \lfloor \ln(k) \rfloor \iff p \leqslant \ln(k) < p+1 \iff e^p \leqslant k < e^{p+1}. \text{ Ainsi, si on pose } I_p = \llbracket u_p; \nu_p \rrbracket \text{ avec } u_p = \lfloor e^p \rfloor + 1 \text{ et } \nu_p = \lfloor e^{p+1} \rfloor - 1, \text{ on a la valeur constante } \forall k \in I_p, \ \lfloor \ln(k) \rfloor = p. \text{ Ainsi, } \sum_{k \in I_p} \alpha^p = S_{\nu_p} - S_{u_p-1} = \alpha^p (\nu_p - u_p + 1). \text{ Mais, } e^p < u_p \leqslant e^p + 1 \text{ et } e^{p+1} - 2 < \nu_p \leqslant e^{p+1} - 1 \text{ donc } e^{p+1} - 2 - e^p < \nu_p - u_p + 1 < e^{p+1} - e^p \text{ ce qui assure par encadrement que } \nu_p - u_p + 1 \underset{+\infty}{\sim} e^p (e-1) \text{ car } e^{p+1} - 2 - e^p \underset{+\infty}{\sim} e^{p+1} - e^p = e^p (e-1). \text{ Ainsi, } S_{\nu_p} - S_{u_p-1} \underset{+\infty}{\sim} (\alpha e)^p (e-1) \text{ qui ne tend pas vers 0 quand p } tend vers +\infty. \text{ Or si } (S_n)_{n \in \mathbb{N}^*} \text{ convergeait vers S, les deux suites extraites } (S_{u_p})_{p \in \mathbb{N}^*} \text{ et } (S_{\nu_p})_{p \in \mathbb{N}^*} \text{ tendrait vers S donc on aurait } \lim_{p \to +\infty} (S_{\nu_p} - S_{u_p-1}) = 0. \text{ Par l'absurde, } (S_n)_{n \geqslant 1} \text{ diverge. Ainsi } \sum_{n \geqslant 1} \alpha^{\lfloor \ln n \rfloor} \text{ diverge. }$

Au final : $\sum_{n\geq 1} a^{\lfloor \ln n \rfloor}$ converge si et seulement si $-e^{-1} < a < e^{-1}$.

$\overline{({\bf 2.2})}$ Cherchons d'abord un développement asymptotique de \mathfrak{u}_n .

$$\begin{split} & \underline{\operatorname{Premi\`ere\ m\'ethode}} : \sin(u_n) = \left(\frac{1}{2} + \frac{(-1)^n}{n^{\alpha}}\right) \frac{\sqrt{3}}{2} - \frac{1}{2} \sqrt{1 - \left(\frac{1}{2} + \frac{(-1)^n}{n^{\alpha}}\right)^2} \operatorname{car} \cos(\operatorname{Arcsin}(x)) = \sqrt{1 - x^2} \operatorname{pour} \\ & x \in]-1; 1[.\ \operatorname{Ainsi}, \ \sin(u_n) = \frac{\sqrt{3}}{4} + \frac{(-1)^n \sqrt{3}}{2n^{\alpha}} - \frac{\sqrt{3}}{4} \sqrt{1 - \frac{4(-1)^n}{3n^{\alpha}} - \frac{4}{3n^{2\alpha}}}. \ \operatorname{Or} \ \sqrt{1 + x} = 1 + \frac{x}{2} - \frac{x^2}{8} + o(x^2) \\ & \operatorname{donc\ sin}(u_n) = \frac{(-1)^n \sqrt{3}}{2n^{\alpha}} + \frac{(-1)^n \sqrt{3}}{6n^{\alpha}} + \frac{\sqrt{3}}{6n^{2\alpha}} + \frac{\sqrt{3}}{18n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right) = \frac{(-1)^n 2\sqrt{3}}{3n^{\alpha}} + \frac{2\sqrt{3}}{9n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right). \end{split}$$

Comme $u_n = \operatorname{Arcsin}(\sin(u_n))$ et que $\operatorname{Arcsin}(x) = x + o(x^2)$, on a $u_n = \frac{(-1)^n 2\sqrt{3}}{3n^\alpha} + \frac{2\sqrt{3}}{9n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)$. Deuxième méthode : soit $f: x \mapsto \operatorname{Arcsin}\left(\frac{1}{2} + x\right) - \frac{\pi}{6}$ dérivable sur $\left] - \frac{1}{2}; \frac{1}{2} \right[$ avec $f'(x) = \frac{1}{\sqrt{1 - (1/2 + x)^2}}$. Ainsi, $f'(x) = \frac{2}{\sqrt{3}} \times \frac{1}{\sqrt{1 - \frac{4x}{3} - \frac{4x^2}{3}}} = \frac{2}{\sqrt{3}} \left(1 + \frac{2x}{3}\right) + o(x)$. En primitivant, $f(x) = f(0) + \frac{2x}{\sqrt{3}} + \frac{2x^2}{3\sqrt{3}} + o(x^2)$. Or f(0) = 0 donc $f(x) = \frac{2x}{\sqrt{3}} + \frac{2x^2}{3\sqrt{3}} + o(x^2)$. Par conséquent : $u_n = \frac{2(-1)^n}{\sqrt{3}n^\alpha} + \frac{2}{3\sqrt{3}n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)$. Troisième méthode : soit $f: x \mapsto \operatorname{Arcsin}\left(\frac{1}{2} + x\right)$, alors f est de classe C^∞ sur $\left] - \frac{1}{2}; \frac{1}{2} \right[$ donc admet un DL en 0 à tout ordre. On a $f(0) = \frac{\pi}{6}$ et, par calculs, $f'(0) = \frac{2}{\sqrt{3}}$ et $f''(0) = \frac{4}{3\sqrt{3}}$. Ainsi, par Taylor-Young, $f(x) = \frac{\pi}{6} + \frac{2x}{\sqrt{3}} + \frac{2x}{3\sqrt{3}} + o(x^2)$. Ainsi, comme $\alpha > 0$, on a $u_n = \frac{2(-1)^n}{+\infty} + \frac{2}{3\sqrt{3}} + o\left(\frac{1}{n^{2\alpha}}\right)$.

• Dans tous les cas, on peut écrire $u_n = v_n + w_n$ avec $v_n = \frac{2(-1)^n}{\sqrt{3}n^\alpha}$ et $w_n \approx \frac{2}{3\sqrt{3}} + o\left(\frac{1}{n^{2\alpha}}\right)$. est décroissante et tend vers 0 et $\sum_{n \ge 0} w_n$ converge si et seulement si $2\alpha > 1 \iff \alpha > \frac{1}{2}$ par comparaison de séries à termes positifs aux séries de RIEMANN. Par somme, la série $\sum_{n \ge 1} u_n$ converge si et seulement si $\alpha > \frac{1}{2}$.

2.3 Posons $u_n = \frac{1}{n^\alpha} \sin\left(\frac{n\pi}{5}\right)$ pour $n \geqslant 1$. Puisque $\alpha > 0$ et que $|u_n| \leqslant \frac{1}{n^\alpha}$, par encadrement, $\lim_{n \to +\infty} u_n = 0$. Si $\alpha > 1$, comme $\sum_{n \geqslant 1} \frac{1}{n^\alpha}$ converge par RIEMANN, $\sum_{n \geqslant 1} u_n$ converge absolument par comparaison. Si $\alpha \leqslant 1$, montrons que $\sum_{n \geqslant 1} u_n$ converge de deux manières : Méthode 1: comme la suite $\left(\sin\left(\frac{n\pi}{5}\right)\right)_{n \geqslant 1}$ est 10-périodique car la fonction sin est 2π -périodique, on voit une alternance de termes positifs et négatifs dans cette série, ce qui nous conduit à effectuer une sommation par paquets de 5 termes consécutifs. Soit $v_n = u_{5n-4} + u_{5n-3} + u_{5n-2} + u_{5n-1} + u_{5n}$ pour tout $n \geqslant 1$. On constate que v_n est positif si n est impair et que v_n est négatif si n est pair, ainsi la série $\sum_{n \geqslant 1} v_n$ est alternée. Si on définit les deux sommes partielles associées $S_p = \sum_{k=1}^p u_k$ et $T_p = \sum_{k=1}^p v_k$ pour $p \geqslant 1$, on a la relation $\sum_{k=1}^p v_k = \sum_{k=1}^p \left(\sum_{i=5k-4}^{5k} u_i\right) = T_p = S_{5p} = \sum_{n=1}^{5p} u_n$. Avec les propriétés de signe de v_n , comme $\sin(n\pi+\theta) = (-1)^n \sin(\theta)$, on a la relation $v_n = (-1)^{n-1} w_n$ en définissant le réel $w_n = |v_n| \geqslant 0$ par $w_n = \frac{1}{(5n-4)^\alpha} \sin\left(\frac{\pi}{5}\right) + \frac{1}{(5n-3)^\alpha} \sin\left(\frac{2\pi}{5}\right) + \frac{1}{(5n-2)^\alpha} \sin\left(\frac{3\pi}{5}\right) + \frac{1}{(5n-1)^\alpha} \sin\left(\frac{4\pi}{5}\right)$. Or $(w_n)_{n \in \mathbb{N}}$ est clairement décroissante et tend vers 0 donc $\sum_{n \geqslant 1} v_n$ converge d'après le critère spécial des séries alternées. Notons T la limite de la suite des sommes partielles $(T_n)_{n \geqslant 1}$. On a donc $\lim_{n \to +\infty} S_{5n} = T$. De plus, on a $S_{5n+1} = S_{5n} + u_{5n+1} = \prod_{n \to +\infty} S_{5n+4} = S_{5n+3} + u_{5n+4} = T + o(1)$, d'où l'on déduit (on a les 5 restes possibles) que $\lim_{n \to +\infty} S_{5n} = \lim_{n \to +\infty} S_{5n+4} = T$.

Ainsi, la suite $(S_n)_{n\geqslant 1}$ converge ce qui signifie que $\sum_{n\geqslant 1}u_n$ converge. On a même $\sum_{n=1}^{+\infty}u_n=T$.

 $\begin{array}{l} \underline{\text{M\'ethode 2}}: \text{ la 10-p\'eriodicit\'e de } \left(\sin\left(\frac{n\pi}{5}\right)\right)_{n\geqslant 1} \text{ nous conduit \`a sommer par paquets de 10 termes. Soit} \\ z_n = u_{10n-9} + u_{10n-8} + u_{10n-7} + u_{10n-6} + u_{10n-5} + u_{10n-4} + u_{10n-3} + u_{10n-2} + u_{10n-1} + u_{10n} \text{ pour} \\ \text{tout entier } n\geqslant 1. \text{ Alors, si on d\'efinit les deux sommes partielles associ\'es } S_p = \sum\limits_{k=1}^p u_k \text{ et } T_p = \sum\limits_{k=1}^p z_k \text{ pour } p\geqslant 1, \text{ on a } T_p = S_{10p} \text{ comme pr\'ec\'edemment.} \end{array}$

On a donc $z_n = \sum\limits_{k=0}^9 \frac{1}{(10n-k)^\alpha} \sin\left(\frac{k\pi}{5}\right) \left(\sin\left(\frac{k\pi}{5}\right) = 0 \text{ si } k = 0 \text{ ou } k = 5 \text{ mais on le laisse}\right)$ et, en écrivant par exemple $\frac{1}{(10n-9)^\alpha} = \frac{1}{(10n)^\alpha} \left(1 - \frac{9}{10n}\right)^{-\alpha} = \frac{1}{(10n)^\alpha} + \frac{9\alpha}{(10n)^{\alpha+1}} + o\left(\frac{1}{n^{\alpha+1}}\right) = \frac{1}{(10n)^\alpha} + O\left(\frac{1}{n^{\alpha+1}}\right)$, on obtient $z_n = \frac{1}{(10n)^\alpha} \sum\limits_{k=0}^9 \sin\left(\frac{k\pi}{5}\right) + O\left(\frac{1}{n^{\alpha+1}}\right)$. Or $\sum\limits_{k=0}^9 \sin\left(\frac{k\pi}{5}\right)$ est la partie imaginaire de la somme des 10 racines dixièmes de l'unité et on sait que cette somme est nulle. Ainsi, $z_n = O\left(\frac{1}{n^{\alpha+1}}\right)$ ce qui garantit par comparaison aux séries de RIEMANN la convergence de la série $\sum\limits_{n\geqslant 1} z_n$. Ainsi, si on note T la limite de la suite $(T_n)_{n\geqslant 1}$, on a $\lim\limits_{n\to +\infty} S_{10n} = T$. De plus, $S_{10n+1} = S_{10n} + u_{10n+1}$ donc $\lim\limits_{n\to +\infty} S_{10n+1} = T$. De même, on montre que $\forall k \in [0;9]$, $\lim\limits_{n\to +\infty} S_{10n+k} = T$ ce qui implique la convergence de $(S_n)_{n\geqslant 1}$ vers T et, à nouveau, on en conclut que la série $\sum\limits_{n\geqslant 1} u_n$ converge. On a même $\sum\limits_{n=1}^{+\infty} u_n = T$.

<u>Méthode 3</u>: on peut faire une transformation d'ABEL en prenant $b_n = \frac{1}{n^\alpha}$ et $(b_n)_{n\geqslant 1}$ est décroissante et tend vers 0 et en posant $a_n = \sin\left(\frac{n\pi}{5}\right)$ et on montre classiquement que $(A_n)_{n\geqslant 1}$ est bornée si $A_n = \sum_{k=1}^n a_k$ (elle ne prend qu'un nombre fini de valeurs car $(a_n)_{n\geqslant 1}$ est 10-périodique et que $A_{10} = 0$ car la somme des racines dixièmes de l'unité est nulle. Mais tout ceci est hors programme !

La fonction Arccos est décroissante sur [-1;1] et $\forall n \geqslant 1$, $\frac{1}{n^2} \leqslant \frac{1}{n}$ donc Arccos $\left(\frac{1}{n}\right) \leqslant$ Arccos $\left(\frac{1}{n^2}\right)$ ainsi $u_n \leqslant 0$. De plus, comme $\lim_{t\to 0^+} \operatorname{Arccos}(t) = \frac{\pi}{2}$, il vient $\lim_{n\to +\infty} u_n = \frac{\pi}{2} - \frac{\pi}{2} = 0$. Par conséquent, $\sin(u_n) = u_n$ or $\sin(u_n) = \sin(a_n - b_n)$ en notant $a_n = \operatorname{Arccos}\left(\frac{1}{n}\right)$ et $b_n = \operatorname{Arccos}\left(\frac{1}{n^2}\right)$. On obtient donc $\sin(u_n) = \sin(a_n)\cos(b_n) - \sin(b_n)\cos(a_n)$. On sait que $\forall x \in [-1;1]$, $\sin(\operatorname{Arccos}(x)) = \sqrt{1-x^2}$ donc $\sin(u_n) = \frac{1}{n^2}\sqrt{1-\frac{1}{n^2}} - \frac{1}{n}\sqrt{1-\frac{1}{n^4}}$. Or $\sqrt{1-x} = 1-\frac{x}{2} + o(x)$ donc $\sin(u_n) = -\frac{1}{n} + \frac{1}{n^2} + O\left(\frac{1}{n^4}\right)$. On peut ne garder comme information que $u_n = -\frac{1}{n} + O\left(\frac{1}{n^2}\right)$ et même $u_n \approx -\frac{1}{n}$.

On pouvait aussi se servir de la relation $\operatorname{Arccos}(x) = \frac{\pi}{2} - \operatorname{Arcsin}(x)$ pour avoir $\operatorname{Arccos}(x) = \frac{\pi}{2} - x + O(x^2)$ et obtonir plus simplement $u_n = -\frac{1}{n} + O\left(\frac{1}{n}\right)$ done $u_n = -\frac{1}{n} + O\left(\frac{1}{n}\right)$

et obtenir plus simplement $u_n = -\frac{1}{n} + O\left(\frac{1}{n^2}\right)$ donc $u_n \sim -\frac{1}{n} < 0$. Comme la série harmonique diverge, par comparaison de séries à termes négatifs, la série $\sum_{n\geqslant 1} u_n$ diverge.

Or $(-1)^n u_n = \frac{(-1)^{n+1}}{n} + O\left(\frac{1}{n^2}\right)$ qu'on peut écrire $(-1)^n u_n = \frac{(-1)^{n+1}}{n} + \nu_n$ avec $\nu_n = O\left(\frac{1}{n^2}\right)$. Par le critère spécial des séries alternées, $\sum_{n\geqslant 1} \frac{(-1)^{n+1}}{n}$ converge car $\left(\frac{1}{n}\right)_{n\geqslant 1}$ est décroissante et tend vers 0. De plus, $\sum_{n\geqslant 1} \nu_n$ converge absolument par comparaison car $\sum_{n\geqslant 1} \frac{1}{n^2}$ converge. Par somme $\sum_{n\geqslant 1} (-1)^n u_n$ converge.

 $\begin{array}{lll} \textbf{2.5} \ \textbf{a.} \ \text{Comme} \ \mathfrak{u}_n - \mathfrak{u}_{n+1} \underset{+\infty}{\sim} \ell \mathfrak{u}_n^{\alpha} \ \text{et que} \ \forall n \in \mathbb{N}, \ \ell \mathfrak{u}_n^{\alpha} > 0, \ \text{alors} \ \mathfrak{u}_n - \mathfrak{u}_{n+1} \ \text{devient strictement positif à partir} \\ \text{d'un certain rang. En effet, pour} \ \epsilon = \frac{1}{2} \ \text{dans la limite} \ \lim_{n \to +\infty} \frac{\mathfrak{u}_n - \mathfrak{u}_{n+1}}{\ell \mathfrak{u}_n^{\alpha}} = 1, \ \text{il existe un rang N tel que} \\ \forall n \geqslant N, \ \left| \frac{\mathfrak{u}_n - \mathfrak{u}_{n+1}}{\ell \mathfrak{u}_n^{\alpha}} - 1 \right| < \frac{1}{2} \ \text{donc} \ 0 < \frac{1}{2} < \frac{\mathfrak{u}_n - \mathfrak{u}_{n+1}}{\ell \mathfrak{u}_n^{\alpha}} < \frac{3}{2} \ \text{et on conclut bien que} \ \mathfrak{u}_n - \mathfrak{u}_{n+1} > 0 \ \text{pour} \\ \text{tout entier} \ n \geqslant N. \ \text{Ainsi}, \ (\mathfrak{u}_n)_{n \geqslant N} \ \text{est strictement décroissante}. \end{array}$

 $\begin{aligned} \mathbf{b.} \ \operatorname{Si} \ \alpha < 2 \ \operatorname{et} \ n \geqslant N, \ t \mapsto \frac{1}{t^{\alpha - 1}} \ \operatorname{\acute{e}tant} \ \operatorname{d\acute{e}croissante} \ \operatorname{sur} \left[u_{n+1}; u_n \right], \ \forall t \in \left[u_{n+1}; u_n \right], \ \frac{1}{t^{\alpha - 1}} \geqslant \frac{1}{u_n^{\alpha - 1}}. \ \operatorname{On} \ \operatorname{int\`{e}greed} \\ \operatorname{sur} \left[u_{n+1}; u_n \right] \ \left(\operatorname{car} \ n \geqslant N \ \operatorname{donc} \ u_{n+1} \leqslant u_n \right) \ \operatorname{pour} \ \operatorname{obtenir} \ \frac{u_n - u_{n+1}}{u_n^{\alpha - 1}} = \int_{u_{n+1}}^{u_n} \frac{1}{u_n^{\alpha - 1}} dt \leqslant \int_{u_{n+1}}^{u_n} \frac{1}{t^{\alpha - 1}} dt. \end{aligned}$

Pour $m \geqslant N+1$, en sommant ces inégalités pour $n \in [N; m-1]$ et avec la relation de Chasles, on obtient $\sum_{n=N}^m \frac{u_n-u_{n+1}}{u_n^{\alpha-1}} \leqslant \sum_{n=N}^m \int_{u_{n+1}}^{u_n} \frac{1}{t^{\alpha-1}} dt = \int_{u_m}^{u_N} \frac{1}{t^{\alpha-1}} dt \leqslant \int_0^{u_N} \frac{1}{t^{\alpha-1}} dt = \left[\frac{t^{2-\alpha}}{2-\alpha}\right]_0^{u_N} = \frac{u_N^{2-\alpha}}{2-\alpha}$ (la convergence de l'intégrale est assurée par le critère de RIEMANN). Or la suite $\left(\sum_{n=N}^m \frac{u_n-u_{n+1}}{u_n^{\alpha-1}}\right)_{m\geqslant N}$ est croissante et majorée donc elle converge, ce qui garantit la convergence de la série $\sum_{n\geqslant 0} \frac{u_n-u_{n+1}}{u_n^{\alpha-1}}$. Enfin, par hypothèse, on a $\frac{u_n-u_{n+1}}{u_n^{\alpha-1}} \underset{+\infty}{\sim} \ell u_n > 0$ donc, par comparaison, la série $\sum_{n\geqslant 0} u_n$ converge aussi.

c. Si $\alpha\geqslant 2$ et $n\geqslant N$, cette fois-ci, on préfère écrire $\forall t\in [u_{n+1};u_n], \ \frac{1}{t^{\alpha-1}}\leqslant \frac{1}{u_{n+1}^{\alpha-1}}$ toujours par décroissance $t\mapsto \frac{1}{t^{\alpha-1}}$ sur $[u_{n+1};u_n]$. On intègre sur $[u_{n+1};u_n]$ (car $n\geqslant N$ donc $u_{n+1}\leqslant u_n$) pour obtenir l'inégalité $\frac{u_n-u_{n+1}}{u_{n+1}^{\alpha-1}}=\int_{u_{n+1}}^{u_n}\frac{1}{u_{n+1}^{\alpha-1}}dt\geqslant \int_{u_{n+1}}^{u_n}\frac{1}{t^{\alpha-1}}dt$. Pour $m\geqslant N+1$, en sommant pour $n\in [\![N;m-1]\!]$ et encore avec la relation de Chasles, on obtient $\sum_{n=N}^m\frac{u_n-u_{n+1}}{u_{n+1}^{\alpha-1}}\geqslant \sum_{n=N}^m\int_{u_{n+1}}^{u_n}\frac{1}{t^{\alpha-1}}dt=\int_{u_m}^{u_N}\frac{1}{t^{\alpha-1}}dt$. Comme maintenant $\alpha-1\geqslant 1$, le critère de RIEMANN donne la divergence de l'intégrale $\int_0^{u_N}\frac{1}{t^{\alpha-1}}dt$ donc, comme $\lim_{n\to+\infty}u_m=0$, $\lim_{m\to+\infty}\int_{u_m}^{u_N}\frac{1}{t^{\alpha-1}}dt=+\infty$. Ainsi, par encadrement, $\lim_{m\to+\infty}\sum_{n=N}^m\frac{u_n-u_{n+1}}{u_{n+1}^{\alpha-1}}=+\infty$ d'où la divergence de $\sum_{n\geqslant 0}\frac{u_n-u_{n+1}}{u_{n+1}^{\alpha-1}}$ (ses sommes partielles tendent vers $+\infty$).

Une nouvelle fois, par hypothèse, $u_n - u_{n+1} \underset{+\infty}{\sim} \ell u_n^{\alpha}$. Or $\lim_{n \to +\infty} u_n = 0$ et $\alpha \geqslant 2$ donc $u_n^{\alpha} = o(u_n)$ (vrai dès que $\alpha > 1$). Ainsi, on a $u_n - u_{n+1} = o(u_n)$ donc $u_n \underset{+\infty}{\sim} u_{n+1}$ et il vient $\frac{u_n - u_{n+1}}{u_{n+1}^{\alpha - 1}} \underset{+\infty}{\sim} \frac{u_n - u_{n+1}}{u_n^{\alpha - 1}} \underset{+\infty}{\sim} \ell u_n$. Comme on parle de suites positives strictement (au moins à partir d'un certain rang), on conclut de la divergence vue ci-dessus que $\sum_{n \geqslant 0} u_n$ diverge si $\alpha \geqslant 2$.

En conclusion, avec ces hypothèses, $\sum_{n\geqslant 0} u_n$ converge si et seulement si $\alpha<2.$

2.6 a. D'abord, la série $\sum_{n\geqslant 0} (-1)^n u_n$ converge par le critère spécial des séries alternées puisque $(u_n)_{n\in\mathbb{N}}$ est décroissante et tend vers 0. Ceci justifie l'existence du reste R_n pour tout entier $n\geqslant -1$. On sait d'après ce même théorème que R_n est du signe de $(-1)^{n+1}u_{n+1}$ donc $|R_n|=(-1)^{n+1}R_n$. Ainsi, on a $|R_n|-|R_{n+1}|=(-1)^{n+1}R_n-(-1)^{n+2}R_{n+1}=(-1)^{n+1}(R_n+R_{n+1})$. Or, en posant k=j+1, il vient $R_{n+1}=\sum_{k=n+2}^{+\infty} (-1)^k u_k=\sum_{j=n+1}^{+\infty} (-1)^{j+1}u_{j+1}$. Ainsi, en regroupant les deux séries, on obtient la relation

 $|R_n| - |R_{n+1}| = (-1)^{n+1} \sum_{k=n+1}^{+\infty} \left((-1)^k u_k + (-1)^{k+1} u_{k+1} \right) \text{ d'où } |R_n| - |R_{n+1}| = (-1)^{n+1} \sum_{k=n+1}^{+\infty} (-1)^k v_k \text{ en notant } v_k = u_k - u_{k+1}. \text{ Or, par hypothèse, la suite } (v_n)_{n \in \mathbb{N}} \text{ est décroissante, positive, et tend vers 0 (par somme). Par conséquent, par le critère spécial des séries alternées, comme } \sum_{k=n+1}^{+\infty} (-1)^k v_k \text{ est le reste d'ordre } n \text{ de la série } \sum_{k\geqslant 0} (-1)^k v_k, \text{ le signe de } \sum_{k=n+1}^{+\infty} (-1)^k v_k \text{ est celui de } (-1)^{n+1} v_{n+1} \text{ donc celui de } (-1)^{n+1}. \text{ On en déduit que le signe de } |R_n| - |R_{n+1}| \text{ est celui de } (-1)^{n+1} (-1)^{n+1} = 1 \text{ ce qui permet de conclure que } |R_n| - |R_{n+1}| \geqslant 0, \text{ c'est-à-dire que } (|R_n|)_{n \in \mathbb{N}} \text{ est décroissante.}$

 $\begin{aligned} \mathbf{b.} \ \ &\text{Comme avant, pour } n \in \mathbb{N}^*, \text{ on a } |R_n| + |R_{n+1}| = (-1)^{n+1}R_n + (-1)^{n+2}R_{n+1} = (-1)^{n+1}(R_n - R_{n+1}) \\ &\text{or } R_n - R_{n+1} = (-1)^{n+1}u_{n+1} \text{ après simplification. Ainsi, } |R_n| + |R_{n+1}| = u_{n+1}. \text{ Mais on sait que la suite } \\ &(|R_n|)_{n \in \mathbb{N}} \text{ est décroissante donc } |R_{n+1}| \leqslant |R_n| \leqslant |R_{n-1}| \text{ qui devient, en ajoutant } |R_n| \text{ et d'après ce qui précède, } u_{n+1} \leqslant 2|R_n| \leqslant u_n \text{ et on a bien } \frac{u_{n+1}}{2} \leqslant |R_n| \leqslant \frac{u_n}{2}. \end{aligned}$

 $\begin{array}{l} \textbf{c.} \quad \text{Comme} \ u_{n+1} \underset{+\infty}{\sim} u_n \ \text{d'après l'énoncé, le théorème des gendarmes prouve que } |R_n| \underset{+\infty}{\sim} \frac{u_n}{2} \ \text{d'après l'encadrement} \\ \text{l'encadrement} \ \frac{u_{n+1}}{u_n} \leqslant \frac{2|R_n|}{u_n} \leqslant 1. \ \text{Et puisque } R_n = (-1)^{n+1}|R_n|, \text{ on en déduit que } R_n \underset{+\infty}{\sim} (-1)^{n+1} \frac{u_n}{2}. \end{array}$

d. Posons $f: x \mapsto \frac{\ln(x)}{x}$, alors f est dérivable sur \mathbb{R}_+^* et $f'(x) = \frac{1 - \ln(x)}{x^2}$ donc f est décroissante sur $[e; +\infty[$ donc sur $[3; +\infty[$. f est même de classe C^∞ sur \mathbb{R}_+^* et on trouve $f''(x) = \frac{2\ln(x) - 3}{x^3}$ donc f'' est positive sur $[e^{3/2}; +\infty[$ donc sur $[5; +\infty[$. Ainsi, la fonction f est convexe sur $[5; +\infty[$. De plus, en posant $u_n = \frac{\ln(n)}{n} = f(n)$, on a $\ln(n+1) \underset{+\infty}{\sim} \ln(n)$ car $\ln(n+1) - \ln(n) = \ln\left(1 + \frac{1}{n}\right) \underset{+\infty}{\sim} \frac{1}{n+\infty} = o(\ln(n))$ et $n+1 \underset{+\infty}{\sim} n$ donc, en divisant, $u_{n+1} \underset{+\infty}{\sim} u_n$. Pour $n \ge 5$, d'après l'égalité des accroissements finis, il existe deux réels $\alpha_n \in]n+1; n+2[$ et $\beta_n \in]n; n+1[$ tels que $u_{n+2}-u_{n+1}=f(n+2)-f(n+1)=f'(\alpha_n)$ et $u_{n+1}-u_n=f(n+1)-f(n)=f'(\beta_n)$. Mais comme f' est croissante sur $[5; +\infty[$, on a $f'(\beta_n) \leqslant f'(\alpha_n)$ car $\beta_n \leqslant \alpha_n$. Ainsi, pour $n \ge 5$, $u_{n+2}-u_{n+1} \ge u_{n+1}-u_n$.

On en déduit d'après la question \mathbf{c} . (comme on parle de reste, le fait que les propriétés requises ne commencent qu'à partir du rang 5 importe peu) que $R_n = \sum_{k=n+1}^{+\infty} (-1)^k \frac{\ln(k)}{k} \sim (-1)^{n+1} \frac{\ln(n)}{2n}$.

 $\begin{aligned} \mathbf{b.} \ \, \text{On isole les deux premiers termes, } & (n+1)! R_n = (n+1)! \sum_{k=n+1}^{+\infty} \frac{(n+1)!}{k!} = 1 + \frac{1}{n+2} + \sum_{k=n+3}^{+\infty} \frac{(n+1)!}{k!} \ \, \text{or,} \\ \text{pour tout entier } & k \geqslant n+3, \ \, \text{on a} \ \, \frac{(n+1)!}{k!} = \frac{1}{k(k-1)\cdots(n+2)} \leqslant \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}. \ \, \text{Ainsi, en sommant} \\ \sum_{k=n+3}^{+\infty} \frac{(n+1)!}{k!} \leqslant \sum_{k=n+3}^{+\infty} \left(\frac{1}{k-1} - \frac{1}{k} \right) = \frac{1}{n+2}. \ \, \text{Ainsi, } 1 \leqslant (n+1)! R_n \leqslant 1 + \frac{2}{n+2} \ \, \text{et on conclut par le} \\ \text{théorème des gendarmes que } \lim_{n \to +\infty} (n+1)! R_n = 1. \end{aligned}$

On pouvait aussi écrire que $\forall k \geqslant n+2$, $\frac{(n+1)!}{k!} = \frac{1}{k(k-1)\cdots(n+2)} \leqslant \frac{1}{(n+2)^{k-n-1}}$ donc, en sommant $1 \leqslant (n+1)!R_n \leqslant 1 + \sum_{k=n+2}^{+\infty} \frac{1}{(n+2)^{k-n-1}} = 1 + \frac{1}{n+2} \times \frac{1}{1-\frac{1}{n+2}} = 1 + \frac{1}{n+1}$ avec la même conclusion.

c. On sait que $e = S_n + R_n$ avec $S_n = \sum_{k=0}^n \frac{1}{k!}$ donc $en! = n!S_n + n!R_n$ mais $n!S_n = \sum_{k=0}^n \frac{n!}{k!}$ est un entier donc $\sin(2\pi en!) = \sin(2\pi n!S_n + 2\pi n!R_n) = \sin(2\pi n!R_n)$ par 2π -périodicité de la fonction sin. Comme $R_n \sim \frac{1}{(n+1)!}$, on a $2\pi n!R_n \sim \frac{2\pi}{n+1}$ donc $u_n = \sin(2\pi en!) \sim \frac{2\pi}{n+1} > 0$ ce qui garantit par comparaison à la série harmonique de RIEMANN la divergence de la série $\sum_{k=0}^n \sin(2\pi en!)$.

- **2.8**) **a.** Pour tout entier $k \in \mathbb{N}$, la fonction $f_k : x \mapsto (\tan(x))^k$ est continue sur le segment $I = \left[0; \frac{\pi}{4}\right]$ donc u_k est bien défini. De plus, $\forall x \in I$, $0 \le \tan(x) \le 1$ donc $0 \le f_{k+1}(x) \le f_k(x)$ ce qui, par croissance de l'intégrale, donne $0 \le u_{k+1} \le u_k$. La suite $(u_k)_{k \in \mathbb{N}}$ est donc positive et décroissante.
 - **b.** La suite $(u_k)_{k\in\mathbb{N}}$ est décroissante et minorée par 0 donc elle converge vers un réel $\ell\geqslant 0$ par le théorème de la limite monotone. La fonction tan est convexe sur I car $\forall x\in I$, $\tan''(x)=2\tan(x)(1+\tan^2(x))\geqslant 0$ donc la courbe représentative de tan est en dessous de ses cordes sur I, notamment $\forall x\in I$, $0\leqslant \tan(x)\leqslant \frac{4x}{\pi}$.

Ainsi $0 \leqslant u_k \leqslant \int_0^{\pi/4} \left(\frac{4x}{\pi}\right)^k dx = \frac{4^k}{\pi^k} \left[\frac{x^{k+1}}{k+1}\right]_0^{\pi/4} = \frac{\pi}{4(k+1)}$ toujours par croissance de l'intégrale. Comme $\lim_{k \to +\infty} \frac{1}{k+1}, \text{ par encadrement, on a } \lim_{k \to +\infty} u_k = 0.$

On aurait aussi pu utiliser le chapitre sur les suites de fonctions :

- (H_1) La suite $(f_k)_{k\in\mathbb{N}}$ converge simplement vers $f:I\to\mathbb{R}$ définie par f(x)=0 si $x<\frac{\pi}{4}$ et $f\left(\frac{\pi}{4}\right)=1$.
- (H_2) Les fonctions f_k et la fonction f sont continues sur I.
- $(H_3)\ \forall k\in\mathbb{N},\ \forall x\in I,\ |f_k(x)|\leqslant \phi(x)=1\ \mathrm{et}\ \phi\ \mathrm{est\ int\'egrable\ sur\ }I.$

Par le théorème de convergence dominée, on peut conclure que $\lim_{k\to +\infty} u_k = \lim_{k\to +\infty} \int_0^{\pi/4} f_k = \int_0^{\pi/4} f = 0$.

- $\textbf{c.} \ \ \text{Pour} \ k \in \ \mathbb{N}, \ u_k + u_{k+2} = \int_0^{\pi/4} \tan^k(x) (1 + \tan^2(x)) dx = \int_0^{\pi/4} \tan^k(x) \tan^k(x) \tan'(x) dx \ \text{par linéarité de l'intégrale donc} \ u_k + u_{k+2} = \left[\frac{\tan^k(x)}{k+1}\right]_0^{\pi/4} = \frac{1}{k+1}.$
- $\begin{array}{ll} \mathbf{d.} & u_0 = \int_0^{\pi/4} dx = \frac{\pi}{4} \ \mathrm{et} \ u_1 = \int_0^{\pi/4} \tan(x) dx = \left[\ln(\cos(x))\right]_0^{\pi/4} = -\ln\left(\frac{\sqrt{2}}{2}\right) = \frac{\ln(2)}{2}. \ \mathrm{Gr\^{a}ce} \ \grave{a} \ \mathbf{c.}, \\ & \mathrm{on} \ \mathrm{a} \ \sum_{k=0}^{n-1} (-1)^k (u_{2k} + u_{2k+2}) = u_0 + (-1)^{n-1} u_{2n} = \sum_{k=0}^{n-1} \frac{(-1)^k}{2k+1} \ \mathrm{donc} \ u_{2n} = (-1)^n \Big(\frac{\pi}{4} \sum_{k=0}^{n-1} \frac{(-1)^k}{2k+1}\Big). \ \mathrm{De} \\ & \mathrm{m\^{e}me}, \ \mathrm{on} \ \mathrm{a} \ \mathrm{la} \ \mathrm{relation} \ \sum_{k=1}^{n-1} (-1)^{k-1} (u_{2k-1} + u_{2k+1}) = u_1 + (-1)^n u_{2n+1} = \sum_{k=1}^{n-1} \frac{(-1)^{k-1}}{2k} \ \mathrm{d'o\grave{u}} \ \mathrm{l'on} \ \mathrm{d\'{e}duit} \\ & \mathrm{que} \ u_{2n+1} = (-1)^n \Big(\sum_{k=1}^{n-1} \frac{(-1)^{k-1}}{2k} \frac{\ln(2)}{2}\Big). \end{array}$
- e. Comme $\lim_{n \to +\infty} u_{2n} = 0$ et $\lim_{n \to +\infty} u_{2n+1} = 0$, $\lim_{n \to +\infty} \sum_{k=0}^{n-1} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$ et $\lim_{n \to +\infty} \sum_{k=1}^{n-1} \frac{(-1)^{k-1}}{2k} = \frac{\ln(2)}{2}$. D'où la convergence de $\sum_{n \geqslant 1} \frac{(-1)^{n-1}}{n}$ et $\sum_{n \geqslant 0} \frac{(-1)^n}{2n+1}$ et les valeurs $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln(2)$ et $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$.

2.9 Pour $u = (u_n)_{n \in \mathbb{N}} \in \{-1,1\}^{\mathbb{N}}$, $u_n r^n = O(r^n)$ et $\sum_{n \geq 0} r^n$ converge (série géométrique) car |r| < 1 donc, par comparaison, $\sum_{n \geq 0} u_n r^n$ converge absolument donc converge. Ainsi, l'application x est bien définie.

Soit $u=(u_n)_{n\in\mathbb{N}}\in\{-1,1\}^{\mathbb{N}}\neq\nu=(\nu_n)_{n\in\mathbb{N}}\in\{-1,1\}^{\mathbb{N}},$ notons $\mathfrak{p}=Min\left(\left\{\mathfrak{n}\in\mathbb{N}\mid u_\mathfrak{n}\neq\nu_\mathfrak{n}\right\}\right),$ cet entier existe car la partie $A=\left\{\mathfrak{n}\in\mathbb{N}\mid u_\mathfrak{n}\neq\nu_\mathfrak{n}\right\}$ de \mathbb{N} est non vide puisque $\mathfrak{u}\neq\nu$ donc, par propriété fondamentale des entiers, A admet un minimum.

Prenons par exemple $u_p=-1$ et $\nu_p=1$ (l'autre cas est analogue et on le traite par symétrie), alors $x(\nu)-x(u)=r^p-(-r^p)+\sum\limits_{n=p+1}^{+\infty}(\nu_n-u_n)r^n$. Posons $y=\sum\limits_{n=p+1}^{+\infty}(\nu_n-u_n)r^n$ de sorte que $x(\nu)-x(u)=2r^p+y$. Par convergence absolue des séries, $\left|\sum\limits_{n=p+1}^{+\infty}(\nu_n-u_n)r^n\right|\leqslant \sum\limits_{n=p+1}^{+\infty}|\nu_n-u_n|r^n\leqslant 2\sum\limits_{n=p+1}^{+\infty}r^n=\frac{2r^{p+1}}{1-r}$ par inégalité triangulaire d'où $x(\nu)-x(u)-2r^p\geqslant -\frac{2r^{p+1}}{1-r}$ qui devient $x(\nu)-x(u)\geqslant 2r^p-\frac{2r^{p+1}}{1-r}=\frac{2r^p(1-2r)}{1-r}>0$.

Par conséquent, $x(u) \neq x(v)$ dès que $u \neq v$, ce qui est la définition de l'injectivité de x.

On peut constater que x n'est pas forcément injective dès que $r \in \left[\frac{1}{2}; 1\right[$, par exemple pour $r = \frac{1}{2}$, car puisque $1 = \sum_{k=1}^{+\infty} \left(\frac{1}{2}\right)^k = \frac{(1/2)}{1-(1/2)}$, on a $x(1,-1,\cdots,-1,\cdots) = x(-1,1,\cdots,1,\cdots)$.

- 2.10 a. Comme l'intervalle $]0; \frac{\pi}{2} [$ est stable par la fonction sin car sin $(]0; \frac{\pi}{2} [)$ =]0; 1[$[]0; \frac{\pi}{2} [$ et que $u_0 \in]0; \frac{\pi}{2} [$, la suite $(u_n)_{n \in \mathbb{N}}$ est bien définie et on a $\forall n \in \mathbb{N}$, $0 < u_n < \frac{\pi}{2}$. Par stricte concavité de la fonction sin sur $u_0 \in]0; \frac{\pi}{2} [$, on a $\forall x \in]0; \frac{\pi}{2} [$, $0 < \sin(x) < x$ donc $\forall n \in \mathbb{N}$, $0 < \sin(u_n) = u_{n+1} < u_n$ et la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante et minorée par 0 donc elle converge vers un réel $\ell \in [0; u_0]$. Or sin est aussi continue donc, en passant à la limite quand n tend vers $+\infty$ dans $\sin(u_n) = u_n$, on a $\sin(\ell) = \ell$ donc $\ell = \lim_{n \to +\infty} u_n = 0$. b. Comme la suite $(u_n)_{n \in \mathbb{N}}$ converge, par dualité suite-série, la série $\sum_{n \geqslant 0} (u_{n+1} u_n)$ converge. De plus, comme $\lim_{n \to +\infty} u_n = 0$, on a $u_{n+1} u_n = \sin(u_n) u_n \approx -\frac{1}{6}u_n^3 < 0$. Par conséquent, par comparaison de séries de termes de signe constant, $\sum_{n \ge 0} u_n^3$ converge.
 - c. Comme la suite $(\ln(u_n))_{n\in\mathbb{N}}$ diverge car elle tend vers $-\infty$ d'après \mathbf{a} ., par dualité suite-série à nouveau, la série $\sum_{n\geqslant 0} (\ln(u_{n+1}) \ln(u_n))$ diverge. Or, $\ln(u_{n+1}) \ln(u_n) = \ln\left(\frac{u_{n+1}}{u_n}\right) = \ln\left(\frac{u_n \frac{u_n^3}{6} + o\left(\frac{u_n^3}{6}\right)}{u_n}\right)$ ce qui donne $\ln(u_{n+1}) \ln(u_n) = \ln\left(1 \frac{u_n^2}{6}\right) \approx -\frac{1}{6}u_n^2 < 0$. Par comparaison encore, la série $\sum_{n\geqslant 0} u_n^2$ diverge. \mathbf{d} . En élevant au carré, $\sin(u_n) = u_n \frac{u_n^3}{6} + o(u_n^3)$, on a $\sin(u_n)^2 = \left(u_n \frac{u_n^3}{6} + o(u_n^3)\right)^2$ qui se réduit en $\sin(u_n)^2 = u_n^2 \left(1 \frac{u_n^2}{6} + o(u_n^2)\right)^2 = u_n^2 \left(1 \frac{u_n^2}{3} + o(u_n^2)\right) = u_n^2 \frac{u_n^4}{6} + o(u_n^4)$. Par conséquent, $\frac{1}{u_{n+1}^2} \frac{1}{u_n^2} = \frac{1}{\sin(u_n)^2} \frac{1}{u_n^2} = \frac{1}{u_n^2} \left(\frac{u_n^2}{\sin(u_n)^2} 1\right) = \frac{1}{u_n^2} \left(\frac{u_n^2}{u_n^2} \frac{u_n^4}{3} + o(u_n^4)\right) 1$ donc, en simplifiant, $\lim_{n\to+\infty} \left(\frac{1}{u_{n+1}^2} \frac{1}{u_n^2}\right) = \frac{1}{3} \operatorname{car} \frac{1}{u_{n+1}^2} \frac{1}{u_n^2} = \frac{1}{u_n^2} \left(\frac{1}{1 \frac{u_n^2}{u_n^2} + o(u_n)} 1\right) = \frac{1}{u_n^2} \left(1 + \frac{u_n^2}{3} 1 + o(u_n^2)\right) \approx \frac{1}{u_n^2} \operatorname{avec} \frac{1}{u_n^2} + o(u_n)$

le développement limité $\frac{1}{1-u}=1+u+o(u)$. Par le théorème de CESARO, $\lim_{n\to+\infty}\frac{1}{n}\sum_{k=0}^{n-1}\left(\frac{1}{u_{k+1}^2}-\frac{1}{u_k^2}\right)=\frac{1}{3}$ donc $\lim_{n\to+\infty}\frac{1}{n}\left(\frac{1}{u_n^2}-\frac{1}{u_0^2}\right)=\lim_{n\to+\infty}\frac{1}{nu_n^2}=\frac{1}{3}$ après télescopage d'où $u_n^2\sim\frac{3}{n}$ et $u_n=\sqrt{u_n^2}\sim\sqrt{\frac{3}{n}}$. Bien sûr, ceci rend plus facile les questions précédentes car on a alors $u_n^3=O\left(\frac{1}{n^{3/2}}\right)$ et $u_n^2\sim\frac{3}{n}$.