TD 03: ALGÈBRE LINÉAIRE

PSI 1 2025-2026

vendredi 19 septembre 2025

3.1) *CCP PSI 2013* Anaïs Espéron

Montrer que la famille $(f_1, \dots, f_n, g_1, \dots, g_n)$ est libre avec $f_k : t \mapsto cos(kt)$ et $g_k : t \mapsto sin(kt)$.

(3.2) <u>E3A PSI 2014</u> Soufiane Eddamani

Soit E un espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$.

Montrer que : $u^2 = 0 \iff$ (il existe deux projecteurs p et q de même image tels que u = p - q).

3.3 OdlT 2015/2016 Mines PSI planche 124I

Soit p et q deux projecteurs d'un espace E. Montrer que $\operatorname{Ker} p = \operatorname{Ker} q$ si et seulement si $p = p \circ q$ et $q = q \circ p$.

3.4 OdlT 2016/2017 Mines PSI planche 105II abordable dès la première année Calculer $\sum_{k=0}^{n} {n \choose k} k^3$.

(3.5) ENS Cachan PSI 2017 Tom Huix II

a. Soit un entier $n \ge 1$ et a_0, \cdots, a_{n-1} des réels positifs.

Montrer que le polynôme $P = X^n - a_{n-1}X^{n-1} - \cdots - a_0$ admet au plus une racine sur \mathbb{R}_+^* .

b. Soit a_0, \dots, a_{n-1} des complexes et $a_0 \neq 0$. Soit ρ l'unique racine de $P = X^n - |a_{n-1}|X^{n-1} - \dots - |a_0|$ sur \mathbb{R}_+^* . Montrer que si α est une racine complexe de $Q = X^n - a_{n-1}X^{n-1} - \dots - a_0$, alors $|\alpha| \leq \rho$.

(3.6) Mines PSI 2017 Tom Huix I

 $\textbf{a.} \ \text{Montrer qu'il existe un unique polynôme} \ P_n \ \text{de degr\'e} \ n \ \text{et unitaire tel que} \ P_n \left(X + \frac{1}{X} \right) = X^n + \frac{1}{X^n}.$

b. Développer la fraction rationnelle $F_n = \frac{1}{P_n}$ en éléments simples.

(3.7) Mines PSI 2018 Antoine Secher I

Soit E un espace vectoriel de dimension 3n, $f \in \mathcal{L}(E)$ de rang 2n tel que $f^3 = 0$.

a. Montrer que $\operatorname{Im}(f)$ est stable par f. En déduire que $\dim(\operatorname{Ker}(f^2)) \leq 2\dim(\operatorname{Ker}(f))$.

b. Montrer que rang $(f^2) = n$.

 $\textbf{c.} \text{ Montrer qu'il existe une base } \mathfrak{B} \text{ de } \mathtt{E} \text{ telle que Mat }_{\mathfrak{B}}(\mathtt{f}) = \begin{pmatrix} \mathfrak{0}_{\mathfrak{n}} & \mathfrak{0}_{\mathfrak{n}} & \mathfrak{0}_{\mathfrak{n}} \\ \mathfrak{I}_{\mathfrak{n}} & \mathfrak{0}_{\mathfrak{n}} & \mathfrak{0}_{\mathfrak{n}} \\ \mathfrak{0}_{\mathfrak{n}} & \mathfrak{I}_{\mathfrak{n}} & \mathfrak{0}_{\mathfrak{n}} \end{pmatrix}.$

[3.8] Petites Mines PSI 2019 Augustin Aumont II

Soit E l'ensemble des fonctions dérivables de \mathbb{R} dans \mathbb{R} et $F = \{f \in E \mid f(0) = f'(0) = 0\}$.

a. Montrer que F est un sous-espace vectoriel de E.

b. Trouver un supplémentaire "naturel" de F qu'on notera G.

c. Donner l'expression analytique de la projection sur G parallèlement à F.

(3.9) X PSI 2022 Olivier Courmont I

Soit $n \in \mathbb{N}^*$ et $(A,B) \in \mathcal{M}_{2n}(\mathbb{C})^2$ tel que $A^2 = B^2 = 0$ et $\mathrm{rang}(A) \geqslant n$ et $\mathrm{rang}(B) \geqslant n$.

Montrer que A et B sont semblables.

- - a. Montrer qu'il existe un unique $r_n\in]0;1[$ tel que $P_n'(r_n)=0.$
 - **b.** Trouver une expression sous forme de somme de $\frac{P'_n(x)}{P_n(x)}$ si $x \in \mathbb{R} \setminus [0, n]$.
 - c. Déterminer la limite de la suite $(r_n)_{n \in \mathbb{N}^*}$.
 - \mathbf{d} . Trouver un équivalent de r_n .
 - e. Comment établir que $H_n = \sum_{k=1}^n \frac{1}{k} = \ln(n) + \gamma + o(1)$?
- 3.11 <u>Centrale Maths1 PSI 2017 et 2022</u> Clément Maurel et Naïs Baubry

Soit $n \in \mathbb{N}^*$, $Q \in \mathbb{R}_n[X]$ et $\mathfrak{u} : \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ défini par $\mathfrak{u}(P) = P'$.

- a. Trouver une base de $\mathbb{R}_n[X]$ dans laquelle la matrice de u ne contient que des 0 et des 1.
- **b.** Montrer qu'il existe un unique polynôme $P \in \mathbb{R}_n[X]$ tel que P P' = Q.
- c. Montrer que si Q ne prend que des valeurs positives sur \mathbb{R} , alors l'unique polynôme P de la question précédente a la même propriété.
- **d.** Montrer que si P est scindé à racines simples dans $\mathbb{R}[X]$ alors Q l'est également.
- (3.12) Mines PSI 2021 et 2022 Yuan Le Guennic I et Louis Bardinet II

Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ et $n \in \mathbb{N}^*$, on se donne des fonctions f_1, \dots, f_n de E.

Pour une famille $x=(x_1,\cdots,x_n)\in\mathbb{R}^n$, on définit la matrice $A_x=\left(f_i(x_j)\right)_{1\leq i,j\leq n}\in \mathfrak{M}_n(\mathbb{R}).$

- a. Montrer que si $det(A_x) \neq 0$, alors la famille (f_1, \dots, f_n) est libre dans E.
- **b.** Réciproquement, montrer par récurrence que si la famille (f_1, \dots, f_n) est libre dans E, alors il existe une famille de réels $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ telle que $det(A_x) \neq 0$.
- (3.13) <u>Mines PSI 2019 et 2022</u> Louis Destarac et Anna Decrock II

Soit E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$.

 $\mathrm{Pour}\; n \in \, \mathbb{N}, \, \mathrm{on}\; \mathrm{pose}\; K_n = Ker(f^n) \; \mathrm{et}\; I_n = \mathrm{Im}\, (f^n). \; \mathrm{On}\; \mathrm{pose}\; \mathrm{aussi}\; K = \bigcup_{n=0}^{+\infty} K_n \; \mathrm{et}\; I = \bigcap_{n=0}^{+\infty} I_n.$

- a. Montrer que I et K sont des sous-espaces vectoriels de E.
- **b.** Montrer l'existence d'un entier $N \leq \dim(E)$ tel que $\forall k \geq 0$, $K_{k+N} = K_N$. Que vaut K?
- **c.** Montrer que $E = I \oplus K$, que K et I sont stables par f.
- **d.** Montrer que f_I est un automorphisme de I et que f_K est nilpotent.
- (3.14) <u>Mines PSI 2022</u> Thibault Le Gal I

Soit E espace de dimension finie, $f \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$ tels que P(f) = 0, P(0) = 0 et $P'(0) \neq 0$.

- a. Montrer que si E est de dimension finie, Kerf et Imf sont supplémentaires.
- **b.** Qu'en est-il en dimension quelconque?
- [3.15] <u>Centrale Maths1 PSI 2024</u> Armand Coiffe

Soit E l'ensemble des fonctions lipschitziennes de $\mathbb R$ dans $\mathbb R$. On pose $F=\{f\in E\mid f(0)=0\}.$

- **a.** Montrer que E est un sous-espace vectoriel de l'espace $C^0(\mathbb{R},\mathbb{R})$ des fonctions continues de \mathbb{R} dans \mathbb{R} .
- b. Montrer que F est un sous-espace vectoriel de E et trouver un supplémentaire G de F dans E.

Soit $t \in]0;1[$ et $\varphi_t : f \mapsto g$ telle que $\forall x \in \mathbb{R}, \ g(x) = f(x) - f(tx).$

- $\boldsymbol{c}_{\boldsymbol{\cdot}}$ Montrer que ϕ_{t} est un endomorphisme injectif de F.
- d. Soit $(f,g) \in F^2$ tel que $g = \phi_t(f)$. Montrer que $f(x) = \sum_{k=0}^{+\infty} g(t^k x)$. Conclure.
- e. Déterminer toutes les fonctions $f \in F$ telle que $\forall x \in \mathbb{R}, \ f(x) 2f(tx) + f(t^2x) = x$.