TD 05 : ALGÈBRE LINÉAIRE

PSI 1 2025-2026

vendredi 03 octobre 2025

(5.1) <u>Centrale Maths1 PSI 2016</u> Thomas Corbères

Soit φ une forme linéaire sur $\mathfrak{M}_{\mathfrak{n}}(\mathbb{R})$.

- a. Déterminer la dimension de $Ker(\varphi)$.
- **b.** Montrer qu'il existe une unique matrice $N \in \mathcal{M}_n(\mathbb{R})$ telle que $\forall M \in \mathcal{M}_n(\mathbb{R}), \ \phi(M) = \text{Tr } (N^T M)$.
- c. Montrer que si A et B sont semblables, alors Tr(A) = Tr(B).
- **d.** Supposons que $\forall A \in \mathfrak{M}_n(\mathbb{R}), \ \forall P \in GL_n(\mathbb{R}), \ \phi(PAP^{-1}) = \phi(A).$ Montrer que $\exists \lambda \in \mathbb{R}, \ \phi = \lambda Tr$.

Indication : on admet que si $M \in \mathcal{M}_n(\mathbb{R})$ commute avec toutes les matrices de $GL_n(\mathbb{R})$, alors $M = \lambda I_n$.

f. Montrer le résultat qu'on vient d'admettre.

(5.2) Mines PSI 2016 Sam Pérochon I

Soit E, E' deux K-espaces vectoriels et F, F' deux sous-espaces de E et E' respectivement.

On pose $A = \{ u \in \mathcal{L}(E, E') \mid F \subset Ker(u) \text{ et } Im(u) \subset F' \}.$

- a. Montrer que A est un espace vectoriel.
- b. Montrer que A est de dimension finie si E et E' le sont. Quelle est alors la dimension de A?

5.3 Mines PSI 2017 Corentin Gatellier I

Soit $n \in \mathbb{N}^*$ et des réels x_1, \dots, x_n distincts deux à deux et $y_1 < \dots < y_n$.

Montrer que $A=(e^{x_iy_j})_{1\leqslant i,j\leqslant n}\in \mathfrak{M}_n(\mathbb{R})$ est inversible.

(5.4) Mines PSI 2017 Claire Raulin II

Soit deux entiers p et q dans \mathbb{N}^* et deux matrices $A \in \mathcal{M}_{q,p}(\mathbb{R})$ et $B \in \mathcal{M}_{p,q}(\mathbb{R})$.

Montrer que $det(I_q - AB) = det(I_p - BA)$.

(5.5) Centrale Maths 1 PSI 2018 Martin Monsel

Soit $n \in \mathbb{N}^*$, soit P une partie de $GL_n(\mathbb{C})$ de cardinal m et stable par produit.

- a. Soit $A \in P$, montrer que $\sum_{B \in P} AB = \sum_{B \in P} B$.
- **b.** Montrer que $\sum_{B \in P} Tr(B)$ est un multiple de m.
- c. Montrer que si $\sum_{B \in P} Tr(B) = 0$ alors $\sum_{B \in P} B = 0$.

(5.6) Mines PSI 2022 Colin Herviou-Laborde II

Soit un entier $n \geqslant 2$ et $A \in \mathfrak{M}_n(\mathbb{R})$.

- a. Montrer que si toute matrice $B=(b_{i,j})_{1\leqslant i,j\leqslant n}$ semblable à A vérifie $b_{2,1}=0$, alors pour tout vecteur colonne $X\in \mathcal{M}_{n,1}(\mathbb{R})$, la famille (AX,X) est liée. En déduire ce que vaut A.
- $\textbf{b.} \text{ Que dire de } A \text{ si toute matrice } B = (\mathfrak{b}_{i,j})_{1\leqslant i,j\leqslant n} \in \mathfrak{M}_n(\mathbb{R}) \text{ semblable à } A \text{ est telle que } \mathfrak{b}_{1,1} = 0 ?$

[5.7] Mines PSI 2022 Baptiste Savarit II

Soit $n \in \mathbb{N}^*$, $A \in \mathfrak{M}_n(\mathbb{R})$ et $\varphi : \mathfrak{M}_n(\mathbb{R}) \to \mathfrak{M}_n(\mathbb{R})$ défini par $\varphi(M) = AMA$.

Calculer $det(\phi)$. Indication : on pourra s'intéresser à $f: M \mapsto MA$ et $g: M \mapsto AM$.

5.8 X PSI 2024 Guilhem Thébault I

Soit $n \in \mathbb{N}^*$, I un ensemble non vide et une famille $\mathcal{F} = (A_i)_{i \in I} \in (\mathfrak{M}_n(\mathbb{C}))^I$ telle que $\forall i \in I$, $A_i^2 = I_n$ et $\forall (i,j) \in I^2$, $A_iA_j = A_jA_i$. Montrer que \mathcal{F} est une famille finie et donner une majoration de son cardinal.

(5.9) Centrale Maths1 PSI 2024 Adrien Saugnac

Soit $E = \mathbb{K}[X]$, $u : P \in E \to P(X+1)$ et $v = u - \operatorname{id}_E$.

- a. Montrer que ν est un endomorphisme de E et que $\forall P \in E, \ \forall n \in \mathbb{N}, \ \nu^n(P) = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} P(X+k).$
- **b.** Montrer que $\forall p \in \mathbb{N}, \ \forall n \geqslant p+1, \ \sum\limits_{k=0}^n (-1)^{n-k} \binom{n}{k} k^p = 0.$
- c. Que vaut $\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^n$ pour $n \in \mathbb{N}$?
- **d.** Déterminer Ker(v). Est-ce que v est injective ?
- e. Est-ce que ν est surjective ?

(5.10) Mines-Télécom PSI 2024 Mathéo Demongeot-Marais II

Soit E un espace de dimension $\mathfrak n$ et $\mathfrak p$ un projecteur de E. On pose $\mathfrak F=\{f\in\mathcal L(E)\mid f\circ \mathfrak p=-\mathfrak p\circ f\}.$

- a. Montrer que \mathcal{F} est un espace vectoriel.
- **b.** Soit $f \in \mathcal{F}$, montrer que $\operatorname{Im}(p)$ et Ker(p) sont stables par f.
- **c.** Soit $f \in \mathcal{F}$, montrer que l'application induite par f sur Im (p) est l'application nulle.
- d. Déterminer la dimension de F.

[5.11] OdlT 2013/2014 Centrale PSI planche 117I

Montrer que si p est un projecteur d'un espace E de dimension finie alors rang (p) = Tr(p).

Soit $P = \sum_{i=1}^{r} p_i$ où les p_i sont des projecteurs de E.

Montrer que P est un projecteur de E si et seulement si $\forall (i,j) \in [1;n]^2, i \neq j \Longrightarrow p_i \circ p_j = 0.$

(5.12) OdlT 2015/2016 Mines PSI planche 127I

Pour $P \in \mathbb{C}[X]$ de degré n et de coefficients a_k , montrer que $\forall k \in [0; n], |a_k| \leqslant \sup_{|z|=1} |P(z)|$.

(5.13) OdlT 2015/2016 Mines PSI planche 128II

Soient $P \in \mathbb{R}[X]$ de degré n et a_0, \dots, a_n des réels deux à deux distincts ; montrer que $(P(X + a_i))_{0 \le i \le n}$ est une base de $\mathbb{R}_n[X]$.

(5.14) Compléments OdlT 2018/2019 ENTPE PSI planche 427I

Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M^2 = M^4$.

- a. Calculer $(I_n + M)(M^2 M^3)$ et en déduire que si $I_n + M$ est inversible, alors $M^2 = M^3$.
- **b.** Effectuer la division euclidienne de $-X^3+X^2$ par X+1 puis montrer qu'il existe deux polynômes réels U et V "simples" tels que $(-X^3+X^2)U+(X+1)V=1$.
- c. Montrer que si $M^2 = M^3$, $I_n + M$ est inversible et trouver son inverse sous la forme d'un polynôme en M.