DEVOIR 04 : ALGÈBRE LINÉAIRE

PSI 1 2025-2026

mardi 23 septembre 2025

 \mathbf{QCM}

1 Trigonométrie des rotations et symétries : soit $x \in \mathbb{R}$

$$\begin{array}{ll} \boxed{\textbf{1.1}} & x \not\equiv 0 \left[\frac{\pi}{2}\right] \Longrightarrow \tan \left(\frac{\pi}{2} + x\right) = \frac{1}{\tan x} & \boxed{\textbf{1.3}} & \cos \left(\frac{\pi}{2} - x\right) = \sin x \\ \boxed{\textbf{1.2}} & \sin (\pi + x) = \cos \left(\frac{\pi}{2} + x\right) & \boxed{\textbf{1.4}} & \cos (\pi + x) = \cos x \end{array}$$

$$\boxed{1.3} \cos(\frac{\pi}{2} - x) = \sin x$$

$$\boxed{1.2} \sin(\pi + x) = \cos(\frac{\pi}{2} + x)$$

$$\boxed{1.4} \cos(\pi + x) = \cos x$$

2 Existence et unicité d'endomorphisme : soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3

2.1
$$\exists f \in \mathcal{L}(\mathbb{R}^3), f(e_1) = e_2, f(e_3) = -2e_3$$

$$\boxed{\textbf{2.1}} \ \exists f \in \mathcal{L}(\mathbb{R}^3), \ f(e_1) = e_2, \ f(e_3) = -2e_3 \ \boxed{\textbf{2.3}} \ \exists f \in \mathcal{L}(\mathbb{R}^3), \ f(e_1) = e_2, \ f(e_2) = e_3 - e_2, \ f(e_1 + e_2) = 2e_3 + e_3$$

2.2
$$\exists ! f \in \mathcal{L}(\mathbb{R}^3), \ f(e_1) = e_2, \ f(e_3) = -2e_3$$

$$\boxed{ \textbf{2.2} } \ \exists ! f \in \mathcal{L}(\,\mathbb{R}^3), \ f(e_1) = e_2, \ f(e_3) = -2e_3 \ \boxed{ \textbf{2.4} } \ \exists ! f \in GL(\,\mathbb{R}^3), \ f(e_1) = e_2, \ f(e_2) = e_3, \ f(e_3) = e_1$$

3 Rang: soit E et F deux K-espaces vectoriels de dimensions respectives n et p et $f \in \mathcal{L}(E,F)$

$$\boxed{\textbf{3.1}} \quad \text{(f injective)} \iff \text{(f isomorphisme)}$$

$$\boxed{\textbf{3.3}} \quad \big(f \text{ surjective}\big) \Longleftrightarrow \big(rg(f) = p\big)$$

$$\boxed{\mathbf{3.2}}$$
 $\mathfrak{n} > \mathfrak{p} \Longrightarrow (f \text{ non surjective})$

$$\boxed{\mathbf{3.4}}$$
 (f injective) $\Longrightarrow \mathfrak{p} > \mathfrak{n}$

4 Rang: soit E un espace de dimension finie et $(u, v) \in \mathcal{L}(E)^2$

$$\boxed{\textbf{4.1}} \quad rg(u+v) \leqslant Max(rg(u),rg(v))$$

$$\boxed{\textbf{4.3}} \quad rg(\nu \circ u) \leqslant rg(u) \text{ et } rg(\nu \circ u) = rg(u) \Longleftrightarrow \nu \in GL(E)$$

$$\boxed{\textbf{4.2}} \ \text{rg}(\textbf{u} + \textbf{v}) \leqslant \text{rg}(\textbf{u}) + \text{rg}(\textbf{v})$$

$$\boxed{\textbf{4.4}} \hspace{0.2cm} rg(\nu \circ \mathfrak{u}) \leqslant rg(\nu) \hspace{0.1cm} \mathrm{et} \hspace{0.1cm} rg(\nu \circ \mathfrak{u}) = rg(\nu) \Longleftarrow \mathfrak{u} \in GL(E)$$

Énoncé | Soit E un K-espace de dimension finie. Caractériser (on veut une condition nécessaire et suffisante) les hyperplans de E avec les formes linéaires sur E. Dans cette caractérisation, y-a-t-il unicité (préciser)?

Preuve | Soit E, F, G trois K-espaces vectoriels de dimensions finies et $f: E \to F$ linéaire et $g: F \to G$ linéaire.

- **a.** Montrer que $rg(g \circ f) \leq rg(g)$.
- **b.** Montrer que $rg(g \circ f) \leq rg(f)$.

$$\boxed{ \textbf{Exercice 1}} \quad \text{Soit } A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

- a. Calculer A^2 et A^3 . Trouver des réels α et β tels que $A^3 = \alpha A + \beta A^2$.
- **b.** Montrer que $\forall n \ge 1$, $A^n = \frac{2^n + 2(-1)^n}{6}A^2 + \frac{2^n 4(-1)^n}{6}A$.

Exercice 2 Soit $M \in \mathcal{M}_2(\mathbb{R})$ telle que $M^2 + I_2 = 0$ et u l'endomorphisme de \mathbb{R}^2 canoniquement associé à

M. Soit $x \in \mathbb{R}^2$ non nul, montrer que (x, u(x)) est libre. En déduire que M est semblable à $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

DEVOIR 04	NOM:	PRÉNOM :	
DEVOIR 04	NOM:	PRENOM:	

QCM Répondre dans le tableau ci-dessous au QCM : mettre une croix dans la case de la ligne i colonne j revient à déclarer la question i.j vraie. Ne rien mettre revient à la déclarer fausse.

i · j	1	2	3	4	Fautes
1					
2					
3					
4					

Énoncé

Preuve

Exercice 1

Exercice 2

i · j	1	2	3	4	Fautes
1		X	X		
2	Х			Х	
3			Х		
4		Х		Х	

1.1 Faux : c'est tan $\left(\frac{\pi}{2} + x\right) = -\frac{1}{\tan x}$ 1.2 Vrai : $\sin(\pi + x) = -\sin(x) = \cos(\frac{\pi}{2} + x)$ 1.3 Vrai : faire un

dessin 1.4 Faux : $cos(\pi + x) = -cos x$.

2.1 Vrai : il suffit de prendre l'unique $f \in \mathcal{L}(\mathbb{R}^3)$ qui vérifie ces conditions et en plus $f(e_2) = e_1$ **2.2** Faux : l'image de $f(e_2)$ peut être quelconque 2.3 Faux : si f existait, pas linéarité, on aurait la relation $f(e_1+e_2)=f(e_1)+f(e_2)=e_2+(e_3-e_2)=e_3\neq 2e_3 \ \ \textbf{2.4 Vrai}: \ \mathrm{car}\ (e_1,e_2,e_3) \ \mathrm{et}\ (e_2,e_3,e_1) \ \mathrm{bases}\ \mathrm{de}\ \mathbb{R}^3.$

3.1 Faux : si $n \neq p$ on ne peut rien dire **3.2** Faux : $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x,y,z) = (x,y) est surjective

3.3 Vrai : f surjective donc Im(f) = F et rg(f) = p **3.4** Faux : on peut avoir n = p si f est bijective.

4.1 Faux : si p projecteur de rang 2 dans \mathbb{R}^3 , q = id - p est de rang 1 et p + q est de rang 3 **4.2** Vrai : $\operatorname{car} \operatorname{Im}(\mathfrak{u}+\mathfrak{v}) \subset \operatorname{Im}(\mathfrak{u}) + \operatorname{Im}(\mathfrak{v}) \text{ et } \dim(\mathsf{F}+\mathsf{G}) \leqslant \dim(\mathsf{F}) + \dim(\mathsf{G}) \text{ avec Grassmann } \mathbf{4.3} \text{ Faux} : l'inégalité$ est vraie mais pas l'équivalence : u = v = p projecteur différent de idf 4.4 Vrai : l'inégalité est vraie car $\operatorname{Im}(v \circ u) \subset \operatorname{Im}(v)$ et composer par des isomorphismes (ici auto.) ne modifie pas le rang.

Énoncé Soit E un \mathbb{K} -espace de dimension finie et H un sous-espace de E :

(H est un hyperplan de E) \iff $(\exists \varphi \in E^* = \mathcal{L}(E, \mathbb{K}) \text{ non nulle }, H = Ker(\varphi)).$

Si H est un hyperplan et φ , ψ deux formes linéaires sur E telles que $H = \text{Ker}(\varphi) = \text{Ker}(\psi)$, alors φ et ψ sont proportionnelles ($\exists \alpha \neq 0, \ \phi = \alpha \psi$) mais pas forcément égales (si $\alpha \neq 1$). Il n'y a donc pas unicité.

Preuve | a. Soit $z \in \text{Im}(q \circ f)$, il existe $x \in E$ tel que $z = q \circ f(x) = q(f(x))$ donc $z \in \text{Im}(q)$ car $y = f(x) \in F$. Ainsi, $Im(g \circ f) \subset Im(g)$ d'où, en passant aux dimensions, $dim(Im(g \circ f)) = rg(g \circ f) \leq rg(g) = dim(Im(g))$. **b.** Soit $x \in \text{Ker}(f)$, $f(x) = 0_F$ donc, par linéarité de g, $g \circ f(x) = g(0_F) = 0_G$ d'où $x \in \text{Ker}(g \circ f)$. Ainsi,

Exercise 1 a. On trouve $A^2 = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ et $A^3 = \begin{pmatrix} 5 & 3 & 3 \\ 3 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$ de sorte que $A^3 = A^2 + 2A$.

a. Initialisation: pour $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 2^n + 2(-1)^n \\ 6 & 1 &$

 $\underline{\text{H\acute{e}r\acute{e}dit\acute{e}}} : \text{si } n \geqslant 2 \text{ et } A^{n-1} = \frac{2^{n-1} + 2(-1)^{n-1}}{6} A^2 + \frac{2^{n-1} - 4(-1)^{n-1}}{6} A = \frac{2^n - 2(-1)^n}{12} A^2 + \frac{2^n + 8(-1)^n}{12} A.$

Alors, $A^n = A^{n-1} \times A = \frac{2^n - 4(-1)^n}{12} A^3 + \frac{2^n + 8(-1)^n}{12} A^2 = \frac{2^n - 4(-1)^n}{12} (A^2 + 2A) + \frac{2^n + 8(-1)^n}{12} A^2$.

Comme $\frac{2^n - 4(-1)^n}{12} + \frac{2^n + 8(-1)^n}{12} = \frac{2^n + 2(-1)^n}{6}$, on a bien $A^n = \frac{2^n + 2(-1)^n}{6}A^2 + \frac{2^n - 4(-1)^n}{6}A$.

Par principe de récurrence, la formule de l'énoncé est valable pour tout entier $n \in \mathbb{N}^*$.

On aurait pu dire que le polynôme $P = X^3 - X^2 - 2X = X(X+1)(X-2)$ est annulateur de A et effectuer la division euclidienne de Xⁿ par P pour trouver plus naturellement ces puissances de A.

Exercice 2 $u^2 = -id_E \operatorname{car} M^2 = -I_2 \operatorname{avec} E = \mathbb{R}^2$. Soit $x \neq 0_E$, si (x, u(x)) était liée, on aurait $u(x) = \lambda x$

avec $\lambda \in \mathbb{R}$ (car $x \neq 0_E$). Ainsi, $u^2(x) = \lambda^2 x = -x$ donc $\lambda^2 = -1$: absurde. Ainsi, (x, u(x)) est libre. Prenons donc $e_1 \neq 0_E$, puis $e_2 = \mathfrak{u}(e_1)$. Ce qui précède montre que $\mathfrak{B} = (e_1, e_2)$ est libre donc que \mathfrak{B} est une

base de \mathbb{R}^2 de dimension 2. De plus, $\operatorname{Mat}_{\mathcal{B}}(\mathfrak{u}) = A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \operatorname{car} \mathfrak{u}(e_2) = \mathfrak{u}^2(e_1) = -e_1$. Et en notant P

la matrice de passage de la base canonique de \mathbb{R}^2 à cette base \mathcal{B} , $M = PAP^{-1}$ donc M et A sont semblables.