TD 04 : ALGÈBRE LINÉAIRE

PSI 1 2025-2026

vendredi 26 septembre 2025

 $\overbrace{\mathbf{4.1}}$ Soit f l'endomorphisme de \mathbb{C}^3 canoniquement associé à A. Comme $A^3=0$, on a aussi $f^3=0$. En l'écrivant $f^2\circ f=f\circ f^2=0 \text{ on a donc classiquement } \mathrm{Im}\,(f)\subset Ker(f^2) \text{ et } \mathrm{Im}\,(f^2)\subset Ker(f).$

On va faire une disjonction des cas selon l'indice de nilpotence de f :

• $\sin f^2 \neq 0$, c'est-à-dire si l'indice de nilpotence de f vaut 3, il existe un vecteur $x \in \mathbb{R}^3$ tel que $f^2(x) \neq 0$. Classiquement, $\mathcal{B} = (f^2(x), f(x), x)$ est une base de \mathbb{R}^3 . En effet, si (R): $af^2(x) + bf(x) + cx = 0$, on applique f^2 à (R) et il reste $cf^2(x) = 0$ (car $f^3 = 0$) donc c = 0 car $f^2(x) \neq 0$; on applique ensuite f à (R) et $bf^2(x) = 0 \Longrightarrow b = 0$ et il reste $af^2(x) = 0$ donc a = 0. La famille \mathcal{B} est donc libre et comme elle comporte $3 = \dim(\mathbb{R}^3)$ vecteurs, c'est une base de \mathbb{R}^3 . Par construction, la matrice de f dans \mathcal{B} est bien $N_1=\begin{pmatrix}0&1&0\\0&0&1\\0&0&0\end{pmatrix}$ car $f^3(x)=0$ et A est donc semblable à $N_1=E_{1,2}+E_{2,3}$ si $f^2\neq 0$ car

 $A = PN_1P^{-1}$ en notant P la matrice de passage de la base canonique de \mathbb{R}^3 à B.

• $\underline{\text{si } f^2 = 0}$, c'est-à-dire si l'indice de nilpotence de f vaut 2, on a $\text{Im}(f) \subset \text{Ker}(f)$ donc, par la formule $\mathrm{du}\ \mathrm{rang},\ \mathrm{rang}\,(f)\leqslant \dim(\mathsf{Ker}(f))=3-\mathrm{rang}\,(f)\ \mathrm{donc}\ \mathrm{rang}\,(f)=1\ \mathrm{et}\ \dim(\mathsf{Ker}(f))=2.\ \mathrm{Soit}\ u_3\ \mathrm{un}$ vecteur non nul de $E \setminus Ker(f)$, on pose alors $u_2 = f(u_3) \in Im(f)$ de sorte que $u_2 \neq 0$ car $u_3 \notin Ker(f)$. La famille (u_2) est une famille libre dans Ker(f) qu'on peut donc compléter par en une base (u_1, u_2) de Ker(f). Comme $u_3 \notin Vect(u_1, u_2) = Ker(f)$, la famille libre à trois vecteurs $\mathcal{B} = (u_1, u_2, u_3)$ est une base de \mathbb{C}^3 . Par construction, Mat $_{\mathcal{B}}(f)=N_2=\begin{pmatrix}0&0&0\\0&0&1\\0&0&0\end{pmatrix}$ et A est semblable à $N_2=E_{2,3}$ car

 $A=PN_2P^{-1}$ en notant P la matrice de passage de la base canonique de \mathbb{R}^3 à $\mathcal{B}.$

Ainsi, toute matrice $A \in \mathcal{M}_3(\mathbb{C})$ vérifiant $A \neq 0$ et $A^3 = 0$ est semblable à N_1 ou N_2 .

4.2 Notons E l'espace vectoriel tel que $f \in \mathcal{L}(E)$ et posons $n = \dim(E)$. Par la formule du rang, $\dim(\ker(f)) = n - 1$ puisque rang (f) = 1 par hypothèse.

Méthode 1 (la plus rapide) : soit (e_1, \dots, e_{n-1}) une base de Ker(f). Cette famille est libre dans E, on peut donc la compléter (avec le théorème de la base incomplète) en une base $\mathcal{B}=(e_1,\cdots,e_{n-1},e_n)$ de E. Par

$$\text{construction, comme } \forall k \in [\![1;n-1]\!], \ f(e_k) = 0_E, \ \text{on a } A = \operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & \cdots & 0 & \alpha_1 \\ \vdots & & \vdots & \vdots \\ \vdots & & \vdots & \alpha_{n-1} \\ 0 & \cdots & 0 & \alpha_n \end{pmatrix}. \ \text{Comme}$$

Tr (f) = Tr (A) = 1, on a $\alpha_n = 1$ et en effectuant le calcul, on constate que $A^2 = A$ donc que $f^2 = f$.

Méthode 2: on traite deux cas (les deux seuls cas) selon le rapport entre Im (f) et Ker(f):

Si $E = \text{Ker}(f) \oplus \text{Im}(f)$: soit une base (e_1) de Im(f) et une base (e_2, \dots, e_n) de Ker(f), comme Im(f)et Ker(f) sont supplémentaires dans $E,\, \mathcal{B}=(e_1,e_2,\cdots,e_n)$ est une base de E. Comme $f(e_1)\in \mathrm{Im}\,(f),$ $\exists \lambda \in \, \mathbb{K}, \,\, f(e_1) = \lambda e_1. \ \, \text{De plus}, \,\, \forall k \in \, [\![2; \pi]\!], \,\, f(e_k) = 0_E. \ \, \text{Ainsi}, \,\, A = \operatorname{Mat}_{\,\mathcal{B}}(f) = \lambda E_{1,1}. \,\, \text{Comme}$ $Tr\ (f)=Tr\ (A)=1,\, {\rm on}\ a\ \lambda=1\ {\rm et}\ A^2=A\ {\rm donc}\ f^2=f.$

Si Im $(f) \subset \text{Ker}(f)$: on peut prendre (e_1) de Im (f), qu'on complète en une base (e_1, \dots, e_{n-1}) de Ker(f),

qu'on complète à nouveau en une base $(e_1, \dots, e_{n-1}, e_n)$ de E. Par construction, $A = \operatorname{Mat}_{\mathcal{B}}(f) = \lambda E_{1,n}$ $\operatorname{car} \ \forall k \in [\![1; n-1]\!], \ f(e_k) = 0_E \ \operatorname{et} \ \exists l \in \mathbb{K}, \ f(e_n) = \lambda e_1 \ \operatorname{car} \ \operatorname{Im} (f) = \operatorname{Vect}(e_1). \ \operatorname{Si} \ n \geqslant 2, \ \operatorname{on \ aurait \ donc} = 0_n \ \operatorname{et} \ \exists l \in \mathbb{K}, \ f(e_n) = \lambda e_1 \ \operatorname{car} \ \operatorname{Im} (f) = 0_n \ \operatorname{et} \ n \geqslant 2, \ \operatorname{on \ aurait \ donc} = 0_n \ \operatorname{et} \ \operatorname{et} \ \operatorname{et} = 0_n \ \operatorname{et} \ \operatorname{et} = 0_n \ \operatorname{$ Tr(f) = Tr(A) = 0 et c'est impossible. Si n = 1, $Tr(A) = Tr(f) = 1 = \lambda \text{ donc } A^2 = A \text{ d'où } f^2 = f$.

Quelle que soit la méthode, la seule possibilité quand rang (f) = Tr(f) = 1 est $f^2 = f(f)$ est un projecteur).

4.3 a. Pour $n \ge 3$, en développant par rapport à la première ligne puis le second déterminant obtenu par rapport à la première colonne (puisque $n \ge 3$, la plus petite matrice est bien une "vraie" matrice car $n - 2 \ge 1$), on obtient classiquement $P_n(x) = xP_{n-1}(x) - P_{n-2}(x)$ (R). Pour simplifier les calculs à suivre, comme $P_1(x) = x$ et $P_2(x) = x^2 - 1$, la relation de récurrence (R) marche pour n = 2 si on convient $P_0(x) = 1$.

b. Pour $x \in]-2; 2[$, on pose $\alpha = \arccos\left(\frac{\alpha}{2}\right) \in]0; \pi[$ et on a bien $x = 2\cos(\alpha)$.

 $\underline{\mathrm{Initialisation}}: \ \mathrm{on} \ \mathrm{a} \ \mathrm{bien} \ P_0(x) = 1 = \frac{\sin((0+1)x)}{\sin(x)} \ \mathrm{et} \ P_1(x) = x = 2\cos(\alpha) = \frac{\sin((1+1)\alpha)}{\sin(\alpha)}.$

 $\frac{\text{H\'er\'edit\'e}}{\text{elors P}_n(x)}: \text{ si on suppose, pour un entier } n\geqslant 2, \text{ que l'on a } P_{n-2}(x) = \frac{\sin((n-1)\alpha)}{\sin(\alpha)} \text{ et } P_{n-1}(x) = \frac{\sin(n\alpha)}{\sin(\alpha)}$ alors $P_n(x) = xP_{n-1}(x) - P_{n-2}(x) = 2\cos(\alpha)\frac{\sin(n\alpha)}{\sin(\alpha)} - \frac{\sin((n-1)\alpha)}{\sin(\alpha)} = \frac{2\cos(\alpha)\sin(n\alpha) - \sin((n-1)\alpha)}{\sin(\alpha)}$ donc $P_n(x) = \frac{\sin((n+1)\alpha) + \sin((n-1)\alpha - \sin((n-1)\alpha)}{\sin(\alpha)} = \frac{\sin((n+1)\alpha)}{\sin(\alpha)}$.

On conclut par principe de récurrence double que $\forall n \in \mathbb{N}, \ P_n(x) = \frac{\sin((n+1)\alpha)}{\sin(\alpha)}$. On pouvait aussi

commencer la récurrence aux rangs 1 et 2 (sans convenir que $P_0(x) = 1$) mais il fallait alors montrer, par des formules de trigonométrie, que $\sin(3\alpha) = \sin(\alpha)(4\cos^2(\alpha) - 1)$ pour initialiser.

c. Comme $\sin((n+1)\alpha) = 0 \iff (n+1)\alpha \equiv 0 \ [\pi]$, on est conduit à considérer $\alpha_k = \frac{k\pi}{n+1}$ pour $k \in [1;n]$ avec $x_k = 2\cos(\alpha_k)$. Alors comme $0 < \alpha_1 < \cdots < \alpha_n < \pi$ et que la fonction cos est injective sur $[0; \pi]$, les x_1, \dots, x_n sont deux à deux distincts et on a $P_n(x_k) = 0$. De plus, on montre par une récurrence simple ou en constatant que P_n est le polynôme caractéristique de la matrice $A_n \in \mathfrak{M}_n(\mathbb{R})$ que P_n est un polynôme unitaire de degré n dont on connaît n racines distinctes. Ainsi, $\forall n \geqslant 1$, $P_n = \prod_{k=1}^n \Big(X - 2\cos(\alpha_k) \Big)$.

Comme $P_n = \chi_{A_n}$ est scindé à racines simples, la matrice A_n est diagonalisable.

- **4.4**) a. Comme $f^3 id_E = (f^2 + f + id_E) \circ (f id_E) = 0$, on a Im $(f id_E) \subset Ker(f^2 + f + id_E)$ d'après le cours. **b.** Soit $x \in \text{Im}(f - \text{id}_E) \cap \text{Ker}(f - \text{id}_E)$, il vient $x \in \text{Ker}(f^2 + f + \text{id}_E) \cap \text{Ker}(f - \text{id}_E)$ d'après **a.**. Ainsi, f(x) = x et $f^2(x) + f(x) + x = 0$ or $f^2(x) = f(x) = x$ donc $3x = 0_E$ et $x = 0_E$. On en déduit que $\operatorname{Im}(f - \operatorname{id}_E)$ et $\operatorname{Ker}(f - \operatorname{id}_E)$ sont en somme directe mais comme, par la formule du rang, on a $n = dim(Im(f - id_F)) + dim(Ker(f - id_F))$, on en déduit que $E = \operatorname{Im}(f - \operatorname{id}_E) \oplus \operatorname{Ker}(f - \operatorname{id}_E)$.
 - c. À nouveau (même en dimension infinie) $\operatorname{Im}(f-\operatorname{id}_E)\subset\operatorname{Ker}(f^2+f+\operatorname{id}_E)$ donc, avec la même méthode que précédemment, $\operatorname{Im}(f - \operatorname{id}_{E}) \cap \operatorname{Ker}(f - \operatorname{id}_{E}) = \{0_{E}\}.$

Soit $x \in E$ quelconque, on raisonne par analyse / synthèse :

- Si x = a + b avec $a \in \text{Ker}(f \text{id}_E)$ et $b \in \text{Im}(f \text{id}_E)$, alors f(a) = a et $f^2(b) + f(b) + b = 0_E$. Donc x = a + b, $f(x) = a + f(b) \text{ et } f^2(x) = a + f^2(b). \text{ On somme}: \ a = \frac{1}{3} \Big(f^2(x) + f(x) + x \Big) \text{ et } b = x - a = \frac{1}{3} \Big(2x - f(x) - f^2(x) \Big).$
- Réciproquement, si $a = \frac{1}{3} (f^2(x) + f(x) + x)$ et $b = \frac{1}{3} (2x f(x) f^2(x))$, f(a) = a (simple calcul car $f^3 = id_E$)

 $\mathrm{donc}\ \alpha\in Ker(f-\mathrm{id}_E)\ \mathrm{et}\ \mathrm{comme}\ 2-X-X^2=(X-1)(-2-X):\ b=(f-\mathrm{id}_E)\Big(-\frac{2}{3}x-\frac{1}{3}f(x)\Big)\in \mathrm{Im}\,(f-\mathrm{id}_E).$ Comme on a clairement $x=\alpha+b$, on conclut que $E=\mathrm{Im}\,(f-\mathrm{id}_E))+Ker(f-\mathrm{id}_E).$

Par conséquent, $E = \operatorname{Im}(f - \operatorname{id}_E) \oplus \operatorname{Ker}(f - \operatorname{id}_E)$ est encore vrai en dimension quelconque si $f^3 = \operatorname{id}_E$.

- **d.** Premièrement, on a vu à la question **b.** que $Ker(f^2+f+id_E)\cap Ker(f-id_E)=\{0_E\}$. De plus, comme $Im(f-id_E)\subset Ker(f^2+f+id_E)$ et $Im(f-id_E)+Ker(f-id_E)=E$, on a aussi $E\subset Ker(f^2+f+id_E)+Ker(f-id_E)$ donc $E=Ker(f^2+f+id_E)\oplus Ker(f-id_E)$. Comme f et f^2+f+id_E commutent car ce sont tous les deux des polynômes en f, on sait qu'alors $F=Ker(f^2+f+id_E)$ est stable par f donc u induit par f sur $Ker(f^2+f+id_E)$ est bien défini. Par construction, on a $u^2+u+id_F=0$ car $\forall x\in F$, $(u^2+u+id_F)(x)=f^2(x)+f(x)+x=0_E$. Ainsi, $u^2+u+id_F=(u+\frac{id_F}{2})^2+\frac{3id_F}{4}=0$ donc $(u+\frac{id_F}{2})^2=-\frac{3id_F}{4}$ et $det((u+\frac{id_F}{2})^2)=(-\frac{3}{4})^r$ où r=dim(F). Comme $det((u+\frac{id_F}{2})^2)=det(u+\frac{id_F}{2})^2\geqslant 0$, $r=dim(F)=rang(f-id_E)$ est pair.
- Par le binôme de Newton, il vient $M = \left(\sum_{k=0}^n \binom{n}{k} a_i^k b_j^{n-k}\right)_{0 \leqslant i,j \leqslant n} \in \mathcal{M}_{n+1}(\mathbb{R})$ et on reconnaît un produit matriciel M = AB avec $A = \left(a_i^k\right)_{0 \leqslant i,k \leqslant n} \in \mathcal{M}_{n+1}(\mathbb{R})$ et $B = \left(\binom{n}{k} b_j^{n-k}\right)_{0 \leqslant k,j \leqslant n} \in \mathcal{M}_{n+1}(\mathbb{R})$. La matrice A est une matrice de Vandermonde et on a donc $\det(A) = \prod_{0 \leqslant i < j \leqslant n} (a_j a_i)$ d'après le cours. Par multilinéarité par rapport aux lignes de B, on a $\det(B) = \left(\prod_{k=0}^n \binom{n}{k}\right) \det(C)$ où $C = \left(b_j^{n-k}\right)_{0 \leqslant k,j \leqslant n}$. Or la matrice C est quasiment une matrice de Vandermonde, il suffit de mettre les lignes dans le bon ordre : cela se fait en intervertissant les lignes L_1 et L_{n+1} , L_2 et L_n , etc... Il faut donc $\left\lfloor \frac{n+1}{2} \right\rfloor$ interversions de lignes pour transformer C en une vraie matrice de Vandermonde : $\det(B) = (-1)^{\left\lfloor \frac{n+1}{2} \right\rfloor} \left(\prod_{k=0}^n \binom{n}{k}\right) \prod_{0 \leqslant i < j \leqslant n} (b_j b_i)$. Par propriété du déterminant, $\det(M) = \det(A)\det(B) = (-1)^{\left\lfloor \frac{n+1}{2} \right\rfloor} \left(\prod_{k=0}^n \binom{n}{k}\right) \prod_{0 \leqslant i < j \leqslant n} (b_j b_i)(a_j a_i)$.
- (4.6) (\iff) S'il existe deux automorphismes de E tels que $u \circ v = -v \circ u$, en prenant le déterminant, on a $\det(u \circ v) = \det(u)\det(v) = (-1)^n \det(v)\det(u) = \det(-v \circ u)$ car la dimension de E vaut $\mathfrak n$. Ainsi, $(-1)^n = 1$ car $\det(u) \neq 0$ et $\det(v) \neq 0$ puisque $\mathfrak u$ et $\mathfrak v$ sont des automorphismes ce qui impose que $\mathfrak n$ est pair. (\implies) Si $\mathfrak n = 2\mathfrak p$ est pair, on se souvient des isométries du plan (2 est le plus petit entier pair) et on "constate" que la rotation d'angle $\frac{\pi}{2}$ de matrice $A' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ dans la base canonique de $\mathbb R^2$ et la symétrie orthogonale (réflexion) d'axe (Ox) de matrice $B' = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ anti-commutent : $A'B' = -B'A' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Par analogie, on choisit une base $\mathfrak B$ quelconque de E de dimension $\mathfrak n = 2\mathfrak p$ et on définit $\mathfrak u$ (resp. $\mathfrak v$) l'endomorphisme de E dont la matrice dans $\mathfrak B$ vaut $A = \operatorname{Mat}_{\mathfrak B}(\mathfrak u) = \begin{pmatrix} 0 & -I_{\mathfrak p} \\ I_{\mathfrak p} & 0 \end{pmatrix}$ (resp. $B = \operatorname{Mat}_{\mathfrak B}(\mathfrak v) = \begin{pmatrix} I_{\mathfrak p} & 0 \\ 0 & -I_{\mathfrak p} \end{pmatrix}$). On vérifie avec des produits par blocs que A et B sont inversibles avec $B^{-1} = B$ et $A^{-1} = \begin{pmatrix} 0 & I_{\mathfrak p} \\ -I_{\mathfrak p} & 0 \end{pmatrix} = -A$ et que

avec des produits par blocs que A et B sont inversibles avec B $\cdot = B$ et A $\cdot = \begin{pmatrix} -I_p & 0 \end{pmatrix}$ $AB = -BA = \begin{pmatrix} 0 & I_p \\ I_p & 0 \end{pmatrix}.$ Ainsi u et ν sont bien des automorphismes de E et $u \circ \nu = -\nu \circ u$.

- $\begin{array}{l} \textbf{4.7} \; \text{Posons} \; S_0 = \sum\limits_{k=0}^{\lfloor n/3 \rfloor} \binom{n}{3k}, \; S_1 = \sum\limits_{k=0}^{\lfloor (n-1)/3 \rfloor} \binom{n}{3k+1} \; \text{et} \; S_2 = \sum\limits_{k=0}^{\lfloor n-2/3 \rfloor} \binom{n}{3k} \; ; \; \text{ce qui revient à partitionner les} \\ \text{termes} \; \binom{n}{k} \; \text{de la n-ième ligne du triangle de PASCAL selon la congruence modulo 3 de k.} \; \text{Alors, par le} \\ \text{binôme de Newton, on a} \; (1+1)^n = 2^n = \sum\limits_{k=0}^n \binom{n}{k} = S_0 + S_1 + S_2, \; (1+j)^n = \sum\limits_{k=0}^n \binom{n}{k} j^k = S_0 + jS_1 + j^2S_2 \\ \text{car } \; j^k = 1 \iff k \equiv 0[3], \; j^k = j \iff k \equiv 1[3] \; \text{et} \; j^k = j^2 \iff k \equiv 2[3]. \; \text{De plus, on a la relation} \\ (1+j^2)^n = \sum\limits_{k=0}^n \binom{n}{k} j^{2k} = S_0 + j^2S_1 + j^4S_2 = S_0 + j^2S_1 + jS_2 \; \text{car} \; j^4 = j. \; \text{Par conséquent, puisque} \; 1+j+j^2 = 0, \\ \text{il vient} \; S_0 = \frac{2^n + (1+j)^n + (1+j^2)^n}{3} = \frac{2^n + (-1)^n (j^n + j^{2n})}{3} = \frac{2^n + 2(-1)^n \cos\left(\frac{2\pi n}{3}\right)}{3}. \end{array}$
- **4.8 a.** Si (f_1, \dots, f_n) est libre, posons $F = Vect(f_1, \dots, f_n)$ qui est un sous-espace de E de dimension n car (f_1, \dots, f_n) est alors une base de F. Soit $\varphi : F \to \mathbb{R}^n$ définie par $\forall f \in F$, $\varphi(f) = \left(\int_0^1 f f_1, \dots, \int_0^1 f f_n\right)$. Alors $\varphi \in \mathcal{L}(F)$ par linéarité de l'intégrale. Si $f \in Ker(\varphi)$, comme $f \in F$, il existe $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ tel que l'on ait $f = \lambda_1 f_1 + \dots \lambda_n f_n$ et $\varphi(f) = 0$ donne $\forall k \in [1; n]$, $\int_0^1 f f_k = 0$. Alors, toujours par linéarité de l'intégrale, $\int_0^1 f^2 = \int_0^1 (\sum_{k=1}^n \lambda_k f_k) f = \sum_{k=1}^n \lambda_k \int_0^1 f f_k = 0$. Un résultat classique du cours, comme f^2 est continue et positive sur [0; 1] et que $\int_0^1 f^2 = 0$, montre que $f^2 = 0$ sur [0; 1] donc que f = 0.

Ainsi, $Ker(\phi) = \{0\}$ donc ϕ est injective. Mais comme $dim(F) = dim(\mathbb{R}^n)$, ϕ est un isomorphisme.

Soit $M = (\mathfrak{m}_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{R})$. Pour $(h_1, \dots, h_n) \in F^n$, la condition $\forall (i,j) \in [\![1;n]\!]^2$, $\mathfrak{m}_{i,j} = \int_0^1 h_i f_j$ se traduit par $\forall i \in [\![1;n]\!]$, $\varphi(h_i) = (\mathfrak{m}_{i,1}, \dots, \mathfrak{m}_{i,n})$. La bijectivité de φ montre que non seulement une telle famille $(h_1, \dots, h_n) \in F^n$ existe, mais aussi qu'elle est unique, il suffit de prendre $h_i = \varphi^{-1}(\mathfrak{m}_{i,1}, \dots, \mathfrak{m}_{i,n})$ pour tout $i \in [\![1;n]\!]$. Il existe donc une famille $(h_1, \dots, h_n) \in E^n$ (mais on n'a plus forcément l'unicité dans E qui est de dimension violemment infinie) telle que $\forall (i,j) \in [\![1;n]\!]^2$, $\mathfrak{m}_{i,j} = \int_0^1 h_i f_j$.

b. Méthode 1: en prenant $M = I_n$, il existe par hypothèse $(h_1, \dots, h_n) \in E^n$ telle que l'on ait les relations $\forall (i,j) \in [\![1;n]\!]^2$, $\delta_{i,j} = \int_0^1 h_i f_j$ (symbole de Kronecker). Soit $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ tel que $\sum_{j=1}^n \lambda_j f_j = 0$. Pour tout $i \in [\![1;n]\!]$, $\int_0^1 \left(\sum_{j=1}^n \lambda_j f_j\right) h_i = 0 = \sum_{j=1}^n \lambda_j \int_0^1 h_i f_j = \lambda_i$. Ainsi $\lambda_1 = \dots = \lambda_n = 0$ et (f_1, \dots, f_n) est libre. La réciproque de la question \mathbf{a}_i est donc vraie.

- (4.9) a. Soit $x \in E$, comme $O_x = \{u^k(x) \mid k \in \mathbb{N}\}$ (orbite de x) est fini, l'application $\varphi : \mathbb{N} \to O_x$ telle que $\varphi(\mathfrak{m}) = \mathfrak{u}^{\mathfrak{m}}(x)$ ne peut pas être injective car \mathbb{N} est infini et O_x est fini par hypothèse. Ainsi, il existe deux entiers naturels $\mathfrak{p} < \mathfrak{q}$ tels que $\mathfrak{u}^{\mathfrak{p}}(x) = \mathfrak{u}^{\mathfrak{q}}(x) = \mathfrak{u}^{\mathfrak{p}}(\mathfrak{u}^{\mathfrak{q}-\mathfrak{p}}(x))$. Or \mathfrak{u} est bijectif, donc $\mathfrak{u}^{\mathfrak{p}}$ aussi d'où $\mathfrak{u}^{\mathfrak{q}-\mathfrak{p}}(x) = x$. En posant $k = \mathfrak{q} \mathfrak{p} \in \mathbb{N}^*$, on a bien $\mathfrak{u}^k(x) = x$.
 - **b.** Soit $\mathcal{B}=(e_1,\cdots,e_n)$ une base de E. Pour $i\in[[1;n]]$, d'après \mathbf{a} , il existe $k_i\in\mathbb{N}^*$ tel que $\mathfrak{u}^{k_i}(e_i)=e_i$. Posons $N=\operatorname{ppcm}(k_1,\cdots,k_n)$, alors N est un multiple de k_i , donc $\mathfrak{u}^N(e_i)=\mathfrak{u}^{k_i}\circ\cdots\circ\mathfrak{u}^{k_i}(e_i)=\cdots=e_i$. Comme les endomorphismes \mathfrak{u}^N et id F coı̈ncident sur la base F0, ils sont égaux donc F1.
 - c. Le résultat de a. n'est plus vérifié si on ne suppose plus u bijectif. En effet, en prenant un projecteur p de E tel que $p \neq id_E$ (par exemple $p = 0_{\mathcal{L}(E)}$). Pour tout x de E, on a $O_x = \{p^k(x) \mid k \in \mathbb{N}\} = \{x\}$ si $x \in \text{Im}(p)$ et $O_x = \{p^k(x) \mid k \in \mathbb{N}\} = \{x, p(x)\}$ sinon mais dans les deux cas $\{p^k(x) \mid k \in \mathbb{N}\}$ est fini. Pourtant, si $x \neq 0_E \in \text{Ker}(p)$ (et il existe des vecteurs non nuls dans Ker(p) par hypothèse), on n'a aucun entier $k \geqslant 1$ tel que $p^k(x) = x$ car $\forall k \geqslant 1$, $p^k(x) = 0_E$. Si p était inversible, comme $p^2 = p$, on aurait $p^{-1} \circ p^2 = p^{-1} \circ p$ donc $p = \text{id}_E$: NON! Ainsi p n'est pas inversible.
 - Le résultat de **b.** n'est plus vérifié si on ne suppose plus $\mathfrak u$ bijectif. En effet, si $\mathfrak u \notin GL(E)$ et si on avait $\mathfrak u^N=\operatorname{id}_E$ avec $N\geqslant 1,\ \mathfrak u\circ\mathfrak u^{N-1}=\mathfrak u^{N-1}\circ\mathfrak u=\operatorname{id}_E$ donc $\mathfrak u^{-1}=\mathfrak u^{N-1}:\operatorname{NON}!$ Ainsi, $\forall N\in\mathbb N^*,\ \mathfrak u^N\neq\operatorname{id}_E.$
- **4.10 a.** Soit $\mathcal{B} = (\nu_1, \dots, \nu_n)$ une base de E. Comme $(\nu_k, f(\nu_k))$ est liée pour tout $k \in [1; n]$ par hypothèse, il existe des scalaires λ_k tels que $f(\nu_k) = \lambda_k \nu_k$ car $(\nu_k, f(\nu_k))$ est liée et $\nu_k \neq 0_E$. Comme $\nu = \nu_1 + \dots + \nu_n \neq 0_E$, il existe un scalaire λ tel que $f(\nu) = \lambda \nu$ ce qui équivaut à $\lambda_1 \nu_1 + \dots + \lambda_n \nu_n = \lambda(\nu_1 + \dots + \nu_n)$ donc, puisque (ν_1, \dots, ν_n) est libre, à $\lambda = \lambda_1 = \dots = \lambda_n$. Ainsi, f et l'homothétie de rapport λ coïncident sur une base et on peut conclure d'après le cours que $f = \lambda$ id E.
 - **b.** Montrons la contre-apposée de cette assertion : $(\forall x \in E, (x, f(x)) \text{ liée}) \Longrightarrow (f = 0 \text{ ou Tr } (f) \neq 0)$. Cela découle de la question précédente car si (x, f(x)) est liée pour tout vecteur x de E, alors f est une homothétie, disons $f = \lambda \text{id } E$. Alors on a deux cas, soit $\lambda = 0$ et f = 0, soit $\lambda \neq 0$ et f of f representation f in f contraction.
 - **c.** Si f est non nul et que Tr (f) = 0, on sait d'après la question **b.** qu'il existe au moins un vecteur x_1 de E tel que $(x_1, f(x_1))$ est libre (ce qui justifie que $x_1 \neq 0_E$). Posons $x_2 = f(x_1)$. Comme (x_1, x_2) est libre, on peut donc compléter la famille (x_1, x_2) en une base $\mathcal{B} = (x_1, x_2, x_3, \dots, x_n)$ de E. La matrice de f dans cette base \mathcal{B} est bien, par construction, de la forme Mat $\mathcal{B}(f) = \begin{pmatrix} 0 & L \\ C & A \end{pmatrix}$ avec $L \in \mathcal{M}_{1,n-1}(\mathbb{K})$ (matrice ligne), $C \in \mathcal{M}_{n-1,1}(\mathbb{K})$ (matrice colonne) et $A \in \mathcal{M}_{n-1}(\mathbb{K})$ (matrice carrée) et on a même ${}^tC = (1\ 0\ \cdots\ 0)$.
 - d. Effectuons une récurrence sur la taille de la matrice M.
 - Si n=1, il est évident que si $M\in \mathcal{M}_1(\mathbb{K})$ et si Tr(M)=0, alors M=0 donc M est semblable à une matrice dont la diagonale est nulle. On a même $\forall P\in GL_1(\mathbb{K}),\ M=POP^{-1}=0$.
 - Supposons le résultat établi pour des matrices de taille $n \ge 1$. Soit $M \in \mathcal{M}_{n+1}(\mathbb{K})$ telle que Tr(M) = 0. Si M = 0, la matrice M est elle-même à diagonale nulle et le tour est joué! Si $M \ne 0$, d'après \mathbf{c} , en posant \mathbf{f} l'endomorphisme canoniquement associé à M, il existe une base \mathcal{B} de E telle que M at $\mathcal{B}(\mathbf{f}) = \begin{pmatrix} 0 & L \\ C & A \end{pmatrix}$ avec $L \in \mathcal{M}_{1,n}(\mathbb{K})$ (matrice ligne), $C \in \mathcal{M}_{n,1}(\mathbb{K})$ (matrice colonne) et $A \in \mathcal{M}_{n}(\mathbb{K})$. Comme Tr(M) = 0 + Tr(A),

on a aussi Tr (A)=0. En posant Q la matrice de passage entre la base canonique et la base \mathfrak{B} , on a donc, par formule de changement de base, $M=Q\begin{pmatrix}0&L\\C&A\end{pmatrix}Q^{-1}$. Or, par hypothèse de récurrence, il existe une matrice $R\in GL_n(\mathbb{K})$ telle que $A=RNR^{-1}$ où $N\in \mathcal{M}_n(\mathbb{K})$ est une matrice à diagonale nulle. Posons $Q'=\begin{pmatrix}1&0\\0&R\end{pmatrix}$, alors Q' est inversible et $Q'^{-1}=\begin{pmatrix}1&0\\0&R^{-1}\end{pmatrix}$. En calculant par blocs, $Q'^{-1}\begin{pmatrix}0&L\\C&A\end{pmatrix}Q'=\begin{pmatrix}0&LR\\R^{-1}C&N\end{pmatrix}$ donc $M=QQ'UQ'^{-1}Q^{-1}$ avec $U=\begin{pmatrix}0&LR\\R^{-1}C&N\end{pmatrix}$ dont la diagonale est nulle. Comme QQ' est inversible comme produit de matrices inversibles et que $Q'^{-1}Q^{-1}=(QQ')^{-1}$, M est bien semblable à une matrice dont la diagonale est nulle.

Par principe de récurrence, on a bien montré que si $n \in \mathbb{N}^*$ et $M \in \mathfrak{M}_n(\mathbb{K})$ telle que Tr(M) = 0, alors M est semblable à une matrice dont la diagonale est nulle.

4.11 a. Rendons cet exercice plus général en constatant (par calculs) que $A^3 = 2A^2$. Prenons dans **a.** un endomorphisme d'un espace E tel que $f^3 = 2f^2$, c'est-à-dire tel que $X^3 - 2X^2 = X^2(X - 2)$ soit un polynôme annulateur de f. Soit $x \in E$.

 $\underline{\mathrm{Analyse}}: \mathrm{supposons} \ \mathrm{qu'il} \ \mathrm{existe} \ (y,z) \in \mathsf{Ker}(f^2) \times \mathsf{Ker}(f-2\mathrm{id}_E) \ \mathrm{tel} \ \mathrm{que} \ x = y+z. \ \mathrm{En} \ \mathrm{appliquant} \ f^2 \ \mathrm{\grave{a}} \ \mathrm{cetter} \ \mathrm{relation}, \ \mathrm{on} \ \mathrm{a} \ f^2(x) = f^2(y) + f^2(z) = 0_E + 2(2z) = 4z \ \mathrm{donc} \ y = x - \frac{f^2(x)}{4} \ \mathrm{et} \ z = \frac{f^2(x)}{4}.$

On vient de prouver par analyse/synthèse que $E=Ker(f^2)\oplus Ker(f-2\mathrm{id}_E).$

Avec la matrice A de l'énoncé, il était plus simple de calculer $A^2 = \begin{pmatrix} -2 & 6 & 2 \\ -2 & 6 & 2 \\ 0 & 0 & 0 \end{pmatrix}$, de constater que A^2 est de

rang 1 donc, par la formule du rang, que $\dim(Ker(f^2)) = 2$. Comme les vecteurs $w_1 = (1,0,1)$ et $w_2 = (3,1,0)$ sont clairement dans $Ker(f^2)$ car les colonnes C_1, C_2, C_3 de A^2 vérifient $C_1 + C_3 = 3C_1 + C_2 = 0$ et que w_1 et

 w_2 sont non colinéaires, on a $Ker(f^2) = Vect(w_1, w_2)$. De plus, $A - 2I_3 = \begin{pmatrix} -1 & 1 & -1 \\ -1 & 1 & 1 \\ 2 & -2 & -4 \end{pmatrix}$ et on voit que

la différence des deux premières colonnes de cette matrice est nulle donc rang $(f-2id_{\mathbb{R}^3})=2$ car les deux premières colonnes ne sont pas colinéaires. Toujours d'après la formule du rang, on a $\dim(\operatorname{Ker}(f-2id_{\mathbb{R}^3}))=1$ et $\operatorname{Ker}(f-2id_{\mathbb{R}^3})=\operatorname{Vect}(w_3)$ avec $w_3=(1,1,0)$. Comme la famille $\mathfrak{B}=(w_1,w_2,w_3)$ est une base de \mathbb{R}^3 car $P=\begin{pmatrix}1&3&1\\0&1&1\\1&0&0\end{pmatrix}$ est de déterminant $2\neq 0$, on en déduit que $\mathbb{R}^3=\operatorname{Ker}(f^2)\oplus\operatorname{Ker}(f-2id_{\mathbb{R}^3})$.

b. A est de rang 2 donc, par la formule du rang, $\dim(\text{Ker}(f)) = 1$ et il est visible que $\text{Ker}(f) = \text{Vect}(v_1)$ avec $v_1 = (1,0,1)$. Ainsi, on peut prendre $w_2 \in \text{Ker}(f^2) \setminus \text{Ker}(f)$ d'après la question **a.**.

c. On cherche d'après l'énoncé une base $\mathcal{B} = (\nu_1, \nu_2, \nu_3)$ de \mathbb{R}^3 telle que $f(\nu_1) = 0$, $f(\nu_2) = \nu_1$ et $f(\nu_3) = 2\nu_3$. Comme ceci implique $f^2(\nu_2) = f(f(\nu_2)) = f(\nu_1) = 0$ et que $f(\nu_2) = \nu_1 \neq 0$ car ν_1 est un vecteur de base, on est incité à prendre $\nu_2 = w_2 = (3, 1, 0)$. Forcément, $\nu_1 = f(\nu_2) = (4, 0, 4)$ et on prend $\nu_3 = w_3 = (1, 1, 0)$.

Comme avant, $\mathcal{B} = (\nu_1, \nu_2, \nu_3)$ est une base de \mathbb{R}^3 et on a par construction $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

4.12 Analyse: soit $A = (a_{i,j})_{1 \leq i,j \leq n}$ une matrice telle que S_A soit fini. Soit, pour $(u_1, \dots, u_n) \in (\mathbb{R}^*)^n$, la matrice inversible $P = \text{diag}(u_1, \dots, u_n)$, alors la matrice $M = PAP^{-1} = (m_{i,j})_{1 \leq i,j \leq n}$ est dans S_A et, par calcul, on a $m_{i,j} = \frac{u_i}{u_j} a_{i,j}$. S'il existe un couple $(i,j) \in [1;n]^2$ tel que $i \neq j$ et $a_{i,j} \neq 0$, alors en prenant $u_i = \lambda$ et $u_j = 1$, quelles que soient les valeurs des autres coefficients diagonaux de P, on a $m_{i,j} = \lambda a_{i,j}$ qui pourrait prendre n'importe quelle valeur réelle (à part 0) quand λ parcourt \mathbb{R}^* . Puisque S_A est fini, on en déduit que $\forall i \neq j$, $a_{i,j} = 0$, donc A est diagonale.

Soit, pour $\lambda \in \mathbb{R}$ et $(i,j) \in [1;n]^2$ tel que $i \neq j$, la matrice de transvection $P = T_{i,j}(\lambda) = I_n + \lambda E_{i,j}$, alors P est inversible et $P^{-1} = T_{i,j}(-\lambda) = I_n - \lambda E_{i,j}$. En posant $M = PAP^{-1} = (m_{i,j})_{1 \leq i,j \leq n}$, on a $m_{i,i} = a_{i,i} + \lambda(a_{j,j} - a_{i,i})$. Si on avait $a_{i,i} \neq a_{j,j}$, alors $m_{i,i}$ pourrait prendre toutes les valeurs réelles quand $\lambda \in \mathbb{R}$, ce qui contredit le fait que S_A est fini. Ainsi, $\forall i \neq j$, $a_{i,i} = a_{j,j}$ donc on a $A = a_{1,1}I_n$.

Synthèse : réciproquement, soit $A = \lambda I_n$ pour un réel λ , alors pour toute matrice inversible $P \in GL_n(\mathbb{R})$, on a $P^{-1}AP = \lambda P^{-1}I_nP = \lambda I_n = A$ donc $S_A = \{A\}$ est bien fini.

Par analyse-synthèse, les seules matrices $A \in \mathcal{M}_n(\mathbb{R})$ telles que S_A est fini sont les matrices d'homothéties de la forme $A = \lambda I_n$ avec $\lambda \in \mathbb{R}$ (on les appelle aussi matrices scalaires).

4.13 a. Comme $\mathfrak{u}^{n-1} \neq 0$, par définition, il existe un vecteur $x \in E$ tel que $\mathfrak{u}^{n-1}(x) \neq 0_E$. Posons alors $\mathfrak{B} = (x, \mathfrak{u}(x), \cdots, \mathfrak{u}^{n-1}(x))$, cette famille de vecteurs de E comporte \mathfrak{n} vecteurs et $\dim(E) = \mathfrak{n}$. Il suffit donc de montrer que \mathfrak{B} est libre pour établir que \mathfrak{B} est une base de E.

Soit $(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{K}^n$ tel que $\sum_{k=0}^{n-1} \lambda_k u^k(x) = 0_E$ (1). Par l'absurde, supposons $(\lambda_0, \dots, \lambda_{n-1}) \neq (0, \dots, 0)$ et posons alors $m = \text{Min}(\{k \in [\![0; n-1]\!] \mid \lambda_k \neq 0\})$. La relation (1) devient donc $\sum_{k=m}^{n-1} \lambda_k u^k(x) = 0_E$ ce qui, en composant par u^{n-m-1} , devient $\sum_{k=m}^{n-1} \lambda_k u^{n-m-1+k}(x) = 0_E$. Or, dès que $k \geqslant m+1$, on a $n-m-1+k \geqslant n$ donc $u^{n-m-1+k} = u^n \circ u^{k-m-1} = 0$ et la relation se résume à $\lambda_m u^{n-1}(x) = 0_E$, ce qui est impossible car $\lambda_m \neq 0$ et $u^{n-1}(x) \neq 0_E$ par définition. On a donc montré que $(\lambda_0, \dots, \lambda_{n-1}) = (0, \dots, 0)$ ce qui prouve que \mathbb{B} est libre donc que \mathbb{B} est une base de \mathbb{E} .

b. Méthode 1: pour tout $k \in [0;n]$, $\operatorname{Im}(u^k) = \operatorname{Vect}(u^k(x), \cdots, u^k(u^{n-1}(x))) = \operatorname{Vect}(u^k(x), \cdots, u^{n-1}(x))$ car $u^k(u^{n-k}(x)) = \cdots = u^k(u^{n-1}(x)) = 0_E$ et que $\mathcal{B} = (x, u(x), \cdots, u^{n-1}(x))$ est une base de E. Comme $(u^k(x), \cdots, u^{n-1}(x))$ est une famille libre car c'est une sous-famille de \mathcal{B} , la famille $(u^k(x), \cdots, u^{n-1}(x))$ est à la fois libre et génératrice dans $\operatorname{Im}(u^k)$ donc $\operatorname{rang}(u^k) = \operatorname{dim}(\operatorname{Im}(u^k)) = n - k$. Par la formule du rang, $\operatorname{dim}(\operatorname{Ker}(u^k)) = k$. Mais comme on a vu que $u^{n-k}(x), \cdots, u^{n-1}(x)$ étaient dans $\operatorname{Ker}(u^k)$ et que cette famille $(u^{n-k}(x), \cdots, u^{n-1}(x))$ de k vecteurs est libre une nouvelle fois car c'est une sous-famille de \mathcal{B} , c'est une base de $\operatorname{Ker}(u^k)$. Par conséquent, $\operatorname{Ker}(u^k) = \operatorname{Vect}(u^{n-k}(x), \cdots, u^{n-1}(x))$ est de dimension k pour $k \in [0, n]$. Méthode k : si $k \in [0, n]$ et k :

 $\text{est libre donc } y \in \text{Ker}(\mathfrak{u}^k) \Longleftrightarrow \Longleftrightarrow (\lambda_0, \cdots, \lambda_{n-k-1}) = (0, \cdots, 0) \Longleftrightarrow y \in \text{Vect}(\mathfrak{u}^{n-k}(x), \cdots, \mathfrak{u}^{n-1}(x)) \text{ donc} \\ \text{Ker}(\mathfrak{u}^k) = \text{Vect}(\mathfrak{u}^{n-k}(x), \cdots, \mathfrak{u}^{n-1}(x)) \text{ est de dimension } k \text{ pour } k \in \llbracket 0; n \rrbracket.$

- c. Comme u^k et u commutent pour tout $k \in [0, n]$, on sait d'après le cours que $Ker(u^k)$ est stable par u. Réciproquement, soit F un sous-espace de E stable par u. Notons $k = dim(F) \in [0, n]$. Traitons deux cas :
 - si k = 0, alors $F = {0_E} = Ker(u^0) = Ker(id_E)$.
 - si $k \in [1;n]$, on peut considérer l'endomorphisme u_F induit par u sur F. Comme u est nilpotent, u_F l'est aussi car $\forall x \in F$, $u_F^n(x) = u^n(x) = 0_E$. Posons p son indice de nilpotence, c'est-à-dire l'unique entier p tel que $u_F^p = 0$ et $u_F^{p-1} \neq 0$. Comme en a, il existe un vecteur $x \in F$ tel que $(x, \cdots, u^{p-1}(x))$ est libre. Ainsi, $dim(F) = k \geqslant p$ et on a donc $u_F^k = u_F^p \circ u_F^{k-p} = 0$ ce qui prouve que $\forall x \in F$, $u_F^k(x) = u^k(x) = 0_E$ donc $F \subset Ker(u^k)$. Par inclusion et égalité des dimensions, $F = Ker(u^k)$.

Les sous-espaces de E stables par u sont les n+1 sous-espaces $Ker(u^k)=\mathrm{Im}\,(u^{n-k})$ pour $k\in[\![0;n]\!]$.

4.14 a. Par le binôme de NEWTON, $\forall j \in [0, n], (X+1)^j = \sum_{i=0}^{j} {j \choose i} X^i$. Ainsi, A_n est la matrice dans la base canonique $\mathfrak{B}_n=(1,\cdots,X^n)$ de $\mathbb{R}_n[X]$ de l'endomorphisme $f_n:\mathbb{R}_n[X]\to\mathbb{R}_n[X]$ défini par $f_n(P)=P(X+1)$ $(\text{clairement lin\'eaire et allant de } \mathbb{R}_n[X] \text{ dans } \mathbb{R}_n[X]). \text{ Si on d\'efinit } \mathfrak{g}_n: \mathbb{R}_n[X] \to \mathbb{R}_n[X] \text{ par } \mathfrak{g}_n(P) = P(X-1),$ alors $f_n \circ g_n = g_n \circ f_n = \operatorname{id}_{\mathbb{R}_n[X]}$ donc f_n est un automorphisme de $\mathbb{R}_n[X]$ et $g_n = f_n^{-1}$. Par conséquent, $A_n^{-1} = \operatorname{Mat}_{\, \mathfrak{B}_n}(g_n) \, \operatorname{et, \, comme} \, \forall j \in [\![0;n]\!], \, \, (X-1)^j = \sum_{i=0}^j (-1)^{j-i} \binom{j}{i} X^i, \, A_n^{-1} = B_n = \left((-1)^{j-i} \binom{j}{i} \right)_{0 \leqslant i,j \leqslant n}$ **b.** Pour $n \in \mathbb{N}$, on note S_n l'ensemble de toutes les permutations de [1;n]. On sait que card $(S_n) = n!$. On partitionne (ou plutôt on partage) S_n selon le nombre de points fixes des permutations. Notons donc $S_{n,i}$ l'ensemble des permutations de S_n qui ont exactement i points fixes. Alors $S_n = \bigsqcup S_{n,i}$ (réunion disjointe) avec $S_{n,n-1}=\emptyset$ car si une permutation de S_n a au moins n-1 points fixes, c'est forcément l'identité donc elle a en fait n points fixes. On a donc card $(S_n) = n! = \sum_{i=0}^n \operatorname{card}(S_{n,i})$. Pour dénombrer $S_{n,i}$, on choisit les i points fixes parmi les éléments de [1;n] ce qui fait $\binom{n}{i}$ choix ; ensuite on choisit une permutation des n-iéléments restants sans point fixe, elles sont au nombre de d_{n-i} par définition (le nombre de dérangements, c'est le nom des permutations de $S_{n,0}$, ne dépend que du nombre d'éléments de l'ensemble qu'on "dérange"). On obtient donc card $(S_{n,i}) = \binom{n}{i} d_{n-i}$. Par conséquent, on a $n! = \sum_{i=0}^{n} \binom{n}{i} d_{n-i}$ et le changement d'indice $k=n-i \text{ donne bien le résultat attendu, à savoir } n!=\sum_{k=0}^n \binom{n}{k} d_k \, \operatorname{car} \, \binom{n}{n-k} = \binom{n}{k}.$ **c.** Les relations trouvées à la question précédente s'écrivent $A_n^T(d_0\ d_1\ \cdots\ d_n)^T=(0!\ 1!\ \cdots\ (n-1)!\ n!)^T.$ **d.** Comme A_n est inversible et $(A_n^T)^{-1} = (A_n^{-1})^T = B_n^T$, on a $(d_0 \ d_1 \ \cdots \ d_n)^T = B_n^T (0! \ 1! \ \cdots \ (n-1)! \ n!)^T$. On en déduit donc, en regardant la dernière ligne de ce produit, que $d_n = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} j! = n! \sum_{j=0}^n \frac{(-1)^{n-j}}{(n-j)!}$ et le changement d'indice k = n - j permet d'écrire $d_n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$.

Comme la loi sur S_n est la loi uniforme par hypothèse ("au hasard"), on a $p_n = \frac{\operatorname{card}(S_{n,0})}{\operatorname{card}(S_n)} = \frac{d_n}{n!}$ donc $p_n = \sum_{k=0}^n \frac{(-1)^k}{k!}$. Avec le développement en série entière de exp, $\lim_{n \to +\infty} p_n = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!} = e^{-1} \sim 0,36$.