TD 08 : PROBABILITÉS

PSI 1 2025-2026

vendredi 07 novembre 2025

- $\text{Pour } (n,p) \in (\mathbb{N}^*)^2, \text{ calculer le nombre de n-uplets de la forme } (\alpha_1,\cdots,\ \alpha_n) \in \mathbb{Z}^n \text{ avec } \max_{1 \leq i \leq n} |\alpha_i| = p.$
- 8.2 $\underline{\text{Lemme de Borel-Cantelli et loi du z\'ero-un de Borel}} \quad \text{Soit } (\Omega, \mathcal{A}, \, \mathbb{P}) \text{ un espace probabilis\'e et } (A_n)_{n \in \, \mathbb{N}}$ Lemme de Borel-Cantelli et 101 un 2010 un cui un c

 - **a.** Montrer que $B \in \mathcal{A}$. Dire en mots ce que vérifient les $\omega \in B$. **b.** On suppose que $\sum_{n\geqslant 0} \mathbb{P}(A_n)$ converge. Montrer que $\mathbb{P}(B)=0$.
 - $\textbf{c.} \ \text{Soit} \ (A_{\mathfrak{n}})_{\mathfrak{n} \in \mathbb{N}} \ \text{une famille d'évènements mutuellement indépendants, montrer que pour } \mathfrak{n} \in \mathbb{N} \ \text{et} \ \mathfrak{m} \geqslant \mathfrak{n},$ on a $\mathbb{P}\Big(\bigcap_{k=n}^m \overline{A_k}\Big) \leqslant exp\Big(-\sum_{k=n}^m \mathbb{P}(A_k)\Big)$. Montrer que l'on a l'alternative suivante : $\mathbb{P}(B) = 0$ ou $\mathbb{P}(B) = 1$.
- 8.3 Centrale Maths1 PSI 2018 Alexandre Morisse

Soit une infinité de personnages $(A_n)_{n\in\mathbb{N}}$. Ils jouent à pile ou face avec une pièce équilibrée, les lancers sont indépendants. Ao joue contre A1, celui qui gagne joue contre A2. Puis celui des deux qui gagne joue contre A_3 et ainsi de suite. Le jeu s'arrête lorsqu'un des joueurs A_n gagne trois parties d'affilée. On définit q_n la probabilité que le personnage A_n joue au moins une fois, p_n celle qu'il gagne le jeu.

- a. Calculer p_n en fonction de q_n . Calculer pour n = 0, 1, 2, 3 les valeurs de p_n et q_n .
- **b.** Exprimer q_n en fonction de n. En déduire la probabilité que le jeu s'arrête. Question en plus : "100% des élèves de classes préparatoires qui travaillent réussissent. 85% des élèves travaillent en classes préparatoires. 50% des élèves de classes préparatoire qui ne travaillent pas réussissent. Quelle est la probabilité qu'un élève ayant réussi ait travaillé?".
- **8.4** Centrale Maths 1 PSI 2019 Auriane Luquet Soit deux réels a et b tels que $0 < a \le b < 1$.

Pour une élection, il y a deux candidats A et B. On interroge des gens sur leurs intentions de vote. Chaque jour, une fraction a de ceux qui votent pour A et une fraction b de ceux qui votent pour B changent d'avis. Pour $n \in \mathbb{N}$, on note \mathfrak{p}_n (resp. \mathfrak{q}_n) la proportion des gens interrogés qui pensent voter pour A (resp. B) au n-ième jour. On note aussi $U_n = \begin{pmatrix} p_n \\ q_n \end{pmatrix}$.

- a. Déterminer U_n en fonction de U_0 , n, a et b.
- **b.** Étudier la convergence des suites $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$.
- ENS Cachan PSI 2022 Noé Chassagne II

Soit un entier $n \ge 2$ et $r \in [2; n]$. On note $E_{n,r}$ l'ensemble des parties de [1; n] ayant r éléments. On note $F_{n,r}$ l'ensemble des parties de [1; n+r-1] ayant r éléments et telles qu'aucun de ces éléments ne soient consécutifs ; c'est-à-dire que si on prend r entiers a_1, \cdots, a_r tels que $1 \leqslant a_1 \leqslant \cdots \leqslant a_r \leqslant n+r-1$, on a $\{a_1, \dots, a_r\} \in F_{n,r} \iff (\forall i \in [1; r-1], a_{i+1} - a_i > 1).$

a. Montrer que card $(E_{n,r}) = \operatorname{card}(F_{n,r})$.

On tire au hasard quatre numéros simultanément entre 1 et 49.

Chaque quadruplet a la même probabilité d'être tiré.

- b. Calculer la probabilité d'avoir au moins deux éléments consécutifs dans le tirage.
- c. Calculer la probabilité d'avoir exactement deux éléments consécutifs dans le tirage.

8.6 Mines PSI 2022 Thibault Le Gal III

Un homme a une probabilité $p \in]0;1[$ d'être dans un immeuble de sept étages. Il n'est pas dans les six premiers étages, quelle est la probabilité qu'il soit au septième étage?

Mines PSI 2022 Camille Pucheu I

Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'évènements indépendants. On pose l'évènement B= "aucun des A_n n'est réalisé".

- a. Montrer que $\mathbb{P}(B) \leqslant \exp\left(-\sum_{i=0}^{+\infty} \mathbb{P}(A_i)\right)$. b. Que déduire sur $\mathbb{P}(B)$ si on suppose que $\sum_{n\geqslant 0} \mathbb{P}(A_n)$ diverge.

On suppose construite sur \mathbb{N} une probabilité $\mathbb{P}: \mathcal{P}(\mathbb{N}) \to [0;1]$ telle que pour tout $k \in \mathbb{N}^*$, un entier a une probabilité $\frac{1}{k}$ d'être une multiple de k (c'est-à-dire $\mathbb{P}(A_k) = \frac{1}{k}$ si $A_k = k \mathbb{N}^*$). On note $\mathcal{P} = \{2,3,5,7,\cdots\}$

l'ensemble des nombres premiers. On admet qu'en notant $\mathfrak{p}_{\mathfrak{n}}$ le \mathfrak{n} -ième nombre premier, $\mathfrak{p}_{\mathfrak{n}} \underset{+\infty}{\sim} \mathfrak{n} \, \mathfrak{ln}(\mathfrak{n}).$

- **c.** Montrer que $\mathbb{P}(\{0\}) = 0$.
- $\mathbf{d.}$ Montrer que $(A_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{P}}$ est une suite d'évènements indépendants. Conclure.

Mines-Télécom PSI 2022 Naïs Baubry II

Soit un entier $n \ge 2$. Une urne contient n-1 boules numérotées de 1 à n-1. On dispose aussi de n boîtes B_1, \dots, B_n telles que la boîte B_i contient i jetons numérotés de 1 à i. On réalise l'expérience suivante :

- On tire une boule dans l'urne et on note i son numéro.
- On tire un jeton (numéro a) dans la boîte B_i et un jeton (numéro b) dans la boite B_{i+1} .
- On a "gagné" si a = b.
- a. Déterminer la probabilité p_2 de gagner si n = 2.
- $\begin{array}{l} \textbf{b.} \ \ \text{D\'eterminer la probabilit\'e} \ p_n \ \ \text{de gagner dans le cas g\'en\'eral.} \\ \textbf{c.} \ \ \text{Montrer que} \ \forall k \in \mathbb{N}^*, \ \frac{1}{k+1} \leqslant ln(k+1) ln(k) \leqslant \frac{l}{k}. \ \ \text{En d\'eduire un \'equivalent de } p_n. \end{array}$

8.9 Mines PSI 2024 Yasmine Azzaoui III

Sur 1000 électeurs, 700 votent pour A et 300 pour B.

Quelle est la probabilité pour que A soit toujours en tête (au sens strict) lors du dépouillement?

8.10 Mines PSI 2024 Jonathan Filocco II

Une urne contient au début une bille blanche et une bille rouge. On répète indéfiniment des tirages selon le mode suivant : on tire une bille, et on remet dans l'urne deux billes de la couleur obtenue.

- a. Quelle est la probabilité qu'on n'obtienne que des boules rouges lors des n premiers tirages ?
- b. Quelle est la probabilité qu'on obtienne indéfiniment seulement des boules rouges ?
- c. Quelle est la probabilité d'obtenir une boule blanche au 42-ième tirage ?
- d. Est-ce que le résultat du b. change si on remet 3 billes de la couleur obtenue ou lieu de 2?
- e. Est-ce que le résultat de b. change si on remet k billes de la couleur obtenue ou lieu de 2 au tirage k?

8.11] Mines PSI 2024 Adrien Saugnac I

Soit E un ensemble non vide et $p: E \to E$. On suppose que p est idempotente, c'est-à-dire que $p \circ p = p$.

- a. Montrer que si p est injective, on a $p = id_E$. Montrer que si p est surjective, on a $p = id_E$.
- b. Si card (E) = 2, trouver une application idempotente de E dans E qui ne soit pas id F.
- c. Trouver 3 applications idempotentes de E si card(E) = 2.
- **d.** Trouver 10 applications idempotentes de E si card(E) = 3.
- e. Prouver que si $p: E \to E$, on a p idempotente si et seulement si $(\forall x \in p(E), p(x) = x)$.
- **f.** Dénombrer les applications idempotentes de E dans E si card (E) = n.

8.12 Mines-Télécom PSI 2024 Eva Rojo II

On dispose d'un dé blanc non truqué et d'un dé noir pipé avec lequel la probabilité de faire 6 est 1/3. Le joueur 1 prend un dé au choix et le lance, le joueur 2 lance l'autre dé. Celui qui a fait strictement plus que l'autre a gagné, et si le score est égal, le dé blanc gagne. Quelle est la meilleure stratégie pour le joueur 1?