TD 07 : INTÉGRATION

PSI 1 2025-2026

vendredi 17 octobre 2025

 $\overline{(7.1)}$ E3A PSI 2015 Charlotte Sapaly Calcul de $I = \int_0^{\pi/2} \sqrt{\tan(x)} dx$. Indication: poser $\tan(x) = u^2$.

7.2 CP PSI 2017 Maxime Lacourcelle II Soit E l'espace des fonctions $f: \mathbb{R} \to \mathbb{R}$ continues et 2π -périodiques.

On pose
$$c(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t)dt$$
 et $g: t \mapsto f(t) - c(f)$ si $f \in E$.

- a. Étudier la convergence, pour $\alpha > 1$ et $f \in E$, de l'intégrale $\int_{1}^{+\infty} \frac{f(t)}{t^{\alpha}} dt$.
- b. Si $f \in E$, montrer que f a ses primitives 2π -périodiques si et seulement si c(f) = 0.
- **c.** Si $f \in E$, est-ce que $g \in E$? Calculer c(g).
- **d.** Montrer la convergence de $\int_{1}^{+\infty} \frac{g(t)}{t} dt$.
- e. Trouver, si $c(f) \neq 0$, un équivalent en $+\infty$ de $\int_1^x \frac{f(t)}{t} dt$.
- **f.** Déduire des questions précédentes la nature de $\int_1^{+\infty} \frac{|\sin t|}{t} dt$.

7.3 Mines PSI 2019 Tanguy Sommet II Soit $y \in \mathbb{C}^2(\mathbb{R}_+, \mathbb{R})$ telle que y^2 et y''^2 sont intégrables sur \mathbb{R}_+ .

- **a.** Trouver une primitive de $y^2 y'^2 + y''^2 (y + y' + y'')^2$. **b.** Montrer que $\int_0^{+\infty} yy''$ converge. En déduire que $\int_0^{+\infty} y'^2$ converge.
- c. Établir que $\int_0^{+\infty} yy'$ converge. En déduire que $\lim_{x\to +\infty} y(x)=0$.
- $\begin{aligned} \mathbf{d.} \ & \text{Montrer que} \ \lim_{x \to +\infty} y'(x) = 0. \\ \mathbf{e.} \ & \text{Montrer que} \ \int_0^{+\infty} y'^2 \leqslant \int_0^{+\infty} y^2 + \int_0^{+\infty} y''^2. \end{aligned}$
- **f.** Quelles sont les fonctions pour lesquelles $\int_0^{+\infty} y'^2 = \int_0^{+\infty} y^2 + \int_0^{+\infty} y''^2$.

Centrale Maths1 PSI 2021 Clotilde Cantini

On admet la convergence $\int_0^{+\infty} \frac{\sin(t)}{t} dt$, on note I sa valeur. On définit $f(x) = \int_0^{+\infty} \frac{t \sin(xt)}{1+t^2} dt$.

- **a.** Montrer que f est définie sur \mathbb{R} .
- **b.** Montrer que $\lim_{x \to \infty} f(x) = I$ et calculer la limite de f en $+\infty$.
- c. Montrer que $I=\sum\limits_{\nu=0}^{+\infty}(-1)^k\int_0^\pi\frac{\sin(u)}{u+k\pi}du$. En déduire que f n'est pas continue en 0.

 $(7.5) \underline{Mines \ PSI \ 2022} \ \ \text{Anatole Rousset I} \quad \text{Soit } \theta \in \mathbb{R} \setminus \pi \mathbb{Z}.$

- **a.** Montrer que $\sum_{k=1}^{n} \frac{e^{ik\theta}}{k} = \int_{0}^{1} e^{i\theta} \times \frac{1 e^{in\theta}t^{n}}{1 e^{i\theta}t} dt$.
- $\begin{aligned} \mathbf{b.} & \text{ En d\'eduire que la s\'erie } \sum_{k\geqslant 1} \frac{e^{\mathbf{i}k\theta}}{k} \text{ converge et montrer que } \sum_{k=1}^{+\infty} \frac{e^{\mathbf{i}k\theta}}{k} = \int_0^1 \frac{e^{\mathbf{i}\theta}}{1-e^{\mathbf{i}\theta}t} dt. \\ \mathbf{c.} & \text{ \'etablir } \int_0^1 \frac{\cos(\theta)-t+\mathbf{i}\sin(\theta)}{t^2-2t\cos(\theta)+1} dt = -\frac{1}{2}\ln\left(2-2\cos(\theta)\right) + \mathbf{i}\operatorname{Arctan}\left(\frac{1-\cos(\theta)}{\sin(\theta)}\right) + \mathbf{i}\operatorname{Arctan}\left(\frac{\cos(\theta)}{\sin(\theta)}\right). \end{aligned}$
- $\mathbf{d.} \text{ En d\'eduire que si } \theta \in]0; \pi[, \ \sum_{k=1}^{+\infty} \frac{\cos(k\theta)}{k} = -\ln\left(2\sin\left(\frac{\theta}{2}\right)\right) \text{ et } \sum_{k=1}^{+\infty} \frac{\sin(k\theta)}{k} = \frac{\pi}{2} \frac{\theta}{2}.$

7.6 Mines PSI 2022 Guillaume Tran-Ruesche II Soit $n \in \mathbb{N}$.

- a. Montrer l'existence et donner la valeur de $\int_{0}^{+\infty} e^{-(1-i)t} t^{n} dt$.
- **b.** Trouver la valeur de $\int_{0}^{+\infty} e^{-t^{1/4}} \sin(t^{1/4}) t^n dt$.

(7.7) <u>Centrale Maths1 PSI 2024</u> Jules Campistron

 $\mathrm{Soit}\ E = \{ f \in C^0(\mathbb{R}_+,\mathbb{R}) \mid \exists \alpha \in \mathbb{R}_+^*,\ x^\alpha f(x) \underset{x \to +\infty}{\longrightarrow} 0 \}. \ \mathrm{Pour}\ f \in E, \ \mathrm{on}\ \mathrm{definit}\ (E_f)\ :\ y' - y + f(x) = 0.$

- **a.** Montrer que E est un espace vectoriel. **b.** Montrer que la fonction $g: x \mapsto e^x \int_x^{+\infty} e^{-t} f(t) dt$ est l'unique solution de (E_f) appartenant à E.

(7.8) <u>Centrale Maths 1 PSI 2024</u> Mathis Laruelle Soit $f(x) = \int_0^{\pi/2} \sin^x(t) dt$ et $\Phi(x) = xf(x)f(x-1)$.

- a. Déterminer le domaine de définition de f.
- **b.** Montrer que $\forall x \in \mathbb{R}_+^*, \ \Phi(x+1) = \Phi(x)$.
- **c.** Montrer que $x \mapsto \frac{\Phi(x)}{x}$ est décroissante. En déduire que Φ est constante sur \mathbb{R}_+^* .
- **d.** En déduire un équivalent de f(x) en $+\infty$.

Centrale Maths1 PSI 2024 Arya Tabrizi

- **a.** Soit $z \in \mathbb{C}$, montrer que $t \mapsto e^{-zt}$ admet une limite finie en $+\infty$ si et seulement si $\operatorname{Re}(z) > 0$ ou z = 0.
- **b.** Soit $z \in \mathbb{C}$, montrer que $t \mapsto e^{-zt}$ est intégrable sur \mathbb{R}_+ si et seulement si $\operatorname{Re}(z) > 0$.
- **c.** Soit $z \in \mathbb{C}$, montrer que $\int_0^{+\infty} e^{-zt} dt$ converge si et seulement si $\operatorname{Re}(z) > 0$.

Soit $(z, z_0) \in \mathbb{C}^2$ tel que $\operatorname{Re}(z) > \operatorname{Re}(z_0)$, une fonction $f: \mathbb{R}_+ \to \mathbb{C}$ continue telle que $\int_0^{+\infty} e^{-z_0 t} f(t) dt$ converge. On définit $F: \mathbb{R}_+ \to \mathbb{C}$ par $F(x) = \int_0^x e^{-z_0 t} f(t) dt$.

- **d.** Montrer que F est de classe C^1 sur \mathbb{R}_+ et qu'elle y est bornée.
- e. Montrer que $t\mapsto e^{-(z-z_0)t}F(t)$ est intégrable sur $\mathbb{R}_+.$
- $\textbf{f.} \ \, \text{Montrer que} \, \int_0^{+\infty} e^{-zt} f(t) dt \, \, \text{converge et qu'on a} \, \int_0^{+\infty} e^{-zt} f(t) dt = (z-z_0) \, \int_0^{+\infty} e^{-(z-z_0)t} F(t) dt.$

7.10 Mines PSI 2024 Armand Dépée II

Montrer la convergence de $\int_1^{+\infty} \left(Arcsin\left(\frac{1}{x}\right) - \frac{1}{x} \right) dx$ et calculer sa valeur.

(7.11) <u>X PSI 2024</u> Jules Campistron II Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^1 telle que f(0) = 0 et f'(0) = q > 0.

- **a.** Montrer qu'il existe $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ et $\psi :]-\alpha; \beta[\to]-\alpha; \beta[$ tels que $\forall x \in]-\alpha; \beta[$, $f(x)=-f(\psi(x))$.
- **b.** Montrer que ψ est de classe C^1 .

(7.12) <u>Mines PSI 2016 (3) et CCINP PSI 2024</u> Pauline Bourda, Marie Rebière, Séb. Sequeira, Yasmine Azzaoui I

- a. Montrer que f définie par $f(x)=\int_x^{+\infty}\frac{e^{-t}}{t}dt$ est de classe C^1 sur \mathbb{R}_+^* . Calculer f'(x).
- **b.** Montrer que $\forall x > 0$, $f(x) \leqslant \frac{e^{-x}}{x}$.
- c. Montrer que $\forall x>0,\ f(x)=-e^{-x}\ln(x)+\int_{x}^{+\infty}e^{-t}\ln(t)dt.$
- **d.** Calculer $\int_0^{+\infty} f(x) dx$.